Statistica per l'impresa

3.5 ss. Numeri Indici II

Numeri indici sintetici - valore

Un indice sintetico mostra la variazione di un aggregato anziché di un valore elementare. Generalizziamo quanto visto riguardo agli indici sintetici dei prezzi:

L'aggregato può rappresentare un valore: è quindi un'aggregazione di fenomeni elementari del tipo $v_i = q_i \cdot p_i$. Si calcola allora il rapporto tra il valore del paniere in t e quello in 0:

$$_{0}^{V}I_{t} = \frac{v_{t}}{v_{0}} = \frac{\sum_{i} p_{it}q_{it}}{\sum_{i} p_{i0}q_{i0}}$$

dove prezzi e quantità sono contemporanei.

Numeri indici sintetici - prezzi o quantità

Altrimenti, se si è interessati alla variazione dei *prezzi*, si calcola il rapporto tra il valore del paniere ai prezzi in t e quello dello *stesso* paniere ai prezzi in 0:

$${}_{0}^{p}I_{T} = \frac{\sum_{i} p_{it}q_{ih}}{\sum_{i} p_{i0}q_{ih}}$$

ponderando con le quantità fissate a un certo istante h

Nel caso degli indici di *quantità*, analogamente, si utilizza una ponderazione fissata *ai prezzi* di un certo periodo *h*:

$${}_{0}^{q}I_{T} = \frac{\sum_{i} p_{ih}q_{it}}{\sum_{i} p_{ih}q_{i0}}$$

Alcuni numeri indici notevoli

L'Istat pubblica numerosi indici:

- Indici di valore
 - ► Fatturato e ordinativi dell'industria
 - Fatturato dei servizi
 - Valore delle vendite del commercio
- Indici dei prezzi
 - Prezzi al consumo (NIC, FOI, IPCA)
 - Prezzi alla produzione
- Indici delle quantità
 - Produzione industriale
 - Volume dell'export e dell'import
- con cadenza mensile o trimestrale.

Variazioni tendenziali e congiunturali

Preso un fenomeno misurato a cadenza infra-annuale, tale per cui nell'anno ci sono k periodi (e.g., per i dati trimestrali k=4, mensili k=12, giornalieri k=365), si parla di variazione

- congiunturale quando si rapporta il dato corrente x_t al dato precedente x_{t-1}
- tendenziale quando si rapporta il dato corrente x_t al dato corrispondente dell'anno precedente x_{t-4}

Per esempio, presi i dati mensili relativi alla produzione auto di dicembre 2018, la variazione

- congiunturale sarà misurata rispetto al novembre 2018
- tendenziale rispetto al dicembre 2017

Le variazioni congiunturali, a differenza delle tendenziali, risentono della stagionalità.

Numeri indici sintetici: scomposizione

Può essere utile scomporre gli indici sintetici in *subindici*. L'indice generale può essere ottenuto anche come media ponderata dei subindici.

Formalmente, considerando tre livelli:

- elementare
- gruppo: $1, \ldots, g, \ldots, G$
- e totale,

per il generico gruppo g contenente i prodotti $1,\ldots,i,\ldots,S$ è

$${}_{0}I_{t}^{g} = \frac{\sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} v_{i0}}{\sum_{i=1}^{S} v_{i0}} = \sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} w_{i0}$$

con $w_{i0} = \frac{v_{i0}}{\sum_{i=1}^{S} v_{i0}}$ e l'indice generale: ${}_{0}I_{t}^{G} = \sum_{g=1}^{G} {}_{0}I_{t}^{g} \cdot w_{i0}$ è la somma pesata delle variazioni dovute a ogni singolo gruppo.

Contributo delle singole componenti

Il calcolo dell'indice per gruppo misura la dinamica dei prezzi per singolo gruppo:

$${}_{0}I_{t}^{g} = \sum_{i=1}^{S} \frac{p_{it}}{p_{i0}} \frac{v_{i0}}{\sum_{i=1}^{S} v_{i0}}$$

Il contributo del singolo gruppo g alla dinamica dell'indice generale (*livello generale dei prezzi*) è dato dall'indice di gruppo volte il suo peso sul totale:

$$C_g = {}_0I_t^g \cdot w_{g0}$$

Esso permette di valutare l'incidenza delle varazioni di prezzo delle singole componenti sulle variazioni dell'indice aggregato.

Variazioni nominali e reali

Un aggregato monetario (misurato in *valore*) può variare sia per effetto di variazioni nel *volume* di beni e servizi sottostanti, che per effetto di una variazione nei prezzi. Dato un generico aggregato $A_t = \sum_i q_{it} \cdot p_{it}$, si indica con *variazione nominale*, o *variazione a prezzi correnti*, la crescita in valore di A nel tempo:

$$\frac{A_t}{A_0} = \frac{\sum_i q_{it} \cdot p_{it}}{\sum_i q_{i0} \cdot p_{i0}}$$

Si indica invece come *variazione reale* o *in volume* o *a prezzi costanti* la variazione in quantità dell'aggregato:

$$\frac{A_{t_{(0)}}}{A_0} = \frac{\sum_{i} q_{it} \cdot p_{i0}}{\sum_{i} q_{i0} \cdot p_{i0}}$$

Da prezzi correnti a costanti: il deflazionamento

L'aggregato $A_{t_{(0)}}$ può essere calcolato direttamente moltiplicando le quantità al tempo t per i prezzi al tempo 0, oppure indirettamente ricorrendo a numeri indici di prezzo e quantità:

$$A_{t_{(0)}} = \sum p_0 q_t = \sum p_t q_t \cdot \frac{\sum p_0 q_t}{\sum p_t q_t} = \frac{A_t}{{}_p^p I_t^P}$$

dicvidendo l'aggregato a valori correnti per un indice dei prezzi di Paasche. In questo caso si parla di *deflazionamento*. Oppure si può procedere per *estrapolazione*:

$$A_{t_{(0)}} = \sum p_0 q_t = \sum p_0 q_0 \cdot \frac{\sum p_0 q_t}{\sum p_0 q_0} = A_{00}^q I_t^L$$

moltiplicando il valore corrente dell'aggregato in 0 per un indice di quantità di tipo Laspeyres.

La shift-share analysis - 1

La tecnica detta *shift-share analysis* consente di scomporre la variazione di una caratteristica di interesse – osservata secondo due dimensioni diverse, per esempio per settore di attività economica $i=1,\ldots,i,\ldots,k$ e per territorio $j=1,\ldots,j,\ldots,m$ – evidenziando i contributi delle tre componenti:

- tendenziale (CM) o della macroarea: la variazione che si sarebbe avuta nell'area j se questa avesse avuto lo stesso andamento del totale
- strutturale (CS): la variazione attribuibile al mix di partenza di settori i (più o meno dinamici)
- locale (CL): che esprime la variazione legata alla capacità di crescita propria del sistema economico dell'area considerata.

La shift-share analysis - 2

La variazione totale del settore i nell'area j può infatti essere scomposta come segue: $x_{ijt} - x_{ij0} = CM_{ij} + CS_{ij} + CL_{ij}$ dove:

- $CM_{ij} = x_{ij0} \cdot r_{..}$
- $CS_{ij} = x_{ij0} \cdot (r_{i.} r_{..})$
- $CL_{ii} = x_{ii0} \cdot (r_{ii} r_{i.})$

con:

- $r_{..} = \frac{x_{..t} x_{..0}}{x_{..0}}$ è il tasso di variazione totale nella macro-area
- $r_{i.} = \frac{x_{i.t} x_{i.0}}{x_{i.0}}$ è il tasso di variazione della macroarea nel settore di attività economica i
- $r_{ij} = rac{x_{ijt} x_{ij0}}{x_{ij0}}$ è il tasso di variazione nel settore i dell'area j

Risulta:

$$CM_{ij} + CS_{ij} + CL_{ij} = x_{ij0} \cdot r_{..} + x_{ij0} \cdot (r_{i.} - r_{..}) + x_{ij0} \cdot (r_{ij} - r_{i.}) = x_{ij0} \cdot r_{ij} = x_{ijt} - x_{ij0}$$

L'analisi della mobilità - 1

Analizziamo il cambio di stato delle unità di un collettivo nel tempo. Esempi:

- le giacenze di magazzino
- le carriere del personale

Consideriamo le giacenze di magazzino. Sia C_0 la giacenza iniziale, E_1 la quantità entrata e U_1 quella uscita, da cui la giacenza finale

$$C_1 = C_0 + E_1 - U_1$$

I tassi di entrata e, rispettivamente, uscita vengono ottenuti rapportando i flussi alla media dello stock:

- $e_1 = \frac{E_1}{(C_0 + C_1)/2}$
- $u_1 = \frac{U_1}{(C_0 + C_1)/2}$

L'analisi della mobilità - 2

Può essere interessante, a prescindere dalla variazione nelle giacenze totali, misurare quanta parte delle unità in giacenza sia stata rinnovata nel periodo.

I rapporti di rinnovo misurano quanto sopra: il flusso è calcolato come semisomma di entrate e uscite, lo stock come giacenza media

$$\frac{(E_1+U_1)/2}{(C_0+C_1)/2}=\frac{E_1+U_1}{C_0+C_1}$$

I rapporti di durata sono il reciproco dei rapporti di rinnovo:

$$\frac{(C_0 + C_1)/2}{(E_1 + U_1)/2} = \frac{C_0 + C_1}{E_1 + U_1}$$

Nell'ambito della gestione delle risorse umane, tali rapporti vengono detti tassi di turnover.

Esempio: carriere del personale

Per analizzare la mobilità di un collettivo si può costruire una *matrice di transizione*:

$Stato_{t-1}$	$Stato_t$				Uscite	Totale
	S_1	S_2	 S_{j}	 S_k		
S_1	n ₁₁	n_{12}	 n_{2j}	 n_{1k}	U_1	$n_{1.(t-1)}$
S_2	n_{21}	n_{22}	 n_{1j}	 n_{2k}	U_2	$n_{2.(t-1)}$
S_i	n_{i1}	n_{i2}	 n _{ij}	 n _{ik}	U_i	$n_{i.(t-1)}$
S_k	n_{k1}	n_{k2}	 n_{kj}	 n_{kk}	U_k	$n_{k.(t-1)}$
Entrate	E_1	E_2	 E_j	 E_k		
Totale	$n_{.1t}$	$n_{.2t}$	 $n_{.jt}$	 $n_{.kt}$		$n_{(t)} n_{(t-1)}$

(Continua) - Tabella di transizione

Sulla base dei dati nella matrice, si può verificare la proporzione di unità in ogni stato che vi rimangono, rispettivamente, cambiano stato oppure entrano o escono dal collettivo.

Risultano così definiti:

- Tasso di permanenza nello stato i: $p_{ii} = \frac{n_{ii}}{n_{i.(t-1)}}$
- Tasso di transizione dallo stato i allo stato j $(i \neq j)$: $p_{ij} = \frac{n_{ij}}{n_{i,(t-1)}}$
- Tasso di uscita dallo stato i: $u_i = \frac{U_i}{n_{i,(t-1)}}$
- Tasso di entrata nello stato i: $e_i = \frac{E_i}{n_{i,(t-1)}}$

(Continua) - Prospetto dei tassi di transizione

La frequenza di

- a) permanenza in uno stato
- b) transizione verso un'altro stato

può essere efficacemente rappresentata in un prospetto dei *tassi di transizione*:

Livelli professionali	1	2	3	4	 k
1	p_{11}	p_{12}			
2		p_{22}	p_{23}		
3			<i>p</i> ₃₃	<i>p</i> ₃₄	
k					p_{kk}