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2. PAIRS AND SEQUENCES

Cantor proved that the set of ordered pairs of natural numbers

can be put in one-to-one correspondence with the set of natural :

numbers. This can be done in many ways, of course, but there is

one particularly simple mapping function which we shall find

useful. Let J(z, y) = 3((z + y)®> + 3z + y). Then J(x, y) is an

integer-valued function which assumes each natural number

as value exactly once for x and y natural numbers. In fact,
J(0,0) = 0 and

J(:U,y)-l—l: J(x—l"ly?/_'l)) 1fy>03

JO, z + 1), iy = (.

So J maps the set of ordered pairs of natural numbers onto the |

natural numbers according to the following diagram.

J,y) | 0 1 2 3 4

0 0 1 3 610
il 2 4 7 ki
x 2 5 K12
3 13
4 14

Two inverse functions K and L are uniquely determined by the |
equation v = J(Ku, Lu).t The first few values of K and I which

clearly indicate the general pattern of their sequence of values are
given below:

t We usually omit parentheses in the functional notation for functions of

one variable. Thus F(z) is written Fz and F(G (x)) is written FGx.
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To give an example of the use of pairing functions, suppose §
is the range of a function F(z, ) of two variables. Then § is also
the range of G(u) = F(Ku, Lu), a function of one variable. We
can also recover the function F from G, since F(z, i) = G(J(z, v)).

We can also let a set § of natural numbers represent a binary
relation ® by the equivalence: ®R(z, y) if and only if J(z, y) € 8.
Thus, a sequence of sets 8, 81, 8, « - - is represented by a single
set 8 through the correspondence ¢ € 8, if and only if J(n, 2) € S.

Another example of the usefulness of pairing functions is a
simple system of numbering diophantine equations. Here a
diophantine equation is an equation of the form F(zo, 4, «--) =
G (2o, 1, -+ -) where F and G are terms built up from g, 21, - - -
and natural numbers by addition and multiplication. A diophan-
tine equation can also be put in the form Pz 2, ---) = 0,
where P is a polynomial with integer coefficients.

First we number the terms 7o, 71, 79, - -+ built up from the
variables and natural numbers by repeated additions and multi-
plications as follows:

Tin = N,
Tin+1l = Ty
Tini2 = TEn ~ TLn

Tind3 = TKn * TLn.
Then we number the equations with the nth equation being
Tkn = Tin. We could also write the nth equation as 7z, — 7z, = 0.
Thus, the eighth equation is 0 + 0 = 2, and the number of
2-25 = 1 + 2% is 7,697,614,550.
Finally, we wish to give a method of representmg ﬁmte sequences
of natural numbers due to Godel. Let Rem (z, y) be the least
nonnegative remainder of & divided by y.

Lemma (GOpEL 1931): For every finite sequence sy, sy, -+« , S
of natural numbers, there are natural numbers a and d such aihat
2.1) = Rem(a,1 4+ (¢t + 1)d) for t=0, -, k.

Proof: NOW (2.1) is equivalent to

= 8 (mod 1 + (¢ + 1)d),
(2.2)
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By the Chinese remainder theorem, the congruences can be
satisfied for some a if the moduli are relatively prime and the
inequalities will be satisfied if d is sufficiently large. Take for d a
sufficiently large multiple of k! so that d > s, for all £ < k. If a
prime p divides both 1+ (¢4 1)d and 1+ ( + 1)d, then
p|@—1t)d If t = ¢, then 0 < [t — ¢| < k. Hence plk! and so
p|d. But pfd since by hypothesis p |1 + (¢ + 1)d. Therefore
for this choice of d, the moduli in (2.2) are relatively prime and
o satisfying (2.2) exists.

This lemma, is at the root of much of what follows.

3. COMPUTING AND LISTING

In Section 1 we spoke of a “general method” to tell if an arbi-
trary diophantine equation has a solution. What do we have in
mind? We mean a set of instructions (necessarily finite) which
describe in a completely deterministic way, how to start from an
arbitrary diophantine equation P(zy, -+, 2) = 0 and to obtain
after a finite number of steps the correct answer to the question:
Does P = 0 have a solution? At no step in the process should the
instructions call for either ingenuity or chance. On the other hand,
we do not demand practicality of the method or place any restrig-
tions on time or space needed to carry out the process.

Suppose we find a method to tell if an arbitrary diophantine
equation has a solution. We give a proof that our method works,
Le., for every diophantine equation, it yields the correct answer to
the question: Does this equation have a solution? Then if the
argument is sound, everyone will presumably admit that Hilbert’s
problem is solved. We do not need to agree ahead of time on the
exact meaning of the term “general method.” But if there is no
general method and we wish to prove that there is none, then we
need to be precise. Hence until the notion of computability was
defined, no one could ask if such a method exists,

Let us number all diophantine equations in some systematic way
such as in the last section. Thus given any n, we can write down
the nth equation and given an equation, we can figure out its
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number (or at least one of its numbers if some equations oceur
more than once). Let 8 be the set of numbers of equations which
have solutions. Then a method to tell whether or not an arbitrary
natural number 7 belongs to § would also give us a method to tell
whether or not an arbitrary diophantine equation has a solution.

We call a set of numbers computable if there is a method of
deciding whether or not an arbitrary natural number n belongs
lo the set. A method consists of a finite set of instructions which
for each natural number # specifies a calculation terminating in
a “yes” or “no” answer to the question: Does 7 belong to the set
being computed?

Clearly, this is not a mathematical definition of the class of
computable sets but, rather, it is a description of the intuitive
concept of a computable set. In Section 5 we will give a strictly
mathematical characterization of the sets which are identified with
this intuitive concept of computable set.

We call a set £ of natural numbers lstable if there is a method
of making a list of the elements of £. A st is either a finite or
infinite sequence, with or without repetitions. For example, the
set § of numbers of solvable diophantine equations is listable.
To make the list, we simply try the possible values of the argu-
ments in the equations in a systematic way. Each time we find a
solution of some equation, we put its number on our list.

What is a method of listing a set of numbers? It is a set of
instruetions which provides for a completely deterministic caleu-
lation which may or may not terminate. From time to time during
the caleulation, a particular number is designated as the next
number on the list and we place it next on the list.

We say a function F(x, - - -, 2z) defined for all natural numbers
and assuming natural numbers as values is computable if there is a
method to compute the value of F(zy, -« -, 2;) for an arbitrary
k-tuple of natural numbers. Here a method is a set of instruc-
tions such that if it is applied to any k-tuple of natural numbers
Ty, -, xp it will yield a completely deterministic calculation of
the natural number which'is F(z1, - - -, 2x).

We will take the concept of Iistable set as our fundamental
intuitive notion. The following observations show that the




