Conclusions

A striking consequence of the univocal exponential representability of any r.e. set was noted in [16, p. 300 and p. 310]. One can find a concrete polynomial $B\left(a, x_{0}, x_{1}, \ldots, x_{\kappa}, y, w\right)$ with integral coefficients such that:

1) to each $\boldsymbol{a} \in \mathbb{N}$, there corresponds at most one $\boldsymbol{k}+2$ tuple $\left\langle\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}\right\rangle$ such that $B\left(\boldsymbol{a}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}, 2^{\boldsymbol{u}}\right)>0$ holds;
2) to any monadic totally computable function \mathcal{C}, there correspond $\boldsymbol{k}+3$ tuples $\left\langle\boldsymbol{a}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}\right\rangle$ of natural numbers such that

$$
B\left(\boldsymbol{a}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}, 2^{\boldsymbol{u}}\right)>0 \text { and } \max \left\{\boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}\right\}>\mathcal{C}(\boldsymbol{a}) .
$$

To see this, refer to an explicit enumeration $\boldsymbol{f}_{0}, \boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots$ of all monadic partially computable functions (see [7, p. 73 ff$]$), so that both of

$$
\begin{aligned}
\mathcal{H} & =\left\{\left\langle a_{1}, a_{2}\right\rangle \in \mathbb{N}^{2} \mid \boldsymbol{f}_{a_{1}}\left(a_{1}\right)=a_{2}\right\} \\
\mathcal{K} & =\{a \in \mathbb{N} \mid\langle a, x\rangle \in \mathcal{H} \text { holds for some } x\}
\end{aligned}
$$

are r.e. sets, the complement $\mathbb{N} \backslash \mathcal{K}$ of the latter is not an r.e. set, and the former can be represented in the univocal form shown at the beginning of Sect. 1, namely
$\boldsymbol{f}_{a_{1}}\left(a_{1}\right)=a_{2} \Longleftrightarrow\left(\exists x_{1} \cdots \exists x_{\kappa} \exists y \exists w\right)\left[2^{y}=w \mathcal{B} D\left(a_{1}, a_{2}, x_{1}, \ldots, x_{\kappa}, y, w\right)=0\right]$,
where D is a polynomial with integral coefficients; then put

$$
B\left(a, x_{0}, x_{1}, \ldots, x_{\kappa}, y, w\right)=_{\text {Def }} 1-D^{2}\left(a, x_{0}, x_{1}, \ldots, x_{\kappa}, y, w\right),
$$

so that $B\left(a, x_{0}, x_{1}, \ldots, x_{\boldsymbol{\kappa}}, y, 2^{y}\right)>0$ holds if and only if $\boldsymbol{f}_{a}(a)=x_{0}$, and hence B satisfies 1).

By way of contradiction, suppose that there is a monadic totally computable function \mathcal{C}_{*} such that the inequalities $\boldsymbol{v}_{0} \leqslant \mathcal{C}_{*}(\boldsymbol{a}), \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}} \leqslant \mathcal{C}_{*}(\boldsymbol{a})$, and $\boldsymbol{u} \leqslant \mathcal{C}_{*}(\boldsymbol{a})$ hold whenever a tuple $\left\langle\boldsymbol{a}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}\right\rangle$ of natural numbers exists such that $B\left(\boldsymbol{a}, \boldsymbol{v}_{0}, \boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{\boldsymbol{\kappa}}, \boldsymbol{u}, 2^{\boldsymbol{u}}\right)>0$ holds; that is, they hold when a pair $\left\langle\boldsymbol{a}, \boldsymbol{v}_{0}\right\rangle \in \mathcal{H}$ exists (this happens, e.g., for the infinitely many \boldsymbol{a} 's satisfying $\mathcal{C}_{*}=\boldsymbol{f}_{\boldsymbol{a}}$). In particular, the said inequalities must hold when $\boldsymbol{a} \in \mathcal{K}$. But then this would offer us a criterion for checking whether or not $\boldsymbol{a} \in \mathcal{K}$, by evaluating a bounded family of expressions of the form $B\left(\boldsymbol{a}, v_{0}, v_{1}, \ldots, v_{\boldsymbol{\kappa}}, u, 2^{u}\right)$; however, this would conflict with the fact that $\mathbb{N} \backslash \mathcal{K}$ is not r.e. We conclude that B satisfies 2).

Summing up, we are in this situation: thanks to reductio ad absurdum, we have found that the course of values of the concrete arithmetic expression $B\left(a, v_{0}, v_{1}, \ldots, v_{\boldsymbol{\kappa}}, u, 2^{u}\right)$ exceeds zero at most once for each value \boldsymbol{a} of a; it is unconceivable, though, that one can put an effective upper bound on the positive values of $B\left(a, v_{0}, v_{1}, \ldots, v_{\kappa}, u, 2^{u}\right)$.

A proof that every r.e. set admits a finite-fold Diophantine polynomial representation would yield analogous, equally striking consequences about 'noneffectivizable estimates'.

