

Kinetics at Equilibrium

Analogously to other spectroscopic methods, and also to non spectroscopic techniques, either the disappearing of a reagent (A) or the increasing of a product (B) can be followed $A \rightarrow B$ Exclusively by NMR the kinetic constants are determined at equilibrium

 $A \leftrightarrow B$

Under the usual assumption of a **first order** law.

The main methods are:

 \triangleright Lineshape analysis

 \triangleright EXSY (2D)

Parameters to be considered

- R_1
- intrisinc linewidth $\Delta v_{1/2}$ = R₂/ π
- shift separation (in ω = 2 πv , field dependent) between the exchangin sites
- \bullet k

For $k < R_1$ no effect (the spin system reverted to equilibrium before exchange took place)

For $R_1 < k < \omega_A - \omega_B$ separate signals and cross-peaks in the EXSY 2D spectra

For R_2 < k << ω_A - ω_B linebroadening

$$
\Delta V_{1/2} = \frac{1}{\pi} (R_2 + k)
$$

At high magnetic field the system can be in the slow exchange regime since k<< $\omega_{\mathsf{A}}\text{-}\omega_{\mathsf{B}'}$ but exhibits broad lines if k is large

In the simplest case of mutual exchange, the lineshape depends only on:

- frequency difference between the two sites (δv),
- •k (or equivalentely on the lifetime in each site $t=1/k$),
- linewidth in the absence of exchange $(\Delta v_{1/2})$

Simple formulas relate the lineshapes with these parameters under the assumption that the exchange process is fast compared to T_1

 $\delta \! \nu$ $\pi\delta\nu$ $=\frac{12.22}{2}$ $k_c = \frac{nc}{\sqrt{2}}$

For $\begin{bmatrix} L & \mathcal{J} \end{bmatrix}$ coalescence in the case of mutual exvhange

with δv shift difference in Hz

signal occurs at $v_{av} = p_A v_A + p_B v_B$

Fast exchange

if k> k_c there is just one broad signal with linewith:

$$
\Delta V_{1/2} = \frac{4\pi p_A p_B (\delta v)^2}{k_1 + k_2}
$$

 Δ v_{1/2} decreases upon increasing k

For k>> δ the linewidth is determined by the average of the transverse relaxation rates

k depends on temperature according Arrhenius's law

$$
k = A \exp\left(-\frac{E_a}{kT}\right)
$$

therefore the NMR spectrum changes with temperature

Let's consider the Bloch Equations for a system of a single kind of spins, A,

after the pulse,

in a slightly off-resonance rotating frame

A xA $yA - A$ *xA T M* $=-M_{\circ}$, Ω , $$ *dt dM* 2 \equiv

A yA $=M_{_{X\!A}}\Omega_{_A}$ *yA T M dt dM* 2

A $\begin{array}{ccc} & M_{\scriptscriptstyle\,} - M_{\scriptscriptstyle 0} \end{array}$ *T dt* $dM_{Z\underline{A}}$ 1 $\overline{}$ ———

It is convenient using the complex magnetization M_{+A}

$$
M_{+A} = M_{xA} + iM_{yA}
$$

Its evolution in the transverse plane is obtained by solving the differential equation

$$
\frac{dM_{+A}}{dt} = iM_{+A}\Omega_A - \frac{M_{+A}}{T_{2A}}
$$

$$
M_{+A}(t) = M_{+A}(0) \exp(i\Omega_A t) \exp(-R_{2A} t)
$$

Let's consider that the molecule with the spin A (which, for simplicity, is not scalarly coupled with any other nucleus) undergoes a reaction with a first order kinetics and the reaction is reversible

i.e., it takes part to an equilibrium of the kind: $A \rightleftharpoons B$ k_1 $k₂$

$$
K = \frac{k_1}{k_2} \qquad \qquad \mathsf{p}_A \mathsf{k}_1 = \mathsf{p}_B \mathsf{k}_2
$$

The differential equations decribing the evolution of transverse magnetization are now coupled

$$
\frac{dM_{+A}}{dt} = iM_{+A}\Omega_A - \frac{M_{+A}}{T_{2A}} - k_1M_{+A} + k_2M_{+B}
$$

$$
\frac{dM_{+B}}{dt} = k_1M_{+A} + iM_{+B}\Omega_B - \frac{M_{+B}}{T_{2B}} - k_2M_{+B}
$$

Matrix Form of Bloch McConnell Equations

$$
\frac{d}{dt} \begin{vmatrix} M_{+A} \\ M_{+B} \end{vmatrix} = \begin{vmatrix} i\Omega_A - \frac{1}{T_{2A}} - k_1 & k_2 \\ k_1 & i\Omega_B - \frac{1}{T_{2B}} - k_2 \end{vmatrix} \begin{vmatrix} M_{+A} \\ M_{+B} \end{vmatrix}
$$

The solution can be obtained by

- finding two linear combinations of M_{A+} e M_{B+} in which the equations are not coupled any longer
- exponentiating both such linear combination and transforming back to $M(t)_{A+}$ and $M(t)_{B+}$
- summing them, so obtaining the time signal
- Fourier transforming the time signal

In the symmetric case:

$|\Lambda| = |U|^{-1} |M| |U|$

- $|\Lambda|$ eigenvalues matrix (diagonal),
- | M | starting matrix, to diagonalize
- $|U|$ trasformation matrix (the columns are the eigenvectors)

In the non-symmetric case the diagonalization is more complex

Supplementary material

$$
\Lambda_1 = \frac{1}{2} \left\{ i \left(\Omega_A + \Omega_B \right) - \frac{1}{T_{2A}} - \frac{1}{T_{2B}} - k_1 - k_2 \right\} - \frac{1}{2} q
$$

$$
\Lambda_2 = \frac{1}{2} \left\{ i \left(\Omega_A + \Omega_B \right) - \frac{1}{T_{2A}} - \frac{1}{T_{2B}} - k_1 - k_2 \right\} + \frac{1}{2} q
$$

with:
$$
q = \sqrt{\Delta^2 + 4k_1k_2}
$$
 $\Delta = i(\Omega_A - \Omega_B) - \frac{1}{T_{2A}} + \frac{1}{T_{2B}} - k_1 + k_2$

$$
|U| = |U|^{-1} = \frac{1}{\sqrt{(q + \Delta)^2 + 4k_1k_2}} \begin{vmatrix} (q + \Delta) & 2k_2 \\ 2k_1 & -(q + \Delta) \end{vmatrix}
$$

Peculiarity: $|U|=|U|^{-1}$

The signal in the frequency domain is obtained by the Fourier transform of the signal in the time domain:

S(ω)=Re FT{|E||U||e^{Lt}||U|⁻¹|M₊(0)|

|E| is introduced to make the sum. It is a row matrix with all elements equal to 1. The product of twhis row matrix by a column matrix with the same dimension reults in a matrix of only one element, which is the sum of the elements of the column matrix.

e.g.
$$
\begin{vmatrix} 1 & 1 & 1 \end{vmatrix} \begin{vmatrix} a \\ b \\ c \end{vmatrix} = |a+b+c|
$$

|M⁺ (0)| column matrix of the populations of the two sites at the beginning of acquisition

Signal Analysis in Exchanging Systems

- The simplest case is an exchange that is transferring nuclei between two sites with equal populations and in the absence of scalar coupling
- N,N'-dimethylacetamide is considered a good approximation this ideal system. The coupling between the two methyls' protons is small and it can be safely neglected.molto piccolo (trascurabile)

When the exchange is very slow k < $1/T₁$: **no effect on the NMR signal**

For k > $1/T_1$ several regimes occure, according to k and δv ratios

 $k << \Omega_{_A} - \Omega_{_B}$ *T* $\langle k \langle \langle \Omega \rangle - \Omega \rangle$ 1 1

cross peaks in the 2D spectra (EXSY)

Until $k < 1/T₂$ no effect on the linewidth

Lineshape analysis

- When $k > 1/T_2$ the effect on the linewidth is detectable
- The relevant factors for this analysis are:
- the natural linewidth $(\Delta v_{1/2})$ and the shift separation (in Hz) between the exchanging sites (A e B)

$$
\Delta v_{1/2} = \frac{1}{\pi} \left(\frac{1}{T_2} + k \right)
$$

the linewidth increases with k

in the slow exchange regime at high B_0 (large shift diference) $\Delta v_{1/2}$ may be large for large k

$$
k_{coal} = \frac{\pi \delta v}{\sqrt{2}}
$$

the signal position is the weighted average of the positions of the signals of the two exchanging partners

There is just one broad signal with linewidth:

$$
\Delta v = \frac{4\pi p_A p_B (\delta v)^2}{k_1 + k_2}
$$

¹⁹F NMR

564.6 MHz on Varian Inova-600 spectrometer

F…..S interaction

E. Laurini et al. Chem. Commun. 2012, 48, 4284-4286

Non Mutual Exchange

mutual exchange

non mutual exchange: two sites with different populations

 1 $P B^{\prime \prime}2$

 $= D_{1}K_{1} + D_{2}K_{2} =$

 $k_{\textit{media}} = p_{\textit{A}} k_{\textit{1}} + p_{\textit{B}} k_{\textit{2}}$

 $1 \cdot \nu_2$

 $k_{1} + k$

┿

 $1^{\prime\prime}2$

k k

2

slow exchange

 k_{average} =3.75

enlargement of the previous spectrum

Il segnale di B è impercettibile, ma c'è allargamento del segnale di A

The position of the maximum of the signal is the weigthed average of the shifts of di A and B

Intermediate Rate

The lineshapes are calculated by solving the Bloch-McConnell equations