Polarization Transfer through Bonds in the Presence of Scalar Coupling

- Selective Population Transfer
- Insensitive Nuclei Enhanced by Polarization Transfer
- Distortionless Enhancement by Polarization Transfer

Selective Population Transfer

2 Δ is the population difference across the two levels involved in a ¹H transition, 2 δ for ¹³C

The signals' intensities depend on the population differences: 2 Δ for the H transitions and 2 δ for the C transitions

The populations of two levels connected by a ¹H transition, e.g.H_b, are inverted by means of a selective pulse for that transition

population difference for C_a: $2\Delta + 2\delta$ for C_b: $-2\Delta + 2\delta$

¹³C Spectrum with Population Inversion across the H_b Transition

subtracting the usual spectrum

Spin Echo for a AX Spin System

Homonuclear AX System with a π Selective Pulse for A

is equal to the heteronuclar pulse and refocussing occurs

Homonuclear AX System: Selective π Pulse for X

Homonuclear AX System Non Selective π Pulse

INEPT

- the overall effect of both π pulses on H and C is that of a non selective π pulse on a homonuclear system
- the defocussing continues, but the chemical shifts of protons are refocussed, thus the sequence is not selective

in this case the signal increment

for ¹³C is 4

for ¹⁵N is 10

The inversion of one component of the doublet has been accomplished for all protons, independently of their chemical shifts

Soon after, the ¹³C signal is acquired. The ¹³C spectrum displays the gain in intensity originated by the polarization transfer through bonds

irrespectively of the motional regime