

Percezione applicata e progettazione

Anno Accademico 2018-19

Mauro Murgia Università degli Studi di Trieste

Quanto siete consapevoli del consumo d'acqua?

Scrivere su un foglio, individualmente:

- Quanti litri d'acqua occorrono mediamente per una doccia?
- Quanto costa una doccia?
- Quanta acqua consumiamo mediamente in un giorno?

Doccia: 50-80 litri

Costo: circa 0,10 Euro

Italia: 241 litri

Nord Europa: 180-190 litri

Gestione della domanda d'acqua → promuovere comportamenti "water saving" in modo da ridurre la media del consumo d'acqua e promuovere un consumo sostenibile (Brooks, 2002; 2006).

- atteggiamenti, opinioni e comportamenti dei consumatori

Comportamento individuale -> elemento chiave (Willis et al. 2011)

→ Analisi del punto di vista dei consumatori: percezione del consumo di acqua domestica e opinioni sull'utilizzo di risorse idriche

Gestione della domanda d'acqua

Quali strategie per promuovere un utilizzo sostenibile dell'acqua e per aumentare la consapevolezza dei consumi?

Pricing e non-pricing strategies

Tipi di tariffe, sconti

Gestione della domanda d'acqua

 Strategie raramente efficaci nel promuovere modifiche comportamentali e nell'aumentare la consapevolezza del consumo d'acqua (Rockaway et al., 2011)

La ricerca suggerisce che i consumatori non sono consapevoli del volume d'acqua consumata quotidianamente (i.e. Miller & Buys, 2008)

Survey

Non misura direttamente il consumo individuale

Suscettibile di desiderabilità sociale

Stima del consumo domestico

Ragionamento "astratto"

Influenza di conoscenze pregresse

Percezione diretta del consumo d'acqua

- Osservazione diretta del flusso d'acqua → esperienza concreta
- Assenza di desiderabilità sociale
- Effetto limitato di conoscenze pregresse

Networking for Drinking Water Supply in Adriatic Region DRINK ADRIA

16 partners from 8 Countries

Create a network to share competences, expertise and operational practices in the field of sustainable water resources management

Funded by

IPA Adriatic Cross-border Cooperation Programm

Quanto siete bravi a stimare il flusso d'acqua?

Scrivere su un foglio, individualmente:

- Quanta acqua esce
- Per quanto tempo il rubinetto è rimasto aperto

Video 1 \rightarrow 10 secondi, 3 lt/sec = 0,50 lt

Video 2 \rightarrow 10 secondi, 7 lt/sec = 1,17lt

Video 3 \rightarrow 10 secondi, 12 lt/sec = 2 lt

Video $4 \rightarrow 10$ secondi, 12 lt/sec = 2 lt

Video 5 \rightarrow 10 secondi, 7 lt/sec = 1,17lt

Video 6 \rightarrow 10 secondi, 3 lt/sec = 0,50 lt

Experiment 1 - Aim

AIM: to investigate the individual perception of the sensorial experience related to water flow.

→ we examined whether participants were able to estimate the volume of water supplied by a domestic tap, by manipulating both the volumetric flow rate and the temporal interval during which the tap supplied water.

HYPOTHESIS: occurrence of perceptual bias, which could explain the difficulty in estimating the actual water consumption.

Experiment 1 - Stimuli

- We recorded nine videos, which showed the water flow supplied by a domestic tap;
- Each video started by showing the hand of a volunteer turning the tap on, and finished by showing the same hand turning the tap down.
- We manipulated both the flow rate and the duration of the water flowing

Experiment 1 - Method

11 university students ($M = 21 \pm 2,1$)

A within—subjects experimental design was employed with two independent variables: Flow Rate and Duration.

Flow Rate: three conditions (Low, Medium and High), according to the total volume of water supplied per unit time (that is, liters per second).

Duration: Three conditions (10s, 20s and 30s) according to the duration of water flowing

Experiment 1 - Method

4 repetitions of the experimental session – 9 videos in counterbalanced order

TASK:

- Watching each video, while performing an interfering task that is repeating the same syllable aloud, i.e. "la-la-la-la...".
- Reporting one's own estimation of the total volume of supplied water and the temporal duration of water flowing

 \rightarrow the percentage value of \triangle Volume and \triangle Time,

 Δ = estimated values – actual values

Experiment 1- Results

A 3 (Flow Rate) x 3 (Duration) repeated measure ANOVA

Flow Rate (F = 36,453; p < .001; η^2 = .785), Duration (F = 16,898; p < .001; η^2 = .628), and interaction (F = 3,556; p < .05; η^2 = 262).

Experiment 1- Results

Flow Rate Variable

Low vs. Medium (p < .001); Low vs. High (p < .001); Medium vs. High (p < .05)

→ Participants underestimated the volume of flowing water and underestimation increased as Flow rate increased

Medium (t = -3,785; p < .005) and High (t = -5,577; p < .001)

Experiment 1- Results

Duration variable

10s vs. 20s (p < .05); 10s vs. 30s (p < .001); 20s vs. 30s (p < .001)

→ participants' underestimation significantly increase according to the increase of water flowing duration.

Experiment 1 - Discussion

- Participants were accurate in the perception of water volume only when water flow rate was low
- When flow rate was medium or high, participants reported a volume of supplied water inferior than actual volume
- Underestimation seems to worsen as water flow duration increases.

Influence of the features of sensorial experience, which may be not totally informative for non-experts.

→ we added one more information in the videos, by framing also the sink

Experiment 2 - Method

11 university students (M = 22.09 ± 2.94)

Same procedure and experimental design of Experiment 1

→ we framed also the sink

Experiment 2 - Results

Repeated measure ANOVA: Flow Rate (F = 21,001; p < .001; η^2 = .677), and Duration (F = 8,170; p < .005; η^2 = .450)

Same pattern of results than Experiment 1:

Participants underestimated the volume of flowing water;
underestimation increased as Flow rate and Duration increased

In Low condition participants were accurate in the estimation of total

volume of supplied water

→in both Medium and High conditions participants performed accurately when executing the 10s condition (according to one sample t-tests)

General discussion

- People underestimate the total volume of water supplied by a domestic tap, even when the water in the sink can be seen
- The underestimation of volume of water supplied increases as a function of both flow rate and water flowing duration increase, worsening consumers' awareness of their actual consumption.
- Accuracy for low flow rate and for short time intervals

General discussion

Since our procedure limited the impact of social or other external pressures

→ water consumption underestimation is due to a perceptual bias which affects people's perception of the sensorial experience of water flowing

From an applied perspective:

The accuracy for short time interval when participants could see also the sink could be effectively employed to reduce the consumption of water, or at least to use consciously it