Correzioni relativisiche alle energie dell'atomo di H

Tutto è stato discusso in termini di un H non relativistica, vediamo le correzioni relativistiche che danno una struttura conosciuta come **Struttura Fine** (correzioni che vengono dalla equazione d'onda relativistica)

-Non faremo il trattamento formale (Dirac in potenziale centrale $(E - c\alpha \cdot p - \beta mc^2)\Psi = 0$)

-ma perturbativo con $H=H_0+H'$ e $H_0=rac{p^2}{2m}-rac{Ze^2}{(4\pi\varepsilon_0)r}$

I termini perturbativi sono: $H' = H'_1 + H'_2 + H'_3$

$$H'_1 = -\frac{p^4}{8m^3c^2}$$
 $H'_2 = \frac{1}{2m^2c^2}\frac{1}{r}\frac{dV}{dr}\mathbf{L}\cdot\mathbf{S}$ $H'_3 = \frac{\pi\hbar^2}{2m^2c^2}\left(\frac{Ze^2}{4\pi\epsilon_0}\right)\delta(\mathbf{r})$

Correzione relativistica dell'Ekin

Correzione Spin-Orbita:

accoppiamento tra Spin dell'e- con il momento angolare orbitale **Termine di Darwin**: Riduzione dell'interazione elettrostatica e- nucleo dovuto alla natura quantistica dell'elettone (quantum fluctuations)

Correzione relativisica dell'Ekin

Sostituendo l'energia cinetica classica (p2/2m)

Ed espandendo si ottiene una correzione piccola (prop
$$(Z\alpha)^2$$
): $-\frac{p^4}{8m^3c^2}$

Diagonale in L², S², Lz, S_z e quindi la correzione è data al primo ordine perturbativo da: $=-\frac{1}{2mc^2}\langle\psi_{nlm_i}|T^2|\psi_{nlm_i}\rangle$

Cha ci da una correzione:

$$\Delta E_1 = -E_n \frac{(Z\alpha)^2}{n^2} \left[\frac{3}{4} - \frac{n}{l+1/2} \right]$$

Interzione Spin Orbita

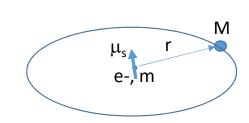
Interazione tra il momento di dipolo magnetico di Spin di un elettrone e il campo magnetico interno di un atomo che dipende dal momento angolare orbitale dell'elettrone

Un descrizione «efficace» di questo effetto si può ricavare ponendosi <u>nel sistema di riferimento dell'elettrone</u> in cui il nucleo con carica Ze in movimento genera un campo magnetico che interagisce con gli spin degli elettroni.

$$\mathbf{B} = -\frac{1}{e^2}\mathbf{v} \times \mathbf{E}$$
 Campo magnetico visto dall'e-

$$\mathbf{E} = \frac{\mathbf{F}}{-e} = \frac{1}{er} \frac{dV}{dr} \mathbf{r}$$
 Il campo elettrico è legato al potenziale

$$\mathbf{B} = -\frac{1}{c^2} \mathbf{v} \times \mathbf{E} = -\frac{1}{c^2} \frac{1}{er} \frac{dV}{dr} \mathbf{v} \times \mathbf{r} = \frac{1}{mc^2 e} \frac{1}{r} \frac{dV}{dr} \mathbf{L}$$



E utilizzando il momento magnetico associato allo spin dell'elettrone $\bar{\mu}_S = -\frac{e}{m}S$ (note)

$$H_{so} = -\mu_{S} \cdot \mathbf{B} = \frac{1}{m^{2}c^{2}} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$

$$H_{SO} = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} \mathbf{L} \cdot \mathbf{S}$$

Le approx. fatte (moto rettilineo e derivazione intuitiva...) il termine corretto ha un fattore 2 aggiuntivo (fattore di Thomas)

<u>Accoppiamento di spin orbita</u> (anche noto come correzione relativistica... Lo spin nasce dalla trattazione relativistica della meccanica quantistica...

Vedi Formalismo di Dirac (Appendice 7 Brandsen)

Correzioni spin orbita (note)

Le correzioni sono piccole e verranno trattate perturbativamente.

Partiamo dalla considerazione che $[H_{SO},L^2]$ =0 ma non commuta con L_z ed S_z

[L²,Lz]=0 e non agisce sulle coordinate di Spin La perturbazione mescola stati con diversi valori di m e ms

Introduciamo l'operatore momento angolare totale J=L+S

Dalla definizione di $\mathbf{J}^2 = \mathbf{L}^2 + \mathbf{S}^2 + 2\mathbf{L} \cdot \mathbf{S}$ ricaviamo $\mathbf{L} \cdot \mathbf{S} = \frac{1}{2} [\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2]$

Si vede bene che $H_{SO} = \frac{1}{2} \xi(r) [\mathbf{J}^2 - \mathbf{L}^2 - \mathbf{S}^2]$ è diagonale nel sottospazio degenere (n fissato)

Se utilizzo le autofunzioni degli operatori L^2, S^2, J^2, J_z

Che posso scrivere come una combinazione lineare delle autofunzioni $\chi_{ms} \psi_{n\ell m}(\mathbf{r})$ degli operatori L², L_z, S², S_z

$$\Psi_{n_{\ell}jm_{j}} = \sum_{m,m_{s}} \langle \ell^{1}/_{2}mm_{s}|jm_{j}\rangle \chi_{ms} \psi_{n_{\ell}m}(\mathbf{r})$$

. . .

Sommando i momenti angolari abbiamo $j=\ell\pm\frac{1}{2}$ se $\ell\neq0$, $j=\frac{1}{2}$ se $\ell=0$

e quindi -j≤m_i≤j ed assume 2j+1 valori

Coefficienti di Clebsch-Gordan $<\ell smm_s|jm_j>$ con s=1/2 e $\ell \le m \le .\ell$; $m_s=\pm \frac{1}{2}$

Se volessimo anche scrivere le corrette autofunzioni dovremmo introdurre i coefficienti CG:

$$\begin{split} & \Psi_{n,\ell,j=\ell+1/2,mj}\!\!=\!\!R_{n\ell}\!(r)\!\left[\sqrt{\frac{\ell+m_j+\frac{1}{2}}{2\ell+1}}Y_{\ell,m_j-\frac{1}{2}}\!\chi_+ + \sqrt{\frac{\ell-m_j+\frac{1}{2}}{2\ell+1}}Y_{\ell,m_j+\frac{1}{2}}\!\chi_-\right] \\ & \Psi_{n,\ell,j=\ell-1/2,mj}\!\!=\!\!R_{n\ell}\!(r)\!\left[-\sqrt{\frac{\ell-m_j+\frac{1}{2}}{2\ell+1}}Y_{\ell,m_j-\frac{1}{2}}\!\chi_+ + \sqrt{\frac{\ell+m_j+\frac{1}{2}}{2\ell+1}}Y_{\ell,m_j+\frac{1}{2}}\!\chi_-\right] \end{split}$$

 $\text{Ci interessa solo la correzione in energia} \quad \Delta E_{SO} = <\Psi_{n_{\ell}jm_{i}}|H_{SO}|\Psi_{n_{\ell}jm_{i}}> = \frac{\hbar^{2}}{2} < R_{n_{\ell}}|\xi(r)|R_{n_{\ell}}> \underbrace{[j(j+1)-\ell\ (\ell+1)-s(s+1)]}_{\text{T}}$

Usando il potenziale Coulombiano

$$V = -\frac{Ze^2}{4\pi\epsilon_0 r}$$

$$\xi(r) = \frac{1}{2m^2c^2} \frac{1}{r} \frac{dV}{dr} = \frac{1}{2m^2c^2} \frac{Ze^2}{4\pi\epsilon_0} \frac{1}{r^3}$$

Otteniamo così una correzione $<\frac{1}{r^3}>=\frac{Z^3}{a_0^3 n^3 \ell(\ell+\frac{1}{2})(\ell+1)}$

Si ricava così una correzione che possiamo scrivere come:

$$\Delta E_{SO} = \frac{1}{4} mc^{2} (Z\alpha)^{4} \left[\frac{j(j+1) - \ell(\ell+1) - s(s+1)}{n^{3} \ell(\ell+\frac{1}{2})(\ell+1)} \right]$$

Dove sostituendo s=1/2 e j=1/2 otteniamo:

Autovalori di J², L² ed S²

$$\lambda_{n\ell} = \hbar^2 < R_{n\ell} |\xi(r)| R_{n\ell} > = \frac{\hbar^2}{2m^2c^2} \frac{Ze^2}{4\pi\epsilon_0} \frac{Z^3}{a_0^3 n^3 \ell(\ell + \frac{1}{2})(\ell + 1)} = \left[\frac{\frac{1}{2}mc^2(Z\alpha)^4}{n^3 \ell(\ell + \frac{1}{2})(\ell + 1)} \right]$$

$$\Delta E_{SO} = \frac{1}{4} mc^{2} (Z\alpha)^{4} \left[\frac{1}{n^{3} (\ell + \frac{1}{2})(\ell + 1)} \right] se j = \ell + \frac{1}{2}$$

$$\Delta E_{SO} = -\frac{1}{4} mc^2 (Z\alpha)^4 \left[\frac{1}{n^3 \ell(\ell + \frac{1}{2})} \right] \text{ se } j = \ell - \frac{1}{2}$$

$$\Delta E_{SO} = 0$$
 se $\ell = 0$

Termine di Darwin (note)

$$H_3' = \frac{\pi \hbar^2}{2m^2c^2} \left(\frac{Ze^2}{4\pi\varepsilon_0}\right) \delta(\mathbf{r})$$

E' diagonale nelle autofunzioni ed agisce solo sui livelli $\ell=0$ perchè sono gli unici con densità non nulla nell'origine

$$\Delta E_3 = -E_n \frac{(Z\alpha)^2}{n}$$

La correzione in energia è proporzionale alla densità di carica nell'origine

Correzioni relativisiche alle energie dell'atomo di H

Combinando le tre correzioni ottengo delle correzioni che <u>dipendono solo dal valore del momento angolare totale</u>: j

$$\Delta E_{nj} = E_n \frac{(Z\alpha)^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right)$$

E quindi i livelli n si dividono in n livelli uno per ogni valore del momento angolare totale j=1/2;3/2;... n-1/2

$$E_{nj} = E_n \left[1 + \frac{(Z\alpha)^2}{n^2} \left(\frac{n}{j+1/2} - \frac{3}{4} \right) \right]$$

Nota: mentre l'effetto di spin-orbita dipende da \(\ell, \) la somma dei tre termini dipende solo da \(j; \) quindi a parità di j (e ovviamente n) stati con diversi \(\ell \) sono ancora degeneri

Esempio: correzioni dei livelli n=2 dell'atomo H n=2 $0.21 \, \mathrm{cm}^{-1}$ $s_{1/2}$ $p_{1/2}$, $p_{1/2}$ $p_{1/2}$

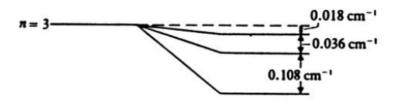
$\underline{\text{Notazione:}} \boxed{\text{n} \ell_{j}}$

Stati con diverso ℓ ed uguale j restano degeneri

 Δ E<0 : Le correzioni relativistiche producono sempre stati **più legati**

ΔE : Scala con inversamente con n²; i.e. Stati più esterni sono meno perturbati dalle correzioni relativistiche

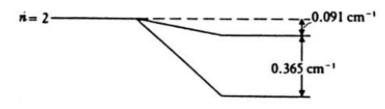
 ΔE : Gli effetti di spin orbita scalano con Z^4 e quindi effetti relativistici più rilevanti sono ovvervati per atomi pesanti



$$3d_{y_l}(j = 5/2, l = 2)$$

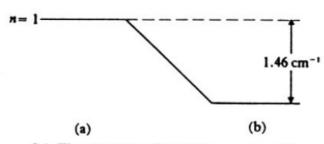
 $3p_{y_l}(j = 3/2, l = 1); 3d_{y_l}(j = 3/2, l = 2)$

$$3s_{1/2}(j=1/2,l=0); 3p_{1/2}(j=1/2,l=1)$$



$$2p_{\nu l}(j=3/2, l=1)$$

$$2s_{12}(j=1/2,l=0); 2p_{12}(j=1/2,l=1)$$



$$1s_{1/2}(j=1/2,l=0)$$

5.1 Fine structure of the hydrogen atom. The non-relativistic levels are shown on the left in column (a) and the split levels on the right in column (b), for n = 1, 2 and 3. For clarity, the scale in each diagram is different.

Struttura a multipletto dell'atomo di idrogeno:

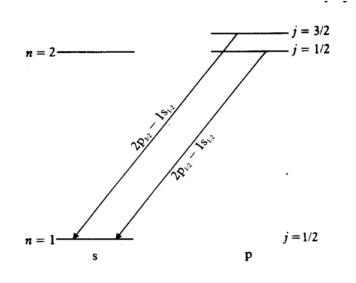
$$\Delta l = \pm 1$$
 e $\Delta j = 0, \pm 1$

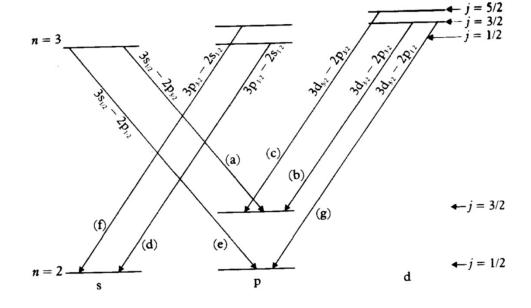
Ogni linea np-n's ha due componenti

Ogni linea nd-n'p ha 3 componenti

La serie di Lyman (n=1) sono dei $\frac{\text{doppietti}}{np_{1/2}-1s_{1/2}}$, $np_{3/2}-1s_{1/2}$

La serie di Balmer (n=2) ha sette componenti premesse Ma poichè energia dipende solo da j $(ns_{1/2} = np_{1/2} e np_{3/2} = nd_{3/2})$ => 5 multipletti





Atomi ad un e- in campo magnetico uniforme (effetto Zeeman)

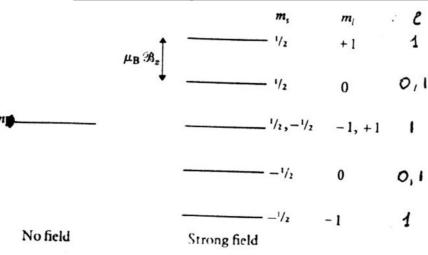
L'H di interazione prende la forma H_B =- $\mu \cdot B$ con $\mu = \mu_L + \mu_S = -\frac{\mu_B}{\hbar} (\mathbf{L} + 2\mathbf{S})$ $H_B = \frac{\mu_B}{\hbar} (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B}$

Il campo B individua una direzione provilegiata e quindi conviene prendere le componenti z: $H_B = \frac{\mu_B}{\hbar} (L_z + 2S_z) B_z$

Nel limite in cui l'effetto di <u>B sia maggiore degli effetti relativistici</u> (campo forte) abbiamo: [H_B,L²]=0; [H_B,L_z]=0[H_B,S_z]=0.

E quindi le autofunzioni dell'atomo di idrogeno ($\chi_{ms}\psi_{n\ell m}({\bf r})$) saranno ancora autofunzioni e la correzione dell'energia è data da: $E=E_n+\mu_BB(m+2m_s)$

Nota: Rimuove la degenerazione dei diversi valori di m (lascia la degenerazione in l):



Atomi ad un e- in campo magnetico uniforme (effetto Zeeman)

L'H di interazione prende la forma $H_B = \mu \cdot \mathbf{B}$ con $\mu = \mu_L + \mu_S = -\frac{\mu_B}{\hbar} (\mathbf{L} + 2\mathbf{S})$ $H_B = \frac{\mu_B}{\hbar} (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{B}$

$$\left[-\frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{(4\pi\epsilon_0)r} + \xi(r)\mathbf{L} \cdot \mathbf{S} + \frac{\mu_{\rm B}}{\hbar} (\mathbf{L} + 2\mathbf{S}) \cdot \mathbf{R} \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$

Nota: Abbiamo considerato solo termini «paramagnetici» e trascurato termini «diamagnetici» Il campo magnetico può essere più o meno forte dell'accoppiamento spin orbita.

Effetto Zeeman in Campi forti (spin orbita è piccolo):

Risolviamo l'equazione di Schroedinger senza spin-orbita (che aggiungiamo come una perturbazione)

$$\left(-\frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{(4\pi\varepsilon_0)r}\right)\psi(\mathbf{r}) = \left[E - \frac{\mu_B \mathcal{B}_z}{\hbar} (L_z + 2S_z)\right]\psi(\mathbf{r})$$

Le autofunzioni sono quelle standard dell'H $\psi_{nlm_lm_s}$ (autostati di Lz ed Sz) e l'energia mi da una correzione: $E=E_n+\mu_{\rm B}\mathcal{B}_z(m_l+2m_s), \qquad m_s=\pm 1/2$

Il campo magnetico non rimuove la degenerazione in $\ensuremath{\not{\!\! L}}$ ma rimuove quella in m.

Per il caso $\ell = 1$ (orbitali p) otteniamo che gli stati con $m_{\ell} = 1$ ed $m_{s} = -1/2$ coincidono con $m_{\ell} = -1$ ed $m_{s} = 1/2$

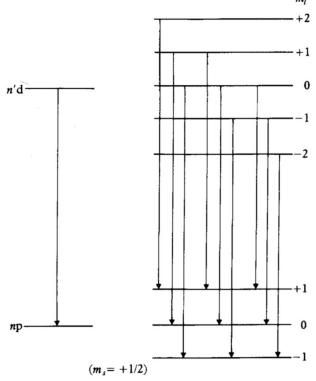
Atomi ad un e- in campo magnetico uniforme (effetto Zeeman)

Le transizioni premesse sono $\Delta m_s = 0$ e $\Delta m_l = 0, \pm 1$

E quindi le transizioni tra n ed n' sono dei tripletti:

- -Una ad energia invariata
- -Una a energia cambiata di $v_{\rm L}=rac{\mu_{
 m B}\mathfrak{B}_z}{h}$

Tripletto di Lorentz (Energia lineare con il campo)



5.7 The normal Zeeman effect. In a strong magnetic field nine transitions are possible between the split levels consistent with $\Delta m_i = 0$ or ± 1 and $\Delta m_i = 0$. Of these, there are only three different frequencies and the lines form a Lorentz triplet. The frequencies of transitions associated with $m_1 = -\frac{1}{2}$ are the same as those for $m_2 = +\frac{1}{2}$.

Effetto Zeeman in <u>Campi deboli</u> (spin orbita è rilevante):

-Effetto Zeeman anomalo (anche se è il più comunemente osservato!)

$$H_0 = -\frac{\hbar^2}{2m} \nabla^2 - \frac{Ze^2}{(4\pi\epsilon_0)r} + \xi(r)\mathbf{L} \cdot \mathbf{S}$$

Le autofunzioni sono degli orbitali «diagonali» sono autostati di L2, S2, J2 e Jz e il termine di int. è:

$$H' = \frac{\mu_{\rm B}}{\hbar} (L_z + 2S_z) \mathcal{B}_z = \frac{\mu_{\rm B}}{\hbar} (\mathcal{J}_z + S_z) \mathcal{B}_z \qquad \qquad \mathcal{Y}_{ls}^{jm_j} = \sum_{m_l, m_s} \langle lsm_l m_s | jm_j \rangle Y_{lm_l}(\theta, \phi) \chi_{s, m_s}$$

Che mi da autovalori:

$$\Delta E_{m_j} = g\mu_{\rm B} \Re_z m_j$$
 con $g = 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2i(j+1)}$ (Fattore di Landé)

Correzione dovuta al campo B

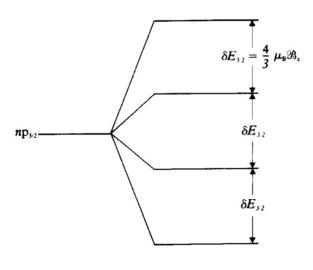
Correzione totale

$$\Delta E_{m_j} = \frac{2l+2}{2l+1} \mu_{\rm B} \mathcal{B}_z m_j, \qquad j=l+1/2$$

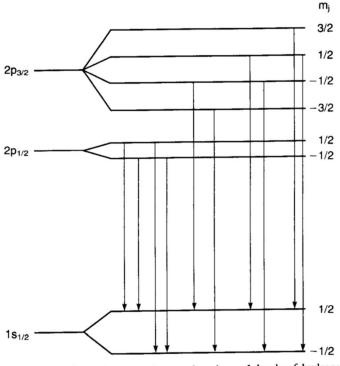
$$= \frac{2l}{2l+1} \mu_{\rm B} \mathcal{B}_z m_j, \qquad j=l-1/2$$
 Atomo no spin orbita Correzioni Spin orbita Correzioni Spin orbita Campo magnetico (Effetto Zeeman anomalo)

Splitting associato a campi deboli (Spin orbit>Magnetic field)

Trnsizioni ottiche



5.10 Splitting of $np_{3/2}$ and $np_{1/2}$ levels of atomic hydrogen in a weak magnetic field.

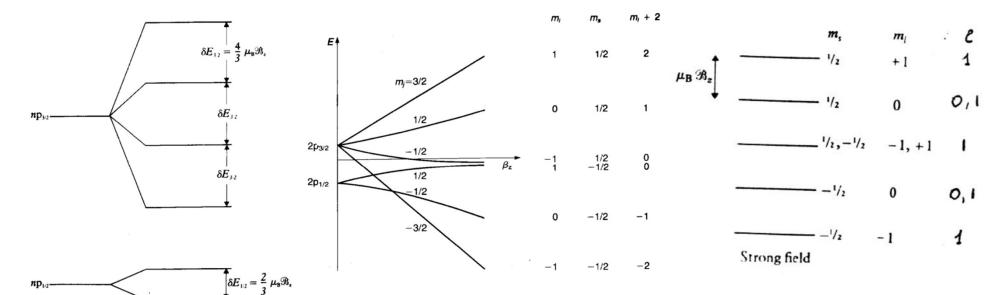


5.11 In electric dipole transitions between the n=2 and n=1 levels of hydrogen, in a weak magnetic field, four lines result from the $2p_{3/2} \rightarrow 1s_{1/2}$ transitions and six lines from the $2p_{3/2} \rightarrow 1s_{1/2}$ transitions.

Campi deboli (Zeeman Anomalo)

 \rightarrow

Campi Forti (Zeeman Standard)



5.10 Splitting of $np_{3/2}$ and $np_{1/2}$ levels of atomic hydrogen in a weak magnetic field.

Effetto Stark (rimozione della degenerazione per applicazione di un campo E)

Termine perturbativo: $H' = e \mathscr{E} z$

Questo mi da una perturbazione che è:

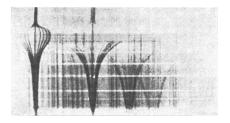


Fig. 15.2. Splitting of the hydrogen atom lines in an electric field. The strength of the field varies along the light source, the image of which is shown after passage through a spectrograph slit. The field is 10^5 V/cm in the region of smaller splitting near the bottom of the figure and rises to a value of $1.14 \cdot 10^6$ V/cm in the region of the greatest splitting. From K. H. Hellwege, Einführung in die Physik der Atome, Heidelberger Taschenbücher, Vol. 2, 4th ed. (Springer, Berlin, Heidelberg, New York 1974) Fig. 45

4 degenerate states $\begin{cases} l = 0, m = 0 \\ l = 1, m = 0, \pm 1 \end{cases}$ m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0 m = 0