7. Dimension.

Let X be a topological space.

7.1. Definition. The *topological dimension* of *X* is the supremum of the lengths of the chains of distinct irreducible closed subsets of *X*, where by definiton the following chain has length *n*:

$$
X_0 \subset X_1 \subset X_2 \subset \ldots \subset X_n.
$$

The topological dimension of *X* is denoted by dim *X*. It is also called combinatorial or Krull dimension.

Example.

1. dim $\mathbb{A}^1 = 1$: the maximal length chains have the form $\{P\} \subset \mathbb{A}^1$. 2. dim $\mathbb{A}^n = n$: a chain of length *n* is

$$
\{0\} = V(x_1,\ldots,x_n) \subset V(x_1,\ldots,x_{n-1}) \subset \ldots \subset V(x_1) \subset \mathbb{A}^n;
$$

note that $V(x_1, \ldots, x_i)$ is irreducible for any $i \leq n$, because the ideal $\langle x_1, \ldots, x_i \rangle$ is prime. Indeed the quotient ring $K[x_1, \ldots, x_n]/\langle x_1, \ldots, x_i \rangle$ is isomorphic to $K[x_{i+1},...,x_n]$. Therefore dim $\mathbb{A}^n \geq n$. On the other hand, from every chain of irreducible closed subsets of \mathbb{A}^n , passing to their ideals, we get a chain of the same length of prime ideals in $K[x_1, \ldots, x_n]$.

We define the Krull dimension of a ring *A*, and denote it by dim *A*, to be the supremum of the lengths of the chains of distinct prime ideals of *A*. Therefore, we can reformulate the previous fact by saying that dim $\mathbb{A}^n \leq \dim K[x_1,\ldots,x_n]$. We will see in a next chapter that dim $K[x_1, \ldots, x_n] = n$. More in general, if *A* is a noetherian ring, then dim $A[x] = \dim A + 1$.

3. Let X be irreducible. Then $\dim X = 0$ if and only if X is the closure of every point of it.

We prove now some useful relations between the dimension of *X* and the dimensions of its subspaces.

7.2. Proposition.

1. If $Y \subset X$, then dim $Y \leq \dim X$. In particular, if dim X is finite, then also $\dim Y$ *is (in this case, the number* $\dim X - \dim Y$ *is called the codimension of Y in X).*

2. If $X = \bigcup_{i \in I} U_i$ is an open covering, then $\dim X = \sup \{\dim U_i\}$.

*3. If X is noetherian and X*1*,...,X^s are its irreducible components, then* $\dim X = \sup_i \dim X_i$.

4. If $Y \subset X$ is closed, X is irreducible, dim X is finite and dim $X = \dim Y$, *then* $Y = X$ *.*

Proof.

1. Let $Y_0 \subset Y_1 \subset \ldots \subset Y_n$ be a chain of irreducible closed subsets of *Y*. Then their closures are irreducible and form the following chain: $\overline{Y_0} \subset \overline{Y_1} \subset \ldots \subset \overline{Y_n}$. Note that for all $i \overline{Y_i} \cap Y = Y_i$, because Y_i is closed into *Y*, so if $\overline{Y_i} = \overline{Y_{i+1}}$, then $Y_i = Y_{i+1}$. Therefore the two chains have the same length and we can conclude that $\dim Y \leq \dim X$.

2. Let $X_0 \subset X_1 \subset \ldots \subset X_n$ be a chain of irreducible closed subsets of X. Let $P \in X_0$ be a point: there exists an index $i \in I$ such that $P \in U_i$. So $\forall k = 0, \ldots, n$ $X_k \cap U_i \neq \emptyset$: it is an irreducible closed subset of U_i , irreducible because open in X_k which is irreducible. Consider $X_0 \cap U_i \subset X_1 \cap U_i \subset \ldots \subset X_n \cap U_i$; it is a chain of length *n*, because $\overline{X_k \cap U_i} = X_k$: in fact $X_k \cap U_i$ is open in X_k hence dense. Therefore, for all chain of irreducible closed subsets of *X*, there exists a chain of the same length of irreducible closed subsets of some U_i . So dim $X \leq \sup \dim U_i$. By 1., equality holds.

3. Any chain of irreducible closed subsets of *X* is completely contained in an irreducible component of *X*. The conclusion follows as in 2.

4. If $Y_0 \subset Y_1 \subset \ldots \subset Y_n$ is a chain of maximal length in *Y*, then it is a imal chain in *X*, because dim $X = \dim Y$. Hence $X = Y_n \subset Y$. maximal chain in *X*, because dim $X = \dim Y$. Hence $X = Y_n \subset Y$.

7.3. Corollary. dim $\mathbb{P}^n = \dim \mathbb{A}^n$.

Proof. Because $\mathbb{P}^n = U_0 \cup ... \cup U_n$, and U_i is homeomorphic to \mathbb{A}^n for all *i*. \Box

If *X* is noetherian and all its irreducible components have the same dimension *r*, then *X* is said to have *pure dimension r*.

Note that the topological dimension is invariant by homeomorphism. By definition, a *curve* is an algebraic set of pure dimension 1; a *surface* is an algebraic set of pure dimension 2.

We want to study the dimensions of affine algebraic sets. The following definition results to be very important.

7.4. Definition. Let $X \subset \mathbb{A}^n$ be an algebraic set. The *coordinate ring* of X is

$$
K[X] := K[x_1, \ldots, x_n]/I(X).
$$

It is a finitely generated K –algebra that has no non–zero nilpotents, because $I(X)$ is radical. This can be expressed by saying that *K*[*X*] is a *reduced ring*. There is the canonical epimorphism $K[x_1,\ldots,x_n] \to K[X]$ such that $F \to [F]$. The elements of $K[X]$ can be interpreted as *polynomial functions* on X: to a polynomial *F*, we can associate the function $f: X \to K$ such that $P(a_1, \ldots, a_n) \to$ $F(a_1, \ldots, a_n)$.

Two polynomials F, G define the same function on X if, and only if, $F(P)$ = $G(P)$ for every point $P \in X$, i.e. if $F - G \in I(X)$, which means exactly that *F* and *G* have the same image in *K*[*X*].

 $K[X]$ is generated as K –algebra by $[x_1], \ldots, [x_n]$: these can be interpreted as the functions on *X* called *coordinate functions*, and generally denoted t_1, \ldots, t_n .

In fact $t_i: X \to K$ is the function which associates to $P(a_1, \ldots, a_n)$ the constant a_i . Note that the function *f* can be interpreted as $F(t_1, \ldots, t_n)$: the polynomial *F* evalued at the *n*– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If $Y \subset \mathbb{P}^n$ is closed, then the *homogeneous coordinate ring* of *Y* is

$$
S(Y) := K[x_0, x_1, \ldots, x_n]/I_h(Y).
$$

It is also a finitely generated *K*–algebra, but its elements have no interpretation as functions on *Y*. They are functions on the cone $C(Y)$.

7.5. Definition. Let *R* be a ring. The *Krull dimension* of *R* is the supremum of the lengths of the chains of prime ideals of *R*

$$
\mathcal{P}_0 \subset \mathcal{P}_1 \subset \ldots \subset \mathcal{P}_r.
$$

Similarly, the *heigth* of a prime ideal P is the sup of the lengths of the chains of prime ideals contained in *P*: it is denoted ht*P*.

7.6. Proposition. *Let K be an algebraically closed field. Let X be an ane algebraic set contained in* \mathbb{A}^n . Then dim $X = \dim K[X]$.

Proof.

By the Nullstellensatz and by 6.5 the chains of irreducible closed subsets of X correspond bijectively to the chains of prime ideals of $K[x_1, \ldots, x_n]$ containing $I(X)$, hence to the chains of prime ideals of the quotient ring $K[X]$.

The dimension theory for commutative rings contains some important theorems about dimension of *K*–algebras. The following two results are very useful.

7.7. Theorem. *Let K be any field.*

1. Let B be a finitely generated K–algebra and an integral domain. Then $\dim B = tr.d.Q(B)/K$, where $Q(B)$ is the quotient field of B. In particular dim B *is finite.*

2. Let *B* be as above and $P \subset B$ be any prime ideal. Then dim $B =$ $htP + \dim B/P$.

Proof. For 1. see Portelli's notes. For a proof of 2., see for instance [4], Ch. II, Proposition 3.4. It relies on the normalization lemma and the lying over theorem. \Box

7.8. Corollary. *Let K be an algebraically closed field.*

1. dim $\mathbb{A}^n = \dim \mathbb{P}^n = n$.

2. If *X* is an affine variety, then dim $X = tr.d.K(X)/K$, where $K(X)$ denotes *the quotient field of K*[*X*]*.*

2. If $X \subset \mathbb{A}^n$ is closed and irreducible, then dim $X = n - \text{ht} I(X)$.

The following is an important characterization of the algebraic subsets of A*ⁿ* of codimension 1.

7.9. Proposition. Let $X \subset \mathbb{A}^n$ be closed. Then X is a hypersurface if and only *if* X *is of pure dimension* $n-1$ *.*

Proof. We give here an elementary direct proof. It can be proved more quickly using the Krull principal ideal theorem.

Let $X \subset \mathbb{A}^n$ be a hypersurface, with $I(X) = (F) = (F_1 \dots F_s)$, where F_1, \ldots, F_s are the irreducible factors of *F* all of multiplicity one. Then $V(F_1), \ldots, F_s$ $V(F_s)$ are the irreducible components of *X*, whose ideals are $(F_1), \ldots, (F_s)$. So it is enough to prove that $\text{ht}(F_i) = 1$, for $i = 1, \ldots, s$.

If $P \subset (F_i)$ is a prime ideal, then either $P = (0)$ or there exists $G \in \mathcal{P}, G \neq 0$. In the second case, let *A* be an irreducible factor of *G* belonging to \mathcal{P} : $A \in (F_i)$ so $A = HF_i$. Since A is irreducible, either H or F_i is invertible; F_i is irreducible, so *H* is invertible, hence $(A) = (F_i) \subset \mathcal{P}$. Therefore either $\mathcal{P} = (0)$ or $\mathcal{P} = (F_i)$, and $\mathrm{ht}(F_i) = 1$.

Conversely, assume that *X* is irreducible of dimension $n-1$. Since $X \neq \mathbb{A}^n$. there exists $F = F_1 \dots F_s \in I(X), F \neq 0$. Hence $X \subset V(F) = V(F_1) \cup \dots \cup V(F_s)$. By the irreducibility of X , some irreducible factor of F , call it F_i , also vanishes along *X*. Therefore $X \subset V(F_i)$, which is irreducible of dimension $n-1$, by the first part. So $X = V(F_i)$ (by Proposition 7.2, 3). first part. So $X = V(F_i)$ (by Proposition 7.2, 3).

This proposition does not generalize to higher codimension. There exist codimension 2 algebraic subsets of A^n whose ideal is not generated by two polynomials. An example in \mathbb{A}^3 is the curve *X* parametrized by (t^3, t^4, t^5) . A system of generators of $I(X)$ is $\langle x^3 - yz, y^2 - xz, z^2 - x^2y \rangle$. One can easily show that $I(X)$ cannot be generated by two polynomials. For a discussion of this and other similar examples, see [4], Chapter V.

7.10. Proposition. Let $X \subset \mathbb{A}^n$, $Y \subset \mathbb{A}^m$ be irreducible closed subsets. Then $\dim X \times Y = \dim X + \dim Y$.

Proof. Let $r = \dim X$, $s = \dim Y$; let t_1, \ldots, t_n (resp. u_1, \ldots, u_m) be coordinate functions on \mathbb{A}^n (resp. \mathbb{A}^m). We can assume that t_1, \ldots, t_r be a transcendence basis of $Q(K[X])$ and u_1, \ldots, u_s be a transcendence basis of $Q(K[Y])$. By definition, $K[X \times Y]$ is generated as *K*–algebra by $t_1, \ldots, t_n, u_1, \ldots, u_m$: we want to show that $t_1, \ldots, t_r, u_1, \ldots, u_s$ is a transcendence basis of $Q(K[X \times Y])$ over *K*. Assume that $F(x_1, \ldots, x_r, y_1, \ldots, y_s)$ is a polynomial which vanishes on $t_1, \ldots, t_r, u_1, \ldots, u_s$, i.e. *F* defines the zero function on $X \times Y$. Then, $\forall P \in X$, $F(P; y_1, \ldots, y_s)$ is zero on *Y*, i.e. $F(P; u_1, \ldots, u_s) = 0$. Since u_1, \ldots, u_s are algebraically independent, every coefficient $a_i(P)$ of $F(P; y_1, \ldots, y_s)$ is zero, $\forall P \in X$. Since t_1, \ldots, t_r are algebraically independent, the polynomials $a_i(x_1, \ldots, x_r)$ are zero, so

 $F(x_1, \ldots, x_r, y_1, \ldots, y_s) = 0$. So $t_1, \ldots, t_r, u_1, \ldots, u_s$ are algebraically independent. Since this is certainly a maximal algebraically free set, it is a transcendence basis. \Box

Exercises to *§*7.

1*. Prove that a proper closed subset of an irreducible curve is a finite set. Deduce that any bijection between irreducible curves is a homeomorphism.

2^{*}. Let $X \subset \mathbb{A}^2$ be the cuspidal cubic of equation: $x^3 - y^2 = 0$, let $K[X]$ be its coordinate ring. Prove that all elements of $K[X]$ can be written in a unique way in the form $f(x) + yg(x)$, where f, g are polynomial in the variable x. Deduce that $K[X]$ is not isomorphic to a polynomial ring.

8. Regular and rational functions.

a) Regular functions

Let $X \subset \mathbb{P}^n$ be a locally closed subset and *P* be a point of *X*. Let $\phi : X \to K$ be a function.

8.1. Definition. ϕ is *regular at P* if there exists a suitable neighbourhood of *P* in which ϕ can be expressed as a quotient of homogeneous polynomials of the same degree; more precisely, if there exist an open neighbourhood *U* of *P* in *X* and homogeneous polynomials $F, G \in K[x_0, x_1, \ldots, x_n]$ with deg $F = \deg G$, such that $U \cap V_P(G) = \emptyset$ and $\phi(Q) = F(Q)/G(Q)$, for all $Q \in U$. Note that the quotient $F(Q)/G(Q)$ is well defined.

 ϕ is regular on X if ϕ is regular at every point P of X.

The set of regular functions on X is denoted $\mathcal{O}(X)$: it contains K (identified with the set of constant functions), and can be given the structure of a *K*–algebra, by the definitions:

$$
(\phi + \psi)(P) = \phi(P) + \psi(P)
$$

$$
(\phi\psi)(P) = \phi(P)\psi(P),
$$

for $P \in X$. (Check that $\phi + \psi$ and $\phi \psi$ are indeed regular on X.)

8.2. Proposition. Let $\phi: X \to K$ be a regular function. Let K be identified with \mathbb{A}^1 with Zariski topology. Then ϕ is continuous.

Proof. It is enough to prove that $\phi^{-1}(c)$ is closed in *X*, $\forall c \in K$. For all $P \in X$, choose an open neighbourhood U_P and homogeneous polynomials F_P , G_P such that $\phi|_P = F_P/G_P$. Then

$$
\phi^{-1}(c) \cap U_P = \{ Q \in U_P | F_P(Q) - cG_P(Q) = 0 \} = U_P \cap V_P(F_P - cG_P)
$$

is closed in U_P . The proposition then follows from:

8.3. Lemma. Let T be a topological space, $T = \bigcup_{i \in I} U_i$ be an open covering of $T, Z \subset T$ *be a subset. Then Z is closed if and only if* $Z \cap U_i$ *is closed in* U_i *for all i.*

Proof. Assume that $U_i = X \setminus C_i$ and $Z \cap U_i = Z_i \cap U_i$, with C_i and Z_i closed in *X*.

Claim: $Z = \bigcap_{i \in I} (Z_i \cup C_i)$, hence it is closed.

In fact: if $P \in Z$, then $P \in Z \cap U_i$ for a suitable *i*. Therefore $P \in Z_i \cap U_i$, so $P \in Z_i \cup C_i$. If $P \notin Z_j \cap U_j$ for some *j*, then $P \notin U_j$ so $P \in C_j$ and therefore $P \in Z_j \cup C_j$.

Conversely, if $P \in \bigcap_{i \in I} (Z_i \cup C_i)$, then $\forall i$, either $P \in Z_i$ or $P \in C_i$. Since $\exists j$ such that $P \in U_j$, hence $P \notin C_j$, so $P \in Z_j$, so $P \in Z_j \cap U_j = Z \cap U_j$.

8.4. Corollary.

1. Let $\phi \in \mathcal{O}(X)$: then $\phi^{-1}(0)$ is closed. It is denoted $V(\phi)$ and called the *set of zeroes of* ϕ .

2. Let *X* be a quasi-projective variety and ϕ , $\psi \in \mathcal{O}(X)$. Assume that there *exists U*, open non –empty subset such that $\phi|_U = \psi|_U$. Then $\phi = \psi$.

Proof. $\phi - \psi \in \mathcal{O}(X)$ so $V(\phi - \psi)$ is closed. By assumption $V(\phi - \psi) \supset U$, which is dense, because *X* is irreducible. So $V(\phi - \psi) = X$.

If $X \subset \mathbb{A}^n$ is locally closed, we can use on X both homogeneous and non– homogeneous coordinates. In the second case, a regular function is locally represented as a quotient F/G , with F and $G \in K[x_1, \ldots, x_n]$. In particular all polynomial functions are regular, so, if *X* is closed, $K[X] \subset \mathcal{O}(X)$.

If $\alpha \subset K[X]$ is an ideal, we can consider $V(\alpha) := \bigcap_{\phi \in \alpha} V(\phi)$: it is closed into *X*. Note that α is of the form $\alpha = \overline{\alpha}/I(X)$, where $\overline{\alpha}$ is the inverse image of α in the canonical epimorphism, it is an ideal of $K[x_1, \ldots, x_n]$ containing $I(X)$, hence $V(\alpha) = V(\overline{\alpha}) \cap X = V(\overline{\alpha}).$

If *K* is algebraically closed, from the Nullstellensatz it follows that, if α is proper, then $V(\alpha) \neq \emptyset$. Moreover the following relative form of the Nullstellensatz holds: if $f \in K[X]$ and f vanishes at all points $P \in X$ such that $g_1(P) = \ldots =$ $g_m(P) = 0$ $(g_1, \ldots, g_m \in K[X])$, then $f^r \in \langle g_1, \ldots, g_m \rangle \subset K[X]$, for some $r \ge 1$.

8.5. Theorem. Let *K* be an algebraically closed field. Let $X \subset \mathbb{A}^n$ be closed *in the Zariski topology. Then* $\mathcal{O}(X) \simeq K[X]$ *. It is an integral domain if and only if X is irreducible.*

Proof. Let $f \in \mathcal{O}(X)$.

$$
\Box
$$

 \Box

(i) Assume first that X is irreducible. For all $P \in X$ fix an open neighbourhood U_P of P and polynomials F_P , G_P such that $V_P(G_P) \cap U_P = \emptyset$ and $f|_{U_P} = F_P/G_P$. Let f_P , g_P be the functions in $K[X]$ defined by F_P and G_P . Then $g_P f = f_P$ holds on U_P , so it holds on *X* (by Corollary 8.3, because *X* is irreducible). Let $\alpha \subset K[X]$ be the ideal $\alpha = \langle g_P \rangle_{P \in X}$; α has no zeroes on X, because $g_P(P) \neq 0$, so $\alpha = K[X]$. Therefore there exists $h_P \in K[X]$ such that $1 = \sum_{P \in X} h_P g_P$ (sum with finite support). Hence in $\mathcal{O}(X)$ we have the relation: $f = f \sum h_P g_P = \sum h_P (g_P f) = \sum h_P f_P \in K[X].$

(ii) Let *X* be reducible: for any $P \in X$, there exists $R \in K[x_1, \ldots, x_n]$ such that $R(P) \neq 0$ and $R \in I(X \setminus U_P)$, so $r \in \mathcal{O}(X)$ is zero outside U_P . So $r g_P f = f_P r$ on *X* and we conclude as above by replacing g_P with g_Pr and f_P with f_Pr .

 \Box

The characterization of regular functions on projective varieties is completely different: we will see in §12 that, if *X* is a projective variety, then $\mathcal{O}(X) \simeq K$, i.e. the unique regular functions are constant.

This gives the motivation for introducing the following weaker concept.

b) Rational functions

8.6. Definition. Let *X* be a quasi–projective variety. A *rational function* on *X* is a germ of regular functions on some open non–empty subset of *X*.

Precisely, let *K* be the set $\{(U, f)|U \neq \emptyset$, open subset of *X*, $f \in \mathcal{O}(U)\}$. The following relation on K is an equivalence relation:

$$
(U, f) \sim (U', f')
$$
 if and only if $f|_{U \cap U'} = f'|_{U \cap U'}$.

Reflexive and symmetric properties are quite obvious. Transitive property: let $(U, f) \sim (U', f')$ and $(U', f') \sim (U'', f'')$. Then $f|_{U \cap U'} = f'|_{U \cap U'}$ and $f'|_{U' \cap U''} =$ $f''|_{U' \cap U''}$, hence $f|_{U \cap U' \cap U''} = f''|_{U \cap U' \cap U''}$. $U \cap U' \cap U''$ is a non–empty open subset of $U \cap U''$ (which is irreducible and quasi-projective), so by Corollary 8.4 $f|_{U' \cap U''} = f''|_{U' \cap U''}.$

Let $K(X) := \mathcal{K}/\sim$: its elements are by definition rational functions on X. $K(X)$ can be given the structure of a field in the following natural way.

Let $\langle U, f \rangle$ denote the class of (U, f) in $K(X)$. We define:

$$
\langle U, f \rangle + \langle U', f' \rangle = \langle U \cap U', f + f' \rangle,
$$

$$
\langle U, f \rangle \langle U', f' \rangle = \langle U \cap U', ff' \rangle
$$

(check that the definitions are well posed!).

There is a natural inclusion: $K \to K(X)$ such that $c \to \langle X, c \rangle$. Moreover, if $\langle U, f \rangle \neq 0$, then there exists $\langle U, f \rangle^{-1} = \langle U \setminus V(f), f^{-1} \rangle$: the axioms of a field are all satisfied.

There is also an injective map: $\mathcal{O}(X) \to K(X)$ such that $\phi \to \langle X, \phi \rangle$.

8.7. Proposition. *If* $X \subset \mathbb{A}^n$ *is affine, then* $K(X) \simeq Q(\mathcal{O}(X)) = K(t_1, \ldots, t_n)$, where t_1, \ldots, t_n are the coordinate functions on *X*.

Proof. The isomorphism is as follows:

 $(i) \psi : K(X) \rightarrow Q(\mathcal{O}(X))$

If $\langle U, \phi \rangle \in K(X)$, then there exists $V \subset U$, open and non–empty, such that $\phi|_V =$ F/G , where $F, G \in K[x_1, \ldots, x_n]$ and $V(G) \cap V = \emptyset$. We set $\psi(\langle U, \phi \rangle) = f/g$. $(ii) \psi' : Q(\mathcal{O}(X)) \to K(X)$

If $f/g \in Q(\mathcal{O}(X))$, we set $\psi'(f/g) = \langle X \setminus V(g), f/g \rangle$.

It is easy to check that ψ and ψ' are well defined and inverse each other. \Box

8.8. Corollary. If X is an affine variety, then dim X is equal to the transcendence *degree over K of its field of rational functions.*.

8.9. Proposition. If X is quasi-projective and $U \neq \emptyset$ is an open subset, then $K(X) \simeq K(U)$.

Proof. We have the maps: $K(U) \to K(X)$ such that $\langle V, \phi \rangle \to \langle V, \phi \rangle$, and $K(X) \to$ $K(U)$ such that $\langle A, \psi \rangle \to \langle A \cap U, \psi \mid_{A \cap U} \rangle$: they are *K*–homomorphisms inverse each other. each other.

8.10. Corollary. If X is a projective variety contained in \mathbb{P}^n , if *i* is an index such that $X \cap U_i \neq \emptyset$ (where U_i is the open subset where $x_i \neq 0$), then dim $X =$ $\dim X \cap U_i = tr.d.K(X)/K$.

Proof. By Proposition 7.2 dim $X = \sup \dim(X \cap U_i)$. By 8.8 and 8.9, if $X \cap U_i$ is non–empty, dim $(X \cap U_i) = tr.d.K(X \cap U_i)/K = tr.d.K(X)/K$ is independent of i. i .

If $\langle U, \phi \rangle \in K(X)$, we can consider all possible representatives of it, i.e. all pairs $\langle U_i, \phi_i \rangle$ such that $\langle U, \phi \rangle = \langle U_i, \phi_i \rangle$. Then $\overline{U} = \bigcup_i U_i$ is the maximum open subset of X on which ϕ can be seen as a function: it is called the *domain of definition* (or of regularity) of $\langle U, \phi \rangle$, or simply of ϕ . It is sometimes denoted dom ϕ . If $P \in \overline{U}$, we say that ϕ *is regular at P*.

We can consider the set of rational functions on *X* which are regular at *P*: it is denoted by $\mathcal{O}_{P,X}$. It is a subring of $K(X)$ containing $\mathcal{O}(X)$, called the *local ring of X at P*. In fact, $\mathcal{O}_{P,X}$ is a local ring, whose maximal ideal, denoted $\mathcal{M}_{P,X}$, is the set of rational functions ϕ such that $\phi(P)$ is defined and $\phi(P) = 0$. To see this, observe that an element of $\mathcal{O}_{P,X}$ can be represented as $\langle U, F/G \rangle$: its inverse in $K(X)$ is $\langle U \setminus V_P(G), G/F \rangle$, which belongs to $\mathcal{O}_{P,X}$ if and only if $F(P) \neq 0$. We'll see in 8.12 that $\mathcal{O}_{P,X}$ is the localization $K[X]_{I_X(P)}$.

As in Proposition 8.9 for the fields of rational functions, also for the local rings of points it can easily be proved that, if $U \neq \emptyset$ is an open subset of X containing *P*, then $\mathcal{O}_{P,X} \simeq \mathcal{O}_{P,U}$. So the ring $\mathcal{O}_{P,X}$ only depends on the local behaviour of *X* in the neighbourhood of *P*.

The *residue field* of $\mathcal{O}_{P,X}$ is the quotient $\mathcal{O}_{P,X}/\mathcal{M}_{P,X}$: it is a field which results to be naturally isomorphic to the base field *K*. In fact consider the evaluation map $\mathcal{O}_{P,X} \to K$ such that ϕ goes to $\phi(P)$: it is surjective with kernel $\mathcal{M}_{P,X}$, so $\mathcal{O}_{P,X}/\mathcal{M}_{P,X} \simeq K$.

8.11. Examples.

1. Let $Y \subset \mathbb{A}^2$ be the curve $V(x_1^3 - x_2^2)$. Then $F = x_2, G = x_1$ define the function $\phi = x_2/x_1$ which is regular at the points $P(a_1, a_2)$ such that $a_1 \neq 0$. Another representation of the same function is: $\phi = x_1^2/x_2$, which shows that ϕ is regular at *P* if $a_2 \neq 0$. If ϕ admits another representation F'/G' , then $G'x_2 - F'x_1$ vanishes on an open subset of *X*, which is irreducible (see Exercise 6.2), hence $G'x_2 - F'x_1$ vanishes on *X*, and therefore $G'x_2 - F'x_1 \in \langle x_1^3 - x_2^2 \rangle$. This shows that there are essentially only the above two representations of ϕ . So $\phi \in K(X)$ and its domain of regularity is $Y \setminus \{0,0\}.$

2. The stereographic projection.

Let $X \subset \mathbb{P}^2$ be the curve $V_P(x_1^2+x_2^2-x_0^2)$. Let $f := x_1/(x_0-x_2)$ denote the germ of the regular function defined by $x_1/(x_0-x_2)$ on $X \setminus V_P(x_0-x_2) = X \setminus \{[1,0,1]\}$ $X \setminus \{P\}$. On *X* we have $x_1^2 = (x_0 - x_2)(x_0 + x_2)$ so *f* is represented also as $(x_0 + x_2)/x_1$ on $X \setminus V_P(x_1) = X \setminus P_P(Q)$, where $Q = [1, 0, -1]$. If we identify *K* with the affine line $V_P(x_2) \setminus V_P(x_0)$ (the points of the x_1 -axis lying in the affine plane U_0), then f can be interpreted as the stereographic projection of X centered at *P*, which takes $A[a_0, a_1, a_2]$ to the intersection of the line *AP* with the line $V_P(x_2)$. To see this, observe that *AP* has equation $a_1x_0 + (a_2 - a_0)x_1 - a_1x_2 = 0$; and $AP \cap V_P(x_2)$ is the point $[a_0 - a_2, a_1, 0].$

8.12. The algebraic characterization of the local ring $\mathcal{O}_{P,X}$.

Let us recall the construction of the *ring of fractions of a ring A* with respect to a multiplicative subset *S*.

Let *A* be a ring and $S \subset A$ be a multiplicative subset. The following relation in $A \times S$ is an equivalence relation:

$$
(a, s) \simeq (b, t)
$$
 if and only if $\exists u \in S$ such that $u(at - bs) = 0$.

Then the quotient $A \times S/\sim$ is denoted $S^{-1}A$ or A_S and $[(a, s)]$ is denoted $\frac{a}{s}$. A_S becomes a commutative ring with unit with operations $\frac{a}{s} + \frac{b}{t} = \frac{at + bs}{st}$ and $\frac{a}{s}$ $\frac{b}{t} = \frac{ab}{st}$ (check that they are well–defined). With these operations, *A^S* is called the ring of fractions of *A* with respect to *S*, or the *localization* of *A* in *S*.

There is a natural homomorphism $j : A \to S^{-1}A$ such that $j(a) = \frac{a}{1}$, which makes $S^{-1}A$ an *A*–algebra. Note that *j* is the zero map if and only if $0 \in S$. More precisely if $0 \in S$ then $S^{-1}A$ is the zero ring: this case will always be excluded in what follows. Moreover *j* is injective if and only if every element in *S* is not a zero divisor. In this case $j(A)$ will be identified with A.

Examples.

1. Let *A* be an integral domain and set $S = A \setminus \{0\}$. Then $A_S = Q(A)$: the quotient field of *A*.

2. If $\mathcal{P} \subset A$ is a prime ideal, then $S = A \setminus \mathcal{P}$ is a multiplicative set and A_S is denoted $A_{\mathcal{P}}$ and called the localization of A at \mathcal{P} .

3. If $f \in A$, then the multiplicative set generated by f is

$$
S = \{1, f, f^2, \dots, f^n, \dots\} :
$$

 A_S is denoted A_f .

4. If $S = \{x \in A \mid x \text{ is regular}\}\$, then A_S is called the total ring of fractions of *A*: it is the maximum ring in which *A* can be canonically embedded.

It is easy to verify that the ring *A^S* enjoys the following *universal property*: (i) if $s \in S$, then $j(s)$ is invertible;

(ii) if *B* is a ring with a given homomorphism $f : A \rightarrow B$ such that if $s \in S$, then $f(s)$ is invertible, then f factorizes through A_S , i.e. there exists a unique homomorphism \overline{f} such that $\overline{f} \circ j = f$.

We will see now the relations between ideals of *A^S* and ideals of *A*.

If $\alpha \subset A$ is an ideal, then $\alpha A_S = {\alpha \brace s \mid a \in \alpha}$ is called the *extension of* α in A_S and denoted also α^e . It is an ideal, precisely the ideal generated by the set $\{\frac{a}{1} \mid a \in \alpha\}.$

If $\beta \subset A_S$ is an ideal, then $j^{-1}(\beta) =: \beta^c$ is called the contraction of β and is clearly an ideal.

We have:

8.13. Proposition.

- *1.* $\forall \alpha \in A : \alpha^{ec} \supset \alpha$;
- $2. \ \forall \beta \subset A_S : \beta = \beta^{ce};$

3. α^e *is proper if and only if* $\alpha \cap S = \emptyset$;

4. $\alpha^{ec} = \{x \in A \mid \exists s \in S \text{ such that } sx \in \alpha\}.$

Proof.

1. and 2. are straightforward.

3. if $1 = \frac{a}{s} \in \alpha^e$, then there exists $u \in S$ such that $u(s-a) = 0$, i.e. $us = ua \in S \cap \alpha$. Conversely, if $s \in S \cap \alpha$ then $1 = \frac{s}{s} \in \alpha^e$.

4.

$$
\alpha^{ec} = \{ x \in A \mid j(x) = \frac{x}{1} \in \alpha^e \} =
$$

$$
= \{x \in A \mid \exists a \in \alpha, t \in S \text{ such that } \frac{x}{1} = \frac{a}{t}\} =
$$

 $= \{x \in A \mid \exists a \in \alpha, t, u \in S \text{ such that } u(xt - a) = 0\}.$

Hence, if $x \in \alpha^{ec}$, then: $(ut)x = ua \in \alpha$. Conversely: if there exists $s \in S$ such that $sx = a \in \alpha$, then $\frac{x}{a} = \frac{a}{b}$, i.e. $i(x) \in \alpha^{e}$. that $sx = a \in \alpha$, then $\frac{x}{1} = \frac{a}{s}$, i.e. $j(x) \in \alpha^e$.

If α is an ideal of *A* such that $\alpha = \alpha^{ec}$, α is called *saturated* with *S*. For example, if P is a prime ideal and $S \cap P = \emptyset$, then P is saturated and P^e is prime. Conversely, if $\mathcal{Q} \subset A_S$ is a prime ideal, then \mathcal{Q}^c is prime in *A*.

Therefore: *there is a bijection between the set of prime ideals of A^S and the set of prime ideals of A not intersecting S. In particular, if* $S = A \setminus P$ *, P prime, the prime ideals of* A_p *correspond bijectively to the prime ideals of A contained in* P *, hence* A_P *is a local ring with maximal ideal* P^e *, denoted* $P A_P$ *, and residue field* $A_{\mathcal{P}}/PA_{\mathcal{P}}$. Moreover dim $A_{\mathcal{P}} = \hbar t \mathcal{P}$.

In particular we get the characterization of $\mathcal{O}_{P,X}$. Let $X \subset \mathbb{A}^n$ be an affine variety, let *P* be a point of *X* and $I(P) \subset K[x_1,\ldots,x_n]$ be the ideal of *P*. Let $I_X(P) := I(P)/I(X)$ be the ideal of $K[X]$ formed by regular functions on X vanishing at *P*. Then we can construct the localization

$$
\mathcal{O}(X)_{I_X(P)} = \{ \frac{f}{g} | f, g \in \mathcal{O}(X), g(P) \neq 0 \} \subset K(X):
$$

it is canonically identified with $\mathcal{O}_{P,X}$. In particular: dim $\mathcal{O}_{P,X} = \text{ht } I_X(P) =$ $\dim \mathcal{O}(X) = \dim X$.

There is a bijection between prime ideals of $\mathcal{O}_{P,X}$ and prime ideals of $\mathcal{O}(X)$ contained in $I_X(P)$; they also correspond to prime ideals of $K[x_1, \ldots, x_n]$ contained in $I(P)$ and containing $I(X)$.

If X is affine, it is possible to define the local ring $\mathcal{O}_{P,X}$ also if X is reducible, simply as localization of $K[X]$ at the maximal ideal $I_X(P)$. The natural map *j* from $K[X]$ to $\mathcal{O}_{P,X}$ is injective if and only if $K[X] \setminus I_X(P)$ does not contain any zero divisor. A non-zero function f is a zero divisor in $K[X]$ if there exists a non-zero *g* such that $fg = 0$, i.e. $X = V(f) \cup V(g)$ is an expression of X as union of proper closed subsets. For *j* to be injective it is required that every zero divisor *f* belongs to $I_X(P)$, which means that all the irreducible components of X pass through *P*.

Exercises to *§*8.

1. Prove that the affine varieties and the open subsets of affine varieties are quasi–projective.

2. Let $X = \{P, Q\}$ be the union of two points in an affine space over K. Prove that $\mathcal{O}(X)$ is isomorphic to $K \times K$.