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7. Dimension.

Let X be a topological space.

7.1. Definition. The topological dimension of X is the supremum of the lengths
of the chains of distinct irreducible closed subsets of X, where by definiton the
following chain has length n:

X0 ⇢ X1 ⇢ X2 ⇢ . . . ⇢ Xn.

The topological dimension of X is denoted by dimX. It is also called combi-
natorial or Krull dimension.

Example.
1. dimA1 = 1: the maximal length chains have the form {P} ⇢ A1.
2. dimAn = n: a chain of length n is

{0} = V (x1, . . . , xn) ⇢ V (x1, . . . , xn�1) ⇢ . . . ⇢ V (x1) ⇢ An;

note that V (x1, . . . , xi) is irreducible for any i  n, because the ideal hx1, . . . , xii
is prime. Indeed the quotient ring K[x1, . . . , xn]/hx1, . . . , xii is isomorphic to
K[xi+1, . . . , xn]. Therefore dimAn � n. On the other hand, from every chain
of irreducible closed subsets of An, passing to their ideals, we get a chain of the
same length of prime ideals in K[x1, . . . , xn].

We define the Krull dimension of a ring A, and denote it by dimA, to be the
supremum of the lengths of the chains of distinct prime ideals of A. Therefore, we
can reformulate the previous fact by saying that dimAn  dimK[x1, . . . , xn]. We
will see in a next chapter that dimK[x1, . . . , xn] = n. More in general, if A is a
noetherian ring, then dimA[x] = dimA+ 1.

3. Let X be irreducible. Then dimX = 0 if and only if X is the closure of
every point of it.

We prove now some useful relations between the dimension of X and the
dimensions of its subspaces.

7.2. Proposition.
1. If Y ⇢ X, then dimY  dimX. In particular, if dimX is finite, then also

dimY is (in this case, the number dimX � dimY is called the codimension of Y
in X).

2. If X =
S

i2I Ui is an open covering, then dimX = sup{dimUi}.
3. If X is noetherian and X1, . . . , Xs are its irreducible components, then

dimX = supi dimXi.

4. If Y ⇢ X is closed, X is irreducible, dimX is finite and dimX = dimY ,

then Y = X.

Proof.
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1. Let Y0 ⇢ Y1 ⇢ . . . ⇢ Yn be a chain of irreducible closed subsets of Y . Then
their closures are irreducible and form the following chain: Y0 ✓ Y1 ✓ . . . ✓ Yn.
Note that for all i Yi \ Y = Yi, because Yi is closed into Y , so if Yi = Yi+1, then
Yi = Yi+1. Therefore the two chains have the same length and we can conclude
that dimY  dimX.

2. Let X0 ⇢ X1 ⇢ . . . ⇢ Xn be a chain of irreducible closed subsets of X. Let
P 2 X0 be a point: there exists an index i 2 I such that P 2 Ui. So 8k = 0, . . . , n
Xk \ Ui 6= ;: it is an irreducible closed subset of Ui, irreducible because open in
Xk which is irreducible. Consider X0 \Ui ⇢ X1 \Ui ⇢ . . . ⇢ Xn \Ui; it is a chain
of length n, because Xk \ Ui = Xk: in fact Xk \ Ui is open in Xk hence dense.
Therefore, for all chain of irreducible closed subsets of X, there exists a chain of
the same length of irreducible closed subsets of some Ui. So dimX  sup dimUi.
By 1., equality holds.

3. Any chain of irreducible closed subsets of X is completely contained in an
irreducible component of X. The conclusion follows as in 2.

4. If Y0 ⇢ Y1 ⇢ . . . ⇢ Yn is a chain of maximal length in Y , then it is a
maximal chain in X, because dimX = dimY . Hence X = Yn ⇢ Y . ⇤

7.3. Corollary. dimPn = dimAn
.

Proof. Because Pn = U0 [ . . . [ Un, and Ui is homeomorphic to An for all i. ⇤

If X is noetherian and all its irreducible components have the same dimension
r, then X is said to have pure dimension r.

Note that the topological dimension is invariant by homeomorphism. By
definition, a curve is an algebraic set of pure dimension 1; a surface is an algebraic
set of pure dimension 2.

We want to study the dimensions of a�ne algebraic sets. The following defi-
nition results to be very important.

7.4. Definition. Let X ⇢ An be an algebraic set. The coordinate ring of X is

K[X] := K[x1, . . . , xn]/I(X).

It is a finitely generated K–algebra that has no non–zero nilpotents, because I(X)
is radical. This can be expressed by saying that K[X] is a reduced ring. There
is the canonical epimorphism K[x1, . . . , xn] ! K[X] such that F ! [F ]. The
elements of K[X] can be interpreted as polynomial functions on X: to a poly-
nomial F , we can associate the function f : X ! K such that P (a1, . . . , an) !
F (a1, . . . , an).

Two polynomials F , G define the same function on X if, and only if, F (P ) =
G(P ) for every point P 2 X, i.e. if F � G 2 I(X), which means exactly that F
and G have the same image in K[X].

K[X] is generated as K–algebra by [x1], . . . , [xn]: these can be interpreted as
the functions on X called coordinate functions, and generally denoted t1, . . . , tn.
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In fact ti : X ! K is the function which associates to P (a1, . . . , an) the constant
ai. Note that the function f can be interpreted as F (t1, . . . , tn): the polynomial
F evalued at the n– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If Y ⇢ Pn is
closed, then the homogeneous coordinate ring of Y is

S(Y ) := K[x0, x1, . . . , xn]/Ih(Y ).

It is also a finitely generated K–algebra, but its elements have no interpretation
as functions on Y . They are functions on the cone C(Y ).

7.5. Definition. Let R be a ring. The Krull dimension of R is the supremum
of the lengths of the chains of prime ideals of R

P0 ⇢ P1 ⇢ . . . ⇢ Pr.

Similarly, the heigth of a prime ideal P is the sup of the lengths of the chains of
prime ideals contained in P: it is denoted htP.

7.6. Proposition. Let K be an algebraically closed field. Let X be an a�ne

algebraic set contained in An
. Then dimX = dimK[X].

Proof.

By the Nullstellensatz and by 6.5 the chains of irreducible closed subsets of
X correspond bijectively to the chains of prime ideals of K[x1, . . . , xn] containing
I(X), hence to the chains of prime ideals of the quotient ring K[X]. ⇤

The dimension theory for commutative rings contains some important theo-
rems about dimension of K–algebras. The following two results are very useful.

7.7. Theorem. Let K be any field.

1. Let B be a finitely generated K–algebra and an integral domain. Then

dimB = tr.d.Q(B)/K, where Q(B) is the quotient field of B. In particular dimB
is finite.

2. Let B be as above and P ⇢ B be any prime ideal. Then dimB =
htP + dimB/P.

Proof. For 1. see Portelli’s notes. For a proof of 2., see for instance [4], Ch. II,
Proposition 3.4. It relies on the normalization lemma and the lying over theorem.
⇤

7.8. Corollary. Let K be an algebraically closed field.

1. dimAn = dimPn = n.
2. If X is an a�ne variety, then dimX = tr.d.K(X)/K, where K(X) denotes

the quotient field of K[X].
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2. If X ⇢ An
is closed and irreducible, then dimX = n� htI(X). ⇤

The following is an important characterization of the algebraic subsets of An

of codimension 1.

7.9. Proposition. Let X ⇢ An
be closed. Then X is a hypersurface if and only

if X is of pure dimension n� 1.

Proof. We give here an elementary direct proof. It can be proved more quickly
using the Krull principal ideal theorem.

Let X ⇢ An be a hypersurface, with I(X) = (F ) = (F1 . . . Fs), where
F1, . . . , Fs are the irreducible factors of F all of multiplicity one. Then V (F1),. . .,
V (Fs) are the irreducible components of X, whose ideals are (F1), . . ., (Fs). So it
is enough to prove that ht(Fi) = 1, for i = 1, . . . , s.

If P ⇢ (Fi) is a prime ideal, then either P = (0) or there exists G 2 P, G 6= 0.
In the second case, let A be an irreducible factor of G belonging to P: A 2 (Fi)
so A = HFi. Since A is irreducible, either H or Fi is invertible; Fi is irreducible,
so H is invertible, hence (A) = (Fi) ⇢ P. Therefore either P = (0) or P = (Fi),
and ht(Fi) = 1.

Conversely, assume that X is irreducible of dimension n� 1. Since X 6= An,
there exists F = F1 . . . Fs 2 I(X), F 6= 0. Hence X ⇢ V (F ) = V (F1)[ . . .[V (Fs).
By the irreducibility of X, some irreducible factor of F , call it Fi, also vanishes
along X. Therefore X ⇢ V (Fi), which is irreducible of dimension n � 1, by the
first part. So X = V (Fi) (by Proposition 7.2, 3). ⇤

This proposition does not generalize to higher codimension. There exist codi-
mension 2 algebraic subsets of An whose ideal is not generated by two polynomials.
An example in A3 is the curve X parametrized by (t3, t4, t5). A system of gen-
erators of I(X) is hx3 � yz, y2 � xz, z2 � x2yi. One can easily show that I(X)
cannot be generated by two polynomials. For a discussion of this and other similar
examples, see [4], Chapter V.

7.10. Proposition. Let X ⇢ An
, Y ⇢ Am

be irreducible closed subsets. Then

dimX ⇥ Y = dimX + dimY .

Proof. Let r = dimX, s = dimY ; let t1, . . . , tn (resp. u1, . . . , um) be coordinate
functions on An (resp. Am). We can assume that t1, . . . , tr be a transcendence ba-
sis of Q(K[X]) and u1, . . . , us be a transcendence basis of Q(K[Y ]). By definition,
K[X ⇥ Y ] is generated as K–algebra by t1, . . . , tn, u1, . . . , um: we want to show
that t1, . . . , tr, u1, . . . , us is a transcendence basis of Q(K[X⇥Y ]) over K. Assume
that F (x1, . . . , xr, y1, . . . , ys) is a polynomial which vanishes on t1, . . . , tr, u1, . . . , us,
i.e. F defines the zero function on X ⇥ Y . Then, 8 P 2 X, F (P ; y1, . . . , ys)
is zero on Y , i.e. F (P ;u1, . . . , us) = 0. Since u1, . . . , us are algebraically in-
dependent, every coe�cient ai(P ) of F (P ; y1, . . . , ys) is zero, 8 P 2 X. Since
t1, . . . , tr are algebraically independent, the polynomials ai(x1, . . . , xr) are zero, so
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F (x1, . . . , xr, y1, . . . , ys) = 0. So t1, . . . , tr, u1, . . . , us are algebraically independent.
Since this is certainly a maximal algebraically free set, it is a transcendence basis.

⇤

Exercises to §7.
1*. Prove that a proper closed subset of an irreducible curve is a finite set.

Deduce that any bijection between irreducible curves is a homeomorphism.

2*. Let X ⇢ A2 be the cuspidal cubic of equation: x3 � y2 = 0, let K[X] be
its coordinate ring. Prove that all elements of K[X] can be written in a unique
way in the form f(x)+ yg(x), where f, g are polynomial in the variable x. Deduce
that K[X] is not isomorphic to a polynomial ring.

8. Regular and rational functions.

a) Regular functions

Let X ⇢ Pn be a locally closed subset and P be a point of X. Let � : X ! K be
a function.

8.1. Definition. � is regular at P if there exists a suitable neighbourhood of
P in which � can be expressed as a quotient of homogeneous polynomials of the
same degree; more precisely, if there exist an open neighbourhood U of P in X and
homogeneous polynomials F , G 2 K[x0, x1, . . . , xn] with degF = degG, such that
U \ VP (G) = ; and �(Q) = F (Q)/G(Q), for all Q 2 U . Note that the quotient
F (Q)/G(Q) is well defined.

� is regular on X if � is regular at every point P of X.

The set of regular functions on X is denoted O(X): it contains K (identified with
the set of constant functions), and can be given the structure of a K–algebra, by
the definitions:

(�+  )(P ) = �(P ) +  (P )

(� )(P ) = �(P ) (P ),

for P 2 X. (Check that �+  and � are indeed regular on X.)

8.2. Proposition. Let � : X ! K be a regular function. Let K be identified

with A1
with Zariski topology. Then � is continuous.

Proof. It is enough to prove that ��1(c) is closed in X, 8 c 2 K. For all P 2 X,
choose an open neighbourhood UP and homogeneous polynomials FP , GP such
that �|P = FP /GP . Then

��1(c) \ UP = {Q 2 UP |FP (Q)� cGP (Q) = 0} = UP \ VP (FP � cGP )
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is closed in UP . The proposition then follows from:

8.3. Lemma. Let T be a topological space, T = [i2IUi be an open covering of

T , Z ⇢ T be a subset. Then Z is closed if and only if Z \Ui is closed in Ui for all

i.

Proof. Assume that Ui = X \ Ci and Z \ Ui = Zi \ Ui, with Ci and Zi closed in
X.

Claim: Z =
T

i2I(Zi [ Ci), hence it is closed.
In fact: if P 2 Z, then P 2 Z \ Ui for a suitable i. Therefore P 2 Zi \ Ui, so
P 2 Zi [ Ci. If P /2 Zj \ Uj for some j, then P /2 Uj so P 2 Cj and therefore
P 2 Zj [ Cj .

Conversely, if P 2 T
i2I(Zi [Ci), then 8 i, either P 2 Zi or P 2 Ci. Since 9j

such that P 2 Uj , hence P /2 Cj , so P 2 Zj , so P 2 Zj \ Uj = Z \ Uj .
⇤

8.4. Corollary.
1. Let � 2 O(X): then ��1(0) is closed. It is denoted V (�) and called the

set of zeroes of �.
2. Let X be a quasi–projective variety and �,  2 O(X). Assume that there

exists U , open non –empty subset such that �|U =  |U . Then � =  .

Proof. ��  2 O(X) so V (��  ) is closed. By assumption V (��  ) � U , which
is dense, because X is irreducible. So V (��  ) = X.

⇤

If X ⇢ An is locally closed, we can use on X both homogeneous and non–
homogeneous coordinates. In the second case, a regular function is locally rep-
resented as a quotient F/G, with F and G 2 K[x1, . . . , xn]. In particular all
polynomial functions are regular, so, if X is closed, K[X] ⇢ O(X).

If ↵ ⇢ K[X] is an ideal, we can consider V (↵) :=
T

�2↵ V (�): it is closed into
X. Note that ↵ is of the form ↵ = ↵/I(X), where ↵ is the inverse image of ↵ in
the canonical epimorphism, it is an ideal of K[x1, . . . , xn] containing I(X), hence
V (↵) = V (↵) \X = V (↵).

If K is algebraically closed, from the Nullstellensatz it follows that, if ↵ is
proper, then V (↵) 6= ;. Moreover the following relative form of the Nullstellensatz
holds: if f 2 K[X] and f vanishes at all points P 2 X such that g1(P ) = . . . =
gm(P ) = 0 (g1, . . . , gm 2 K[X]), then fr 2 hg1, . . . , gmi ⇢ K[X], for some r � 1.

8.5. Theorem. Let K be an algebraically closed field. Let X ⇢ An
K be closed

in the Zariski topology. Then O(X) ' K[X]. It is an integral domain if and only

if X is irreducible.

Proof. Let f 2 O(X).
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(i) Assume first that X is irreducible. For all P 2 X fix an open neigh-
bourhood UP of P and polynomials FP , GP such that VP (GP ) \ UP = ; and
f |UP = FP /GP . Let fP , gP be the functions in K[X] defined by FP and GP .
Then gP f = fP holds on UP , so it holds on X (by Corollary 8.3, because X is
irreducible). Let ↵ ⇢ K[X] be the ideal ↵ = hgP iP2X ; ↵ has no zeroes on X,
because gP (P ) 6= 0, so ↵ = K[X]. Therefore there exists hP 2 K[X] such that
1 =

P
P2X hP gP (sum with finite support). Hence in O(X) we have the relation:

f = f
P

hP gP =
P

hP (gP f) =
P

hP fP 2 K[X].
(ii) Let X be reducible: for any P 2 X, there exists R 2 K[x1, . . . , xn] such

that R(P ) 6= 0 and R 2 I(X\UP ), so r 2 O(X) is zero outside UP . So rgP f = fP r
on X and we conclude as above by replacing gP with gP r and fP with fP r.

⇤

The characterization of regular functions on projective varieties is completely dif-
ferent: we will see in §12 that, if X is a projective variety, then O(X) ' K, i.e.
the unique regular functions are constant.

This gives the motivation for introducing the following weaker concept.

b) Rational functions

8.6. Definition. Let X be a quasi–projective variety. A rational function on X
is a germ of regular functions on some open non–empty subset of X.

Precisely, let K be the set {(U, f)|U 6= ;, open subset of X, f 2 O(U)}. The
following relation on K is an equivalence relation:

(U, f) ⇠ (U 0, f 0) if and only if f |U\U 0 = f 0|U\U 0 .

Reflexive and symmetric properties are quite obvious. Transitive property: let
(U, f) ⇠ (U 0, f 0) and (U 0, f 0) ⇠ (U 00, f 00). Then f |U\U 0 = f 0|U\U 0 and f 0|U 0\U 00 =
f 00|U 0\U 00 , hence f |U\U 0\U 00 = f 00|U\U 0\U 00 . U \ U 0 \ U 00 is a non–empty open
subset of U \ U 00 (which is irreducible and quasi–projective), so by Corollary 8.4
f |U 0\U 00 = f 00|U 0\U 00 .

Let K(X) := K/ ⇠: its elements are by definition rational functions on X.
K(X) can be given the structure of a field in the following natural way.

Let hU, fi denote the class of (U, f) in K(X). We define:

hU, fi+ hU 0, f 0i = hU \ U 0, f + f 0i,

hU, fihU 0, f 0i = hU \ U 0, ff 0i
(check that the definitions are well posed!).

There is a natural inclusion: K ! K(X) such that c ! hX, ci. Moreover, if
hU, fi 6= 0, then there exists hU, fi�1 = hU \ V (f), f�1i: the axioms of a field are
all satisfied.
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There is also an injective map: O(X) ! K(X) such that �! hX,�i.

8.7. Proposition. If X ⇢ An
is a�ne, then K(X) ' Q(O(X)) = K(t1, . . . , tn),

where t1, . . . , tn are the coordinate functions on X.

Proof. The isomorphism is as follows:
(i)  : K(X) ! Q(O(X))

If hU,�i 2 K(X), then there exists V ⇢ U , open and non–empty, such that � |V =
F/G, where F,G 2 K[x1, . . . , xn] and V (G) \ V = ;. We set  (hU,�i) = f/g.

(ii)  0 : Q(O(X)) ! K(X)
If f/g 2 Q(O(X)), we set  0(f/g) = hX \ V (g), f/gi.

It is easy to check that  and  0 are well defined and inverse each other. ⇤

8.8. Corollary. IfX is an a�ne variety, then dimX is equal to the transcendence

degree over K of its field of rational functions..

8.9. Proposition. If X is quasi–projective and U 6= ; is an open subset, then

K(X) ' K(U).

Proof. We have the maps: K(U) ! K(X) such that hV,�i ! hV,�i, and K(X) !
K(U) such that hA, i ! hA \ U, |A\U i: they are K–homomorphisms inverse
each other. ⇤

8.10. Corollary. If X is a projective variety contained in Pn
, if i is an index

such that X \ Ui 6= ; (where Ui is the open subset where xi 6= 0), then dimX =
dimX \ Ui = tr.d.K(X)/K.

Proof. By Proposition 7.2 dimX = sup dim(X \ Ui). By 8.8 and 8.9, if X \ Ui is
non–empty, dim(X \ Ui) = tr.d.K(X \ Ui)/K = tr.d.K(X)/K is independent of
i. ⇤

If hU,�i 2 K(X), we can consider all possible representatives of it, i.e. all
pairs hUi,�ii such that hU,�i = hUi,�ii. Then U =

S
i Ui is the maximum open

subset of X on which � can be seen as a function: it is called the domain of

definition (or of regularity) of hU,�i, or simply of �. It is sometimes denoted
dom�. If P 2 U , we say that � is regular at P.

We can consider the set of rational functions on X which are regular at P : it
is denoted by OP,X . It is a subring of K(X) containing O(X), called the local ring
of X at P . In fact, OP,X is a local ring, whose maximal ideal, denoted MP,X , is
the set of rational functions � such that �(P ) is defined and �(P ) = 0. To see
this, observe that an element of OP,X can be represented as hU,F/Gi: its inverse
in K(X) is hU \ VP (G), G/F i, which belongs to OP,X if and only if F (P ) 6= 0.
We’ll see in 8.12 that OP,X is the localization K[X]IX(P ).
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As in Proposition 8.9 for the fields of rational functions, also for the local rings
of points it can easily be proved that, if U 6= ; is an open subset of X containing
P , then OP,X ' OP,U . So the ring OP,X only depends on the local behaviour of
X in the neighbourhood of P .

The residue field ofOP,X is the quotientOP,X/MP,X : it is a field which results
to be naturally isomorphic to the base field K. In fact consider the evaluation
map OP,X ! K such that � goes to �(P ): it is surjective with kernel MP,X , so
OP,X/MP,X ' K.

8.11. Examples.

1. Let Y ⇢ A2 be the curve V (x3
1 � x2

2). Then F = x2, G = x1 define the
function � = x2/x1 which is regular at the points P (a1, a2) such that a1 6= 0.
Another representation of the same function is: � = x2

1/x2, which shows that
� is regular at P if a2 6= 0. If � admits another representation F 0/G0, then
G0x2 � F 0x1 vanishes on an open subset of X, which is irreducible (see Exercise
6.2), hence G0x2 � F 0x1 vanishes on X, and therefore G0x2 � F 0x1 2 hx3

1 � x2
2i.

This shows that there are essentially only the above two representations of �. So
� 2 K(X) and its domain of regularity is Y \ {0, 0}.

2. The stereographic projection.
LetX ⇢ P2 be the curve VP (x2

1+x2
2�x2

0). Let f := x1/(x0�x2) denote the germ of
the regular function defined by x1/(x0�x2) on X \VP (x0�x2) = X \{[1, 0, 1]} =
X \ {P}. On X we have x2

1 = (x0 � x2)(x0 + x2) so f is represented also as
(x0 + x2)/x1 on X \ VP (x1) = X \ {P,Q}, where Q = [1, 0,�1]. If we identify K
with the a�ne line VP (x2) \ VP (x0) (the points of the x1–axis lying in the a�ne
plane U0), then f can be interpreted as the stereographic projection of X centered
at P , which takes A[a0, a1, a2] to the intersection of the line AP with the line
VP (x2). To see this, observe that AP has equation a1x0 +(a2 � a0)x1 � a1x2 = 0;
and AP \ VP (x2) is the point [a0 � a2, a1, 0].

8.12. The algebraic characterization of the local ring OP,X .
Let us recall the construction of the ring of fractions of a ring A with respect

to a multiplicative subset S.
Let A be a ring and S ⇢ A be a multiplicative subset. The following relation

in A⇥ S is an equivalence relation:

(a, s) ' (b, t) if and only if 9u 2 S such that u(at� bs) = 0.

Then the quotient A⇥ S/' is denoted S�1A or AS and [(a, s)] is denoted a
s . AS

becomes a commutative ring with unit with operations a
s + b

t = at+bs
st and a

s
b
t = ab

st
(check that they are well–defined). With these operations, AS is called the ring of
fractions of A with respect to S, or the localization of A in S.

There is a natural homomorphism j : A ! S�1A such that j(a) = a
1 , which

makes S�1A an A–algebra. Note that j is the zero map if and only if 0 2 S. More
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precisely if 0 2 S then S�1A is the zero ring: this case will always be excluded in
what follows. Moreover j is injective if and only if every element in S is not a zero
divisor. In this case j(A) will be identified with A.

Examples.
1. Let A be an integral domain and set S = A \ {0}. Then AS = Q(A): the

quotient field of A.
2. If P ⇢ A is a prime ideal, then S = A \ P is a multiplicative set and AS is

denoted AP and called the localization of A at P.
3. If f 2 A, then the multiplicative set generated by f is

S = {1, f, f2, . . . , fn, . . .} :

AS is denoted Af .
4. If S = {x 2 A | x is regular}, then AS is called the total ring of fractions

of A: it is the maximum ring in which A can be canonically embedded.

It is easy to verify that the ring AS enjoys the following universal property:
(i) if s 2 S, then j(s) is invertible;
(ii) if B is a ring with a given homomorphism f : A ! B such that if s 2 S,

then f(s) is invertible, then f factorizes through AS , i.e. there exists a unique
homomorphism f such that f � j = f .

We will see now the relations between ideals of AS and ideals of A.
If ↵ ⇢ A is an ideal, then ↵AS = {a

s | a 2 ↵} is called the extension of ↵ in
AS and denoted also ↵e. It is an ideal, precisely the ideal generated by the set
{a
1 | a 2 ↵}.

If � ⇢ AS is an ideal, then j�1(�) =: �c is called the contraction of � and is
clearly an ideal.

We have:

8.13. Proposition.
1. 8↵ ⇢ A : ↵ec � ↵;
2. 8� ⇢ AS : � = �ce

;

3. ↵e
is proper if and only if ↵ \ S = ;;

4. ↵ec = {x 2 A | 9s 2 S such that sx 2 ↵}.
Proof.

1. and 2. are straightforward.
3. if 1 = a

s 2 ↵e, then there exists u 2 S such that u(s � a) = 0, i.e.
us = ua 2 S \ ↵. Conversely, if s 2 S \ ↵ then 1 = s

s 2 ↵e.
4.

↵ec = {x 2 A | j(x) = x

1
2 ↵e} =
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= {x 2 A | 9a 2 ↵, t 2 S such that
x

1
=

a

t
} =

= {x 2 A | 9a 2 ↵, t, u 2 S such that u(xt� a) = 0}.
Hence, if x 2 ↵ec, then: (ut)x = ua 2 ↵. Conversely: if there exists s 2 S such
that sx = a 2 ↵, then x

1 = a
s , i.e. j(x) 2 ↵e. ⇤

If ↵ is an ideal of A such that ↵ = ↵ec, ↵ is called saturated with S. For
example, if P is a prime ideal and S\P = ;, then P is saturated and Pe is prime.
Conversely, if Q ⇢ AS is a prime ideal, then Qc is prime in A.

Therefore: there is a bijection between the set of prime ideals of AS and the

set of prime ideals of A not intersecting S. In particular, if S = A \ P, P prime,

the prime ideals of AP correspond bijectively to the prime ideals of A contained

in P, hence AP is a local ring with maximal ideal Pe
, denoted PAP , and residue

field AP/PAP . Moreover dimAP = htP.

In particular we get the characterization of OP,X . Let X ⇢ An be an a�ne
variety, let P be a point of X and I(P ) ⇢ K[x1, . . . , xn] be the ideal of P . Let
IX(P ) := I(P )/I(X) be the ideal of K[X] formed by regular functions on X
vanishing at P . Then we can construct the localization

O(X)IX(P ) = {f
g
|f, g 2 O(X), g(P ) 6= 0} ⇢ K(X) :

it is canonically identified with OP,X . In particular: dimOP,X = ht IX(P ) =
dimO(X) = dimX.

There is a bijection between prime ideals of OP,X and prime ideals of O(X)
contained in IX(P ); they also correspond to prime ideals ofK[x1, . . . , xn] contained
in I(P ) and containing I(X).

If X is a�ne, it is possible to define the local ring OP,X also if X is reducible,
simply as localization of K[X] at the maximal ideal IX(P ). The natural map j
from K[X] to OP,X is injective if and only if K[X] \ IX(P ) does not contain any
zero divisor. A non-zero function f is a zero divisor in K[X] if there exists a
non-zero g such that fg = 0, i.e. X = V (f)[ V (g) is an expression of X as union
of proper closed subsets. For j to be injective it is required that every zero divisor
f belongs to IX(P ), which means that all the irreducible components of X pass
through P .

Exercises to §8.
1. Prove that the a�ne varieties and the open subsets of a�ne varieties are

quasi–projective.

2. Let X = {P,Q} be the union of two points in an a�ne space over K.
Prove that O(X) is isomorphic to K ⇥K.


