Statistica per l'impresa

6.2 Correlazione e Regressione semplice

Correlazione e regressione

Affrontiamo l'analisi delle relazioni tra variabili di interesse da due diversi punti di vista:

- Visualizzare e sintetizzare il legame tra due o più variabili di interesse (analisi della correlazione)
- Spiegare l'andamento di una variabile obiettivo mediante le informazioni su una o più variabili esplicative (analisi di regressione)

Esempi di relazioni "interessanti":

- assenze dal lavoro e qualifiche professionali, e/o anzianità
- incidenti sul lavoro e orario, e/o età del lavoratore
- costo degli input e quantità prodotte
- vendite e spese di promozione
- . . .

Campioni bi- (multi-) variati

Consideriamo dunque (almeno) due variabili con un indice comune:

Per esempio, consideriamo il volume totale della produzione (Y) e il corrispondente costo (X) di un'azienda alimentare, misurati negli stabilimenti produttivi di 22 diversi centri (Esempio 6.1)

Analisi grafica della correlazione

La *correlazione* può essere misurata per mezzo di indici sintetici. E' sempre opportuno, tuttavia, affrontare il problema partendo da una visualizzazione dei dati su un *diagramma di dispersione* o *scatterplot*, dove ogni punto rappresenta, nel piano definito dalle due caratteristiche (X, Y), la coppia di osservazioni (x_i, y_i)

Analisi e misura della correlazione

Il momento generalmente usato per misurare l'associazione statistica tra due variabili è la *covarianza*: ovvero la media dei prodotti degli scarti dalle medie individuali.

Distinguiamo la covarianza della popolazione

$$\frac{\sum_{i=1}^{N}(y_i-\bar{Y})(x_i-\bar{X})}{N}$$

dalla covarianza campionaria (corretta)

$$\frac{\sum_{i=1}^{n}(y_i-\bar{y})(x_i-\bar{x})}{n-1}$$

La seconda è uno stimatore campionario corretto (e consistente) della prima.

Analisi e misura della correlazione

La covarianza dipende dall(e) unità di misura delle variabili. Essa può essere standardizzata dividendola per il prodotto dei rispettivi errori standard: denotando questi ultimi $\sigma_x = \sqrt{Var(x)}$ e $\sigma_y = \sqrt{Var(y)}$, il coefficiente di correlazione di Pearson

$$\rho_{xy} = \frac{Cov(x, y)}{\sigma_x \cdot \sigma y}$$

è un numero puro (indipendente dall'unità di misura) compreso tra -1 e 1. Nella popolazione, è quindi:

$$\rho_{xy} = \frac{\frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{n}}{\sqrt{\frac{\sum_{i}(x_{i} - \bar{x})^{2}}{n}}\sqrt{\frac{\sum_{i}(y_{i} - \bar{y})^{2}}{n}}}$$

La correlazione campionaria: stima e inferenza

La correlazione nella popolazione può essere stimata con lo stimatore campionario (corretto)

$$r_{xy} = \frac{\frac{\sum_{i}(x_{i} - \bar{x})(y_{i} - \bar{y})}{n-1}}{\sqrt{\frac{\sum_{i}(x_{i} - \bar{x})^{2}}{n-1}}\sqrt{\frac{\sum_{i}(y_{i} - \bar{y})^{2}}{n-1}}}$$

La correlazione campionaria è una variabile aleatoria r_{xy} , funzione del campione bivariato $((x_1, y_1), (x_2, y_2), \dots, (x_n, y_n))$. Come tale essa ha un'errore standard che – solo se $\rho = 0$ – è dato da:

$$ES_{r_{xy}} = \sqrt{\frac{1 - r_{xy}^2}{n - 2}}$$

e che, sotto opportune ipotesi di normalità congiunta sulla distribuzione di X, Y, può essere usato per verificare ipotesi su ρ .

Proprietà utili di (medie) varianze e covarianze

Per definizione,

$$Cov(X,X) = Var(X)$$

Trasformazioni lineari: se Z = a + bX è

$$E(Z) = a + b \cdot E(X)$$

$$Var(Z) = b^2 Var(X)$$

Inoltre,

$$Cov(X, Y) = E(X \cdot Y) - E(X) \cdot E(Y)$$

e, caso particolare,

$$Var(X) = E(X^2) - [E(X)]^2$$

Scienza induttiva e falsificazionismo

Secondo Karl Popper (1902-1994):

- La mente umana sovrappone alle osservazioni i propri schemi mentali (teorie). I fatti sono indistinguibili dalle opinioni, cosicché un processo puramente induttivo è impossibile.
- Le teorie scientifiche non sono suscettibili di verifica ma soltanto di falsificazione. Ogni teoria scientifica è pertanto un'approssimazione alla realtà frutto di un processo di prova ed errore, e verrà mantenuta finché non venga smentita dall'osservazione empirica.
- La *falsificabilità* è il criterio che definisce la *scienza* e la distingue dalle teorie non scientifiche.

In particolare, ogni teoria economica con pretesa di scientificità non può prescindere dalla verifica empirica, che assumerà la veste di *non falsificazione*. La statistica fornirà lo strumento per trarre dai fenomeni collettivi eventuali smentite alle ipotesi teoriche.

La verifica di ipotesi - 1

La verifica (test) di ipotesi statistiche consiste nel

- formulare un'ipotesi sulla popolazione di interesse
- tradurla in termini di uno o più parametri (incogniti) della popolazione
- estratto un campione, valutare se tale ipotesi è supportata dai dati

Il fenomeno studiato deve essere rappresentabile con una distribuzione di probabilità definita da *parametri*. A questo punto,

- si specificano:
 - ▶ l'ipotesi di interesse (detta *ipotesi nulla*, o *H*₀)
 - ▶ e l'ipotesi alternativa, o H_A

in termini del parametro, o dei parametri, di interesse

- ullet si considera una *statistica test*, la cui distribuzione è nota sotto H_0
- si estrae un campione, si calcola il valore assunto dalla statistica test e se ne valuta la coerenza con l'ipotesi di partenza. Come?

La verifica di ipotesi - 2

La procedura di verifica si basa sulla distribuzione di probabilità che assumerebbe la statistica test τ se H_0 fosse vera. Data questa,

- si fissa il *livello di confidenza* α del test (NB confidence=fiducia) come una probabilità "sufficientemente piccola": molto spesso è $\alpha=5\%$
- sulla base della distribuzione della statistica test τ sub H_0 , si calcolano i confini tra:
 - regione di accettazione, dove sub H_0 au cade con probabilità 1-lpha, e
 - ▶ regione di rifiuto, dove τ ha una probabilità α ("molto piccola"!) di cadere se H_0 è vera

si estrae il campione, si calcola il valore assunto da au

- ightharpoonup se questo cade nella regione di accettazione, non si rifiuta l'ipotesi H_0
- ▶ se cade nella regione di rifiuto, si rifiuta H₀

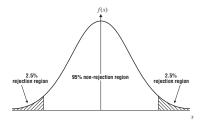
La verifica di ipotesi - esempio 1

Verifichiamo un'ipotesi sulla media di una popolazione (es. X=statura degli studenti). Assumiamo che nella popolazione X si distribuisca secondo una legge ignota la cui media sia il parametro μ , a sua volta incognito; e di essere in grado di estrarre dalla popolazione un campione casuale "abbastanza grande" (es. 100 unità).

- vogliamo verificare H_0 : $\mu=180$ al livello di confidenza del 5% Scegliamo una statistica test di cui *sotto* H_0 conosciamo la distribuzione:
 - per campioni "abbastanza grandi" la *media campionaria* \bar{Y} si distribuisce come una Normale (th. Limite Centrale)
 - essa è uno stimatore corretto, pertanto $sub\ H_0$ il suo valore atteso è 180
 - disponiamo di uno stimatore per $ES_{\bar{Y}}$ sulla base del campione estratto, pertanto la distribuzione sub H_0 di τ è interamente descritta

La verifica di ipotesi - esempio 2

A questo punto i limiti della regione di accettazione coincidono con l'intervallo di confidenza al 5% per la media campionaria centrato su 180:



$$180 - z_{\frac{0.05}{2}} \cdot \hat{ES}_{\bar{Y}}; 180 + z_{\frac{0.05}{2}} \cdot \hat{ES}_{\bar{Y}}$$

Confrontiamo la media del campione effettivamente estratto con la distribuzione sub H_0 : se cade nella regione di rifiuto, delle due l'una:

- H_0 è vera ma siamo stati molto sfortunati (errore di I specie)
- H₀ è falsa

Il test t

E' del tutto equivalente, ma più comodo, standardizzare la statistica test

- sottraendo il valore atteso sub H_0 in modo da centrare la distribuzione sullo zero
- dividendo per l'errore standard (stimato) in modo di scalare la varianza ad 1

Si ottiene così una statistica nota come t-test. Per una generica ipotesi $H_0: \mu=m^*$

$$t=rac{\hat{\mu}-m^*}{\hat{ES}(\hat{mu})}\sim N(0,1)$$

per campioni "abbastanza grandi". Altrimenti, per piccoli campioni, occorre affidarsi a una ulteriore ipotesi di normalità della popolazione di indagine. In questo caso,

$$t \sim t_{n-1}$$

Intervalli di confidenza e test di ipotesi

Usando un test t, e detti in generale t_{crit} i valori critici al livello α (p. es. $t_{crit}=z_{\frac{\alpha}{2}}$ in campioni "grandi"), H_0 non sarebbe rifiutata se la statistica test cade nella regione di "accettazione", ovvero se

$$-t_{crit} \leq rac{\hat{\mu} - m^*}{ES(t)} \leq +t_{crit}$$

Equivalentemente,

$$-t_{crit} \times ES(\hat{\mu}) \leq \hat{\mu} - m^* \leq +t_{crit} \times ES(\hat{\mu})$$
$$\hat{\mu} - t_{crit} \times ES(\hat{\mu}) \leq m^* \leq \hat{\mu} + t_{crit} \times ES(\hat{\mu})$$

L'ipotesi nulla H_0 non sarà rifiutata al livello α se l'intervallo di confidenza stimato per il parametro incognito *contiene* il valore ipotizzato.

Regressione

- La regressione è uno strumento fondamentale dell'analisi statistica.
- Consiste nel valutare la relazione tra una variabile obiettivo (solitamente chiamata variabile dipendente) e una o più esplicative.

Denotiamo la variabile dipendente con y e le k variabili esplicative con x_1 , x_2 , ..., x_k

• Nomi alternativi per le variabili y e x:

y x variable dipendente regressori variabile obiettivo variabili esplicative

• Ci possono in generale essere numerose variabili x ma cominceremo col considerarne solo una.

Regressione e correlazione

Parlando di *correlazione* tra y e x, le trattiamo in maniera completamente simmetrica.

Nella regressione, invece, trattiamo la variabile dipendente (y) e le variabili esplicative (x) in modo molto differente.

La base filosofica del *modello di regressione* prevede un *processo generatore dei dati* (siamo realisti, non nominalisti)

Modello

L'idea di base è che le unità della popolazione (tutti i possibili campioni) siano generate da un *processo generatore dei dati* (DGP). Una descrizione formale del DGP prende il nome di *modello* e per noi avrà forma lineare del tipo:

$$Y = \beta X + u$$

Un modello è

- Una descrizione astratta e stilizzata della realtà...
- ...capace di riprodurne le caratteristiche cui siamo interessati.
- Un modo plausibile di generare i dati che stiamo osservando.

Operativamente, si cerca di costruire modelli che

- spieghino la maggior parte della variabilità nei dati osservati relativi al fenomeno di interesse,
- lasciando non spiegata solo una componente *non sistematica* detta *disturbo (o errore) casuale*.

A che serve un modello

Operativamente, se comprendiamo come "la nostra realtà è stata generata", saremo capaci di

- interpretarla
- riprodurla sotto condizioni diverse:
 - previsione
 - what-if analysis

Il modello sarà la formalizzazione della nostra teoria e la base per i tentativi di *falsificazione*, che prenderanno la forma di *test diagnostici* relativi ai vari aspetti del modello stesso (forma funzionale, proprietà degli errori, valori assunti dai parametri . . .)

Trovare l'interpolante ottimale

Usiamo la generica equazione di una retta,

$$Y = a + bX$$

per trovare la migliore interpolante dei nostri dati.

- Tuttavia, l'equazione (Y=a+bX) è completamente deterministica.
- E' realistico? No. Pertanto aggiungiamo un *disturbo aleatorio*, *u*, all'equazione.

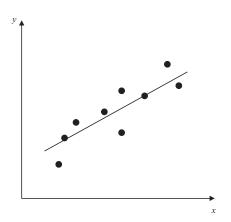
$$y_i = \alpha + \beta x_i + u_i$$

Perché includere un disturbo aleatorio?

- Il termine di errore (o disturbo aleatorio) u può dar conto di vari fenomeni:
 - Determinanti omessi di y_t
 - Errori di misura non modellizzabili di y_t
 - Influenze esogene su y_t che non possiamo includere nel modello

Determinare i coefficienti del modello

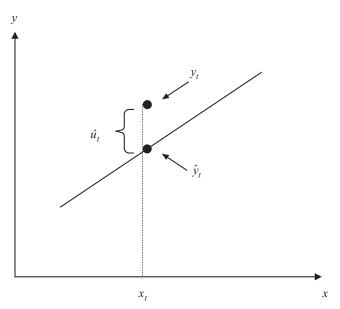
- Come determinare α e β ?
- Cercansi α e β tali da rendere minime le distanze (verticali) tra i punti rappresentativi dei dati osservati e la retta stimata:



Ordinary Least Squares

- Il metodo di stima più comune è noto come OLS (*ordinary least squares*, o minimi quadrati ordinari).
- Si minimizzano i quadrati delle distanze indicate in figura (da cui il nome).
- Più formalmente, siano
 - y_t i valori osservati per ogni t
 - $\hat{y_t}$ i valori corrispondenti (stimati) sulla retta di regressione
 - $\hat{u_t}$ i residui, $\hat{u_t} = y_t \hat{y_t}$

Valori osservati e stimati; residui



Minimi quadrati ordinari

- Cercansi i valori ottimi di $\hat{\alpha}$ e $\hat{\beta}$ tali da rendere minima la somma dei quadrati dei residui: $L = \sum_{t=1}^{5} \hat{u_t}^2$ che è la nostra funzione di perdita
- Ricordiamo che $\hat{u_t}$ è la differenza tra valori stimati e osservati, $y_t \hat{y_t}$. . .
- ... ma $\hat{y}_t = \hat{\alpha} + \beta x_t$ pertanto $L(\hat{\alpha}, \hat{\beta}) = \sum (y_t \hat{y}_t)^2$
- graficamente, minimizzare rispetto ai parametri la funzione di perdita L equivale a minimizzare i quadrati delle differenze tra valori osservati e retta stimata per ogni x_i

Derivazione dello stimatore OLS

E' $\hat{y}_t = \hat{lpha} + \hat{eta} x_t$, pertanto sia

$$L = \sum_{t=1}^{T} (y_t - \hat{y}_t)^2 = \sum_{t=1}^{T} (y_t - \hat{\alpha} - \hat{\beta}x_t)^2.$$

Minimizziamo L rispetto a $\hat{\alpha}$ e $\hat{\beta}$, perciò differenziamo L sub $\hat{\alpha}$ e $\hat{\beta}$

$$\frac{\partial L}{\partial \hat{\alpha}} = -2\sum_{t} (y_t - \hat{\alpha} - \hat{\beta}x_t) = 0$$
 (1)

$$\frac{\partial L}{\partial \hat{\beta}} = -2\sum_{t} x_{t}(y_{t} - \hat{\alpha} - \hat{\beta}x_{t}) = 0$$
 (2)

usando

- derivata della funzione composta: $[g(f(z))]' = g'(f(z)) \cdot f'(z)$
- linearità della derivata

Derivazione dello stimatore OLS (Cont'd)

Da (1),

$$\sum_{t} (y_{t} - \hat{\alpha} - \hat{\beta}x_{t}) = 0 \Leftrightarrow \sum_{t} y_{t} - T\hat{\alpha} - \hat{\beta}\sum_{t} x_{t} = 0$$

 $\sum y_t = T\overline{y} \in \sum x_t = T\overline{x}$. Dunque

$$T\bar{y} - T\hat{\alpha} - T\hat{\beta}\bar{x} = 0 \text{ or } \bar{y} - \hat{\alpha} - \hat{\beta}\bar{x} = 0$$
 (3)

Da (2),

$$\sum_{t} x_t (y_t - \hat{\alpha} - \hat{\beta} x_t) = 0 \tag{4}$$

Da (3),

$$\hat{\alpha} = \bar{y} - \hat{\beta}\bar{x} \tag{5}$$

Derivazione dello stimatore OLS (Cont'd)

Sostituendo in (4) per $\hat{\alpha}$ da (5),

$$\sum_{t} x_{t} (y_{t} - \bar{y} + \hat{\beta}\bar{x} - \hat{\beta}x_{t}) = 0$$

$$\sum_{t} x_{t} y_{t} - \bar{y} \sum_{t} x_{t} + \hat{\beta}\bar{x} \sum_{t} x_{t} - \hat{\beta} \sum_{t} x_{t}^{2} = 0$$

$$\sum_{t} x_{t} y_{t} - T\bar{x}\bar{y} + \hat{\beta}T\bar{x}^{2} - \hat{\beta} \sum_{t} x_{t}^{2} = 0$$

Mettendo in evidenza $\hat{\beta}$,

$$\hat{\beta}\left(T\bar{x}^2 - \sum x_t^2\right) = T\overline{xy} - \sum x_t y_t$$

$$\hat{\beta} = \frac{\sum x_t y_t - T\overline{x}\overline{y}}{\sum x_t^2 - T\overline{x}^2} \quad e \quad \hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

Lo stimatore OLS

Dunque in generale si ha

$$\hat{\beta} = \frac{\sum x_t y_t - T\overline{x}\overline{y}}{\sum x_t^2 - T\overline{x}^2} \quad e \quad \hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$$

ma, si osservi, nel campione è

$$\sum x_t y_t - T\overline{xy} = T(media(XY) - media(X) \cdot media(Y)) e$$

$$\sum x_t^2 - T\overline{x}^2 = T(media(X^2) - [media(X)]^2) \text{ pertanto}$$

$$\hat{\beta} = \frac{Cov(XY)}{Var(X)}$$

Questo criterio di ottimalità, e gli stimatori che da esso prendono il nome, sono noti come OLS (da ordinary least squares).

The Assumptions Underlying the CLRM

- The model which we have used is known as the classical linear regression model.
- We observe data for x_t , but since y_t also depends on u_t , we must be specific about how the u_t are generated.
- We usually make the following set of assumptions about the u_t 's (the unobservable error terms):

Technical notation	Interpretation
(1) $E(u_t) = 0$	The errors have zero mean
(2) $\operatorname{var}(u_t) = \sigma^2$	The variance of the errors is constant and
	finite over all values of x_t
$(3) \operatorname{cov}(u_i, u_i) = 0$	The errors are linearly independent of
•	one another
$(4) \operatorname{cov}(u_t, x_t) = 0$	There is no relationship between the error
, , , , ,	and corresponding x variate

The Assumptions Underlying the CLRM (Cont'd)

- An alternative assumption to (4), which is slightly stronger, is that the x_t 's are non-stochastic or fixed in repeated samples.
- A fifth assumption is required if we want to make inferences about the population parameters (the actual α and β) from the sample parameters ($\hat{\alpha}$ and $\hat{\beta}$)
- Additional assumption
 - (5) u_t is normally distributed

Properties of the OLS Estimator

 If assumptions (1) through (4) hold, then the estimators and determined by OLS are known as Best Linear Unbiased Estimators (BLUE).

What does the acronym stand for?

- 'Estimator' $\hat{\alpha}$ and $\hat{\beta}$ are estimators of the true value of α and β
- 'Linear' $\hat{\alpha}$ and $\hat{\beta}$ are linear estimators
- 'Unbiased' on average, the actual values of $\hat{\alpha}$ and $\hat{\beta}$ will be equal to their true values
- 'Best' means that the OLS estimator $\hat{\beta}$ has minimum variance among the class of linear unbiased estimators; the Gauss–Markov theorem proves that the OLS estimator is best.

Consistency/Unbiasedness/Efficiency

Consistent

The least squares estimators $\hat{\alpha}$ and $\hat{\beta}$ are consistent. That is, the estimates will converge to their true values as the sample size increases to infinity. Need the assumptions $E(x_t u_t) = 0$ and $Var(u_t) = \sigma^2 < \infty$ to prove this. Consistency implies that

$$\lim_{T \to \infty} \Pr\left[|\hat{\beta} - \beta| > \delta\right] = 0 \quad \forall \, \delta > 0$$

Unbiased

The least squares estimates of $\hat{\alpha}$ and $\hat{\beta}$ are unbiased. That is $E(\hat{\alpha}) = \alpha$ and $E(\hat{\beta}) = \beta$. Thus on average the estimated value will be equal to the true values. To prove this also requires the assumption that $E(u_t) = 0$. Unbiasedness is a stronger condition than consistency.

Consistency/Unbiasedness/Efficiency (Cont'd)

Efficient

An estimator $\hat{\beta}$ of parameter β is said to be efficient if it is unbiased and no other unbiased estimator has a smaller variance. If the estimator is efficient, we are minimising the probability that it is a long way off from the true value of β .

Precision and Standard Errors

- Any set of regression estimates of and are specific to the sample used in their estimation.
- Recall that the estimators of α and β from the sample parameters ($\hat{\alpha}$ and $\hat{\beta}$) are given by

$$\hat{\beta} = rac{\sum x_t y_t - T\overline{x}\overline{y}}{\sum x_t^2 - T\overline{x}^2}$$
 and $\hat{\alpha} = \overline{y} - \hat{\beta}\overline{x}$

Precision and Standard Errors (Cont'd)

• What we need is some measure of the reliability or precision of the estimators $(\hat{\alpha} \text{ and } \hat{\beta})$. The precision of the estimate is given by its standard error. Given assumptions (1)–(4) above, then the standard errors can be shown to be given by

$$SE(\hat{\alpha}) = s\sqrt{\frac{\sum x_t^2}{T\sum (x_t - \bar{x})^2}} = s\sqrt{\frac{\sum x_t^2}{T\left(\left(\sum x_t^2\right) - T\bar{x}^2\right)}}$$

$$SE(\hat{\beta}) = s\sqrt{\frac{1}{\sum (x_t - \bar{x})^2}} = s\sqrt{\frac{1}{\sum x_t^2 - T\bar{x}^2}}$$

where s is the estimated standard deviation of the residuals.

Estimating the Variance of the Disturbance Term

• The variance of the random variable u t is given by

$$Var(u_t) = E[(u_t)-E(u_t)]^2$$

which reduces to

$$\mathsf{Var}(u_t) = \mathsf{E}(u_t^2)$$

• We could estimate this using the average of u_t^2 :

$$s^2 = \frac{1}{T} \sum u_t^2$$

• Unfortunately this is not workable since u_t is not observable. We can use the sample counterpart to u_t , which is \hat{u}_t :

$$s^2 = \frac{1}{T} \sum \hat{u}_t^2$$

But this estimator is a biased estimator of σ^2 .

Estimating the Variance of the Disturbance Term (cont'd)

ullet An unbiased estimator of σ is given by

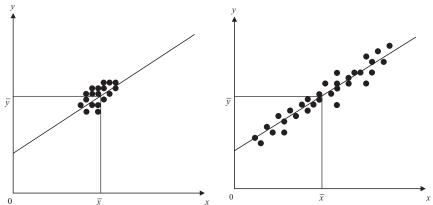
$$s = \sqrt{rac{\sum \hat{u}_t^2}{T-2}}$$

where $\sum \hat{u}_t^2$ is the residual sum of squares and T is the sample size.

- Some Comments on the Standard Error Estimators
 - **1** Both $SE(\hat{\alpha})$ and $SE(\hat{\beta})$ depend on s^2 (or s). The greater the variances², then the more dispersed the errors are about their mean value and therefore the more dispersed y will be about its mean value.
 - 2 The sum of the squares of x about their mean appears in both formulae. The larger the sum of squares, the smaller the coefficient variances.

Some Comments on the Standard Error Estimators

Consider what happens if $\sum (x_t - \bar{x})^2$ is small or large:



① The larger the sample size, T, the smaller will be the coefficient variances. T appears explicitly in $SE(\hat{\alpha})$ and implicitly in $SE(\hat{\beta})$.

Some Comments on the Standard Error Estimators (Cont'd)

T appears implicitly since the sum $\sum (x_t - \bar{x})^2$ is from t = 1 to T.

2 The term $\sum x_t^2$ appears in the $SE(\hat{\alpha})$.

The reason is that $\sum x_t^2$ measures how far the points are away from the *y*-axis.