
USC Viterbi
School of Engineering
Department of Computer Science

Cyber-Physical
Systems:

Basics of Control for
Computer Scientists

March 26, 2019
Lecture @ University of Trieste

Jyo Deshmukh

USC Viterbi
School of Engineering
Department of Computer Science

Layout

2

u Introduction to basics of linear control (without any Laplace transforms)
u Introduction to nonlinear control
u Introduction to observer design

USC Viterbi
School of Engineering
Department of Computer Science

Model of a simple car

3

Position !
Velocity "

Force #

Friction $"

Newton’s law of motion: # − $" = ' ()*
(+) ; " =

(*
(+

USC Viterbi
School of Engineering
Department of Computer Science

u Equation of simple car dynamics can be written compactly as:
"̇
#̇ = 0 1

0 −(/*
"
+ 0

1 [-]

u Letting / = 0 1
0 −(/* , 1 = 0

1 , we can re-write above equation in the
form:

u 2̇ = /2 + B4, where 2 = " # , and 4 = -

Linear Systems

4

USC Viterbi
School of Engineering
Department of Computer Science

u Given "̇ = $" + B'
�Looks at the state "
�Decides what ' should be fed to the “plant”

u Control objectives:
�Reject disturbances (if there is some perturbation in state, making it get

back to initial state)
�Follow reference trajectories (if we want the system to have a certain "()*)
�Make system follow some other “desired behavior”

What does a control algorithm do?

5

USC Viterbi
School of Engineering
Department of Computer Science

u Linear control
�Very well-understood and mature area
�More than 100 years of research
�Assumes linear plant models

u Nonlinear control
�Research area with fewer “solved problems”
�Allows more general plant models
�Harder, with more math!

Linear vs. Nonlinear Control

6

USC Viterbi
School of Engineering
Department of Computer Science

Reference Tracking

7

!(#)
!̇ = '! +)*

+(#) *(#)

Controller Plant

u Given a reference trajectory +(t), design *(t) such that !(#) closely follows +(t)
u Applications: Making a thermostat reach a set-point, Path following robots, etc.

USC Viterbi
School of Engineering
Department of Computer Science

u Open-loop or feed-forward control
�Control action generally does not

depend on plant output
�Quite common in many CPS

applications!
u Pros: Cheaper, may require fewer sensors
u Cons: Requires lots of tuning before

acceptable quality Is achieved; may not be
robust to disturbances

Open-loop control

8

Plant Controller
!(#) %(#) &(#)

USC Viterbi
School of Engineering
Department of Computer Science

u Controller adjusts controllable
inputs in response to observed
outputs
� Can respond better to variations in

disturbances
� Performance depends on how well

outputs can be sensed, and how quickly
controller can track changes in output

u Many different flavors of feedback
control!

Closed-loop or Feedback Control

9

Plant Controller
!(#) %(#) &(#)

∑

USC Viterbi
School of Engineering
Department of Computer Science

Simple Linear Feedback Control: Reference Tracking

10

!(#)
!̇ = '! +)** = +(, − !)

,(#) *(#)
∑+− Controller Plant

u Closed-loop dynamics: !̇ = '! +)+ , − ! = ' −)+ ! +)+,
u Pick + such that closed-loop system has desirable behavior
u Main idea: Suppose, the system !̇ = ' −)+ ! is stable, then as time # →
∞, ! approaches some constant multiple of ,

USC Viterbi
School of Engineering
Department of Computer Science

Linear Feedback Control: Pole placement

11

!(#)
!̇ = '! +)** = +(, − !)

,(#) *(#)
∑+− Controller Plant

u To make closed-loop system stable, pick + such that eigenvalues of
' −)+ have negative real-parts

u Controller designed this way also called pole placement controller

USC Viterbi
School of Engineering
Department of Computer Science

u Note eigs % = 0.382, 2.618 ⇒ unstable plant!

u Let 0 = 12 13 . Then, % − 50 = 1 − 12 1 − 13
1 2

u eigs % − 50 satisfy equation 63 + 12 − 3 6 + 1 − 212 + 13 = 0
� Suppose we want eigenvalues at −5,−6, then equation would be: 63 + 116 + 30 = 0
� Comparing two equations, 12 − 3 = 11, and 1 − 212 + 13 = 30
� This gives 12 = 14, 13 = 57. Thus controller with 0 = 14 57 stabilizes the plant!

Designing a pole placement controller

12

;(=)
;̇ = 1 1

1 2 ; + 1
0 @@ = 0(A − ;)

A(=) @(=)
∑+− Controller Plant

USC Viterbi
School of Engineering
Department of Computer Science

u Pole placement involves heuristics (we arbitrarily decided where to put the
eigenvalues)

u Principled approach is to put the poles such that the closed-loop system
optimizes the cost function:

!"#$ = &
'

(
)(+)-.)(+) + 0(+)-10(+) 2+

u)(+)-.)(+) is called state cost, 0(+)-10(+) is called control cost
u Given a feedback law: 0 + = −4567)(+), 4567 can be found precisely
u In Matlab, there is a simple one-line function lqr to do this!

Linear Quadratic Regulator

13

USC Viterbi
School of Engineering
Department of Computer Science

u Closed-loop control system has the following form:

"̇ = $" + &'
(=)" + *'

u "̇ = $" + &':describes state evolution
u (=)" + *': describes how states are observed, * usually

set to +

Linear Control System Basics

14

": State [Internal
to the process
being
controlled]

': Control Input
[actuator
command]

(: Output [what
sensor reads]

USC Viterbi
School of Engineering
Department of Computer Science

u Can we always choose eigenvalues to find a stabilizing controller? NO!
u For "̇ = $" + &', what if $ is unstable, and & is 0…0 +?

�No controller can ever stabilize the system
u How do we determine for a given $, & whether there is a controller?
u Controllability:

�Can we find the condition on the system design that ensures that we can
always move the system to whichever state/output we want?

� Important question that affects which actuators we pick for the system

Controllability

15

USC Viterbi
School of Engineering
Department of Computer Science

u Find controllability matrix !
u ! = # $# $%# … $'()# [* is the state-dimension]
u System is controllable if ! has full row rank. (i.e. rows are linearly

independent)
u Example: ̇,)

̇,%
̇,-
=

−1 0 2
2 1 0
1 1 3

,)
,%
,-

+
1 1
0 1
1 0

4)
4%

Checking Controllability

16

USC Viterbi
School of Engineering
Department of Computer Science

u ! =
−1 0 2
2 1 0
1 1 3

(=
1 1
0 1
1 0

u) =
1 1 1 −1 7 5
0 1 2 3 4 1
1 0 4 2 15 8

u rank(R) = 3 (i.e. full rank)
u So system is controllable: uses 2 actuators (./, .1)!

Checking Controllability

17

(!(!1(

USC Viterbi
School of Engineering
Department of Computer Science

u ! =
−1 0 2
2 1 0
1 1 3

(=
1 0
0 0
0 0

u) =
1 0 −1 0 3 0
0 0 2 0 0 0
0 0 1 0 4 0

u rank(R) = 3 (i.e. full rank)
u So system is controllable: but uses only 1 actuator (+,)!

Checking Controllability

18

(!(!-(

Tip: Given matrices !, (use Matlab command
R = ctrb(A, B) to find controllability Gramian.

Tip: Use 89:;()) to find rank of)

USC Viterbi
School of Engineering
Department of Computer Science

u Very rarely are all system states ! visible to the external world
�E.g. model may have internal physical states such as temperature,

pressure, object velocity: that may not be measurable by an external
observer

�Only things made available by a sensor are visible to the real world
u Observability:

�Can we reconstruct an arbitrary internal state of the system if we have only
the system outputs available?

� Important question that affects which sensors we pick for the system

Observability

19

USC Viterbi
School of Engineering
Department of Computer Science

u Find observability matrix !
u ! = # #$ #$% … #$'() * [+ is the state-dimension]
u System is observable if ! has full row rank. (i.e. rows are linearly

independent)
u Example:

̇-)
̇-%
̇-.
=

−1 0 2
2 1 0
1 1 3

-)
-%
-.

+
1 1
0 1
1 0

5)
5% ; 7)7% = 0 1 1

1 1 0
-)
-%
-.

Checking Observability

20

USC Viterbi
School of Engineering
Department of Computer Science

u ! =
−1 0 2
2 1 0
1 1 3

(= 0 1 1
1 1 0

u) =
(
(!
(!*

=

0 1 1
1 1 0
3 2 3
1 1 2
4 5 15
3 3 8

, /012 3 = 3

Checking Observability

21

u Matrix) is full rank
u ⇒ Pair !, (is observable
u Assuming sensors measure
56, 5*, 57 independently, we
need three sensors

u Assuming we have one sensor
that measures 5* + 57,
another measures 56 + 5*, we
use two sensors

USC Viterbi
School of Engineering
Department of Computer Science

u ! =
−1 0 2
2 1 0
1 1 3

(= 1 1 1

u) =
(
(!
(!*

=
1 1 1
2 2 5
7 7 19

, /012 3 = 2

Checking Observability

22

u What if we used only one
sensor that measures sum of
all states?

u I.e. 4 = 56 + 5* + 58?
u Observability matrix is not

full rank! Cannot reconstruct
some state using only one
sensor!

u Tip: use matlab command
obsv(A, C) to find)

USC Viterbi
School of Engineering
Department of Computer Science

u For linear systems (with no noise), this is done with the use of state
estimators or observers

u For linear systems with noisy measurements and possible “process noise” in
the system itself : we use Kalman filter

u The most popular control method in the world started without any concerns
of controllability, observability etc.

u Purpose: Tracking a given reference signal

How do we reconstruct internal state?

23

USC Viterbi
School of Engineering
Department of Computer Science

u While previous controllers used systematic use of linear systems theory, PID
controllers are the most widely-used and most prevalent in practice (> 90%)

u Main architecture:

PID controllers

24

!(#)&̇ = (& + *+
! = ,& + -+

.(#) +(#)∑+−

Controller

Plant

123(t)

15 6
7

8
3 9 :9

1;
:3(#)
:#

USC Viterbi
School of Engineering
Department of Computer Science

u Compute error signal ! " = $ " − &(")
u Proportional term)*! " :

�)* proportional gain;
�Feedback correction proportional to error

u Cons:
� If)* is small, error can be large! [undercompensation]
� If)* is large,

�system may oscillate (i.e. unstable) [overcompensation]
�may not converge to set-point fast enough

�P-controller always has steady state error or offset error

P-only controller

25

USC Viterbi
School of Engineering
Department of Computer Science

u Compute error signal ! " = $ " − &(")
u Derivative term)*!̇ " :

�)* derivative gain;
� Feedback proportional to how fast the error is increasing/decreasing

u Purpose:
� “Predictive” term, can reduce overshoot: if error is decreasing slowly, feedback is

slower
�Can improve tolerance to disturbances

u Disadvantages:
� Still cannot eliminate steady-state error
�High frequency disturbances can get amplified

PD-controller

26

USC Viterbi
School of Engineering
Department of Computer Science

u Integral term: !" ∫$
% & ' ('

�!" integral gain;
� Feedback action proportional to cumulative error over time
� If a small error persists, it will add up over time and push the system towards

eliminating this error): eliminates offset/steady-state error
u Disadvantages:

� Integral action by itself can increase instability
�(adding a “D” term can help)

� Integrator term can accumulate error and suggest corrections that are not
feasible for the actuators (integrator windup)
�Real systems “saturate” the integrator beyond a certain value

PI/PID controller

27

USC Viterbi
School of Engineering
Department of Computer Science

u Many heuristics to tune PID controllers, i.e., find values of !", !$, !%
u Several recipes to tune, usually rely on designer expertise
u E.g. Ziegler-Nichols method: increase !" till system starts oscillating with

period & (say till !" = !∗), then set !" = 0.6!∗, !$ = ,.-.∗
/ , !% = 0

12 !
∗&

u Matlab/Simulink has PID controller blocks + PID auto-tuning capabilities
u Work well with linear systems or for small perturbations,
u For non-linear systems use “gain-scheduling”

� (i.e. using different !", !$, !% gains in different operating regimes)

PID controller in practice

28

USC Viterbi
School of Engineering
Department of Computer Science

u Typical to excite closed-loop system
with a “step input”
� I.e. sudden change in reference set-

point
u “Step” input of (say) 2.5 at time 0
u Step Response in blue

�Peak/Overshoot (corr. undershoot)
� Settling Time/Settling Region
�Rise Time
�Peak Time
� Steady State Error

Measuring control performance

29

Image © from Mathworks

USC Viterbi
School of Engineering
Department of Computer Science

Nonlinear Control

30

USC Viterbi
School of Engineering
Department of Computer Science

Feedback Linearization

31

u Main idea: Try to choose control such the nonlinear system "̇ = $ ", &
becomes linear

u Equations of motion for inverted pendulum:
'ℓ)+̈ + -+̇ + 'ℓ. cos + = 2

u Control Input: Torque 2
u Rewriting, with 34 = +, 3) = +̇:
u ̇34 = 3)
u ̇3) = − 6

7ℓ8 3) −
9
ℓ cos 34 + 4

7:8 2

+ '.

'. cos +

ℓ
2

USC Viterbi
School of Engineering
Department of Computer Science

u To make our life easier, let !"# = % = &
' , and let ℓ =), then we get:

� ̇+& = +#
� ̇+# = −+# − cos +& + 12

u Let’s define a new control input 3 such that, 2 = &
' (3 + +# + cos +&)

u Voila!
� ̇+& = +#
� ̇+# = 3

u This is a linear system, with 5 = 0 1; 0 0 , B = [0; 1] which we can stabilize
by finding = such that 5 − >= has eigenvalues with negative real parts.

Feedback linearization continued

32

USC Viterbi
School of Engineering
Department of Computer Science

u This operation is called input transformation, which leads to exact
cancellation of a nonlinearity, giving rise to a linear equation

u Also known as exact feedback linearization or dynamic inversion
u Note that this is NOT the same as computing the Jacobian of the nonlinear

system and trying to stabilize the resulting linear system at the origin (this
would make the system stable only locally)

u We are using feedback to linearize the system
u Unfortunately, we cannot always do this

Input Transformation

33

USC Viterbi
School of Engineering
Department of Computer Science

u Consider system:
� ̇"# = % sin ")
� ̇") = −"#) + ,

u How do we cancel out sin ")?
u We can first change variables by a nonlinear transformation:

�-# = "#, -) = % sin ")
u Now, ̇-# = -), and

� ̇-) = ̇") % cos ") = % −"#) + , cos ") = % −-#) + , cos sin1# 234

State Transformation

34

USC Viterbi
School of Engineering
Department of Computer Science

u Equations rewritten:
� ̇"# = "%
� ̇"% = & −"#% +) cos sin/# 012

u Now we can pick) = "#% + #
2 345 56789:1;

<
u Rewriting in terms of =’s:

�) = =#% + #
2345 >1

<
u This gives us a linear system ̇"# = "%; ̇"% = <, which we can again stabilize

using linear system methods

State transformation continued

35

USC Viterbi
School of Engineering
Department of Computer Science

Form of the controller: two “loops”

36

"̇ = $(", ')' = ℎ(", *)0
,(-) "(-)

∑

Plant

Linearization Loop

Feedback Loop/ = 0(")

+
−

State Transformation

* = −34/

Input
Transformation

Pole
Placement
Controller

USC Viterbi
School of Engineering
Department of Computer Science

u Main idea: Use a dynamical model of the plant (inside the controller) to
predict the plant’s future evolution, and optimize the control signal over
possible futures

Model Predictive Control

39

Plant
Model-
based

Optimizer

!(#) %(#) &(#)
∑

Sensor readings

USC Viterbi
School of Engineering
Department of Computer Science

u Create difference equation: ! " + 1 = & ! " , (" ;) " = *(! ")
u At time t, solve an optimal control problem over next N steps:

(∗ = argmin
(

4
567

89:

) ; + " − = ; > + ?‖(t + k ‖>

C. ;. ! ; + " + 1 = &(! ; + " , (; + ")
) ; + " = E ! ; + "

(FGH ≤ (≤ (FJK,)FGH ≤) ≤ LFJK
u Only apply optimal control input value (∗ at time ;
u At time ; + 1: get new measurements, repeat optimization

Receding Horizon Philosophy

40

USC Viterbi
School of Engineering
Department of Computer Science

Observer design

46

USC Viterbi
School of Engineering
Department of Computer Science

What is state estimation and why is it needed?

47

Plant
! "

u Given a “black box” component, we can try to use a linear or nonlinear system to
model it (maybe based on physics, or data-driven)

u Model may posit that the plant has # internal states, but we typically have access
only to the outputs of the model (whatever we can measure using a sensor)

u May need internal states to implement controller: how do we estimate them?
u State estimation: Problem of determining internal states of the plant

USC Viterbi
School of Engineering
Department of Computer Science

u Typically sensor measurements are noisy (manufacturing imperfections,
environment uncertainty, errors introduced in signal processing, etc.)

u In the absence of noise, the model is deterministic: for the same input you
always get the same output
�Can use a simpler form of state estimator called an observer (e.g. a

Luenberger observer)
u In the presence of noise, we use a state estimator, such as a Kalman Filter
u Kalman Filter is one of the most fundamental algorithm that you will see in

autonomous systems, robotics, computer graphics, …

Deterministic vs. Noisy case

48

USC Viterbi
School of Engineering
Department of Computer Science

u For random variable !, " ! : expected value of !, also known as mean
u Suppose "[$] = ' : then var(w) : variance of !, is " ! − ' /

u For random variables $ and 0, cov $, 0 : covariance of $ and 0
�cov $, 0 = " ($ − "($)(0 − " 0

u For random vector 4, " 4 is a vector
u For random vectors, 4 ∈ ℝ7 and 8 ∈ ℝ9 , cross-covariance matrix is :×<

matrix: cov 4, 8 = " 4 − " 4 8 − " 8 =

u ! ∼ ? ', @/ : ! is a normally distributed variable with mean ' and
variance @

Random variables and statistics refresher

49

USC Viterbi
School of Engineering
Department of Computer Science

u Using radar and a camera to estimate the distance to the lead car:
� Measurement is never free of noise
� Actual distance: !
� Measurement with radar: "# = ! + &# (&# ∼ ()#, +#, is radar noise)
� With camera: ", = ! + &, (&, ∼ ((),, +,,) is camera noise)
� How do you combine the two estimates?

u Use a weighted average of the two estimates, prioritize more likely
measurement

� /! = ⁄(12 324) 5 ⁄(14 344)
⁄(# 324)5 ⁄(# 344)

= 6"# + 1 − 6 ",, where 6 = 344
3245344

� /) = /!, /+, = 324344
3245344

u Observe: uncertainty reduced, and mean is closer to measurement with
lower uncertainty

Data fusion example

50

), = 2, +,, = 0.5
)# = 1, +#, = 1

)#),

)̂ = 1.67, +,, = 0.33

)̂

USC Viterbi
School of Engineering
Department of Computer Science

u Instead of estimating one quantity, we want to estimate ! quantities, then:
u Actual value is some vector "
u Measurement noise for #$% sensor is &' ∼) *', Σ' , where *' is the mean

vector, and Σ' is the covariance matrix
u Λ = Σ/0 is the information matrix
u For the two-sensor case:

� 1" = Λ0 + Λ3 /0(Λ050 + Λ353), and 7Σ = Λ0 + Λ3 /0

Multi-variate sensor fusion

51

USC Viterbi
School of Engineering
Department of Computer Science

u What if we have one sensor and making repeated measurements of a
moving object?

u Measurement differences are not all because of sensor noise, some of it is
because of object motion

u Kalman filter is a tool that can include a motion model (or in general a
dynamical model) to account for changes in internal state of the system

u Combines idea of prediction using the system dynamics with correction
using weighted average (Bayesian inference)

Motion makes things interesting

52

USC Viterbi
School of Engineering
Department of Computer Science

u We assume that the plant (whose state we are trying to estimate) is a
stochastic discrete dynamical process with the following dynamics:

!" = $!"%& + ()" + *" (Process Model)
-" = .!" + /" (Measurement Model)

Stochastic Difference Equation Models

53

!", !"%& State at time 0,0 − 1
)" Input at time 0
*" Random vector representing noise in the plant, * ∼ 4(5, 7")
/" Random vector representing sensor noise, / ∼ 4(5, 8")
-" Output at time 0

9 Number of states
: Number of inputs
; Number of outputs
$ 9×9 matrix
(9×: matrix
. ;×9 matrix

USC Viterbi
School of Engineering
Department of Computer Science

u We assume an estimate of ! at time " − 1, fusing information obtained by
measurements till time " − 1: this is denoted %!&'(|&'(

u We also assume that the error between the estimate %!&'(|&'(and the
actual !&'(has 0 mean, and covariance *&'(|&'(

u Now, we use these values and the state dynamics to predict the value of !&
u Because we are still using measurements only up to time " − 1, we can

denote this predicted value as %!&|&'(, and compute it as follows:
%!&|&'(≔ ,%!&'(|&'(+ ./&

Step I: Prediction

54

USC Viterbi
School of Engineering
Department of Computer Science

u We also need to update the predicted covariance between the predicted
value and the “actual” value of !"

Step I: Prediction continued

55

#"|"%& = cov !" − ,!"|"%& = cov -!"%& + /" − -,!"%&|"%&
= -cov !"%& − ,!"|"%& -0 + 123(/")
= -#"%&|"%&-0 + 6"

u Thus, the a priori estimated state and error covariance are:

,!"|"%& ≔ -,!"%&|"%& + 89"
#"|"%& ≔ -#"%&|"%&-0 + 6"

USC Viterbi
School of Engineering
Department of Computer Science

u This is where we basically do data fusion between new measurement and
old prediction to obtain new estimate

u Note that data fusion is not straightforward like before because we don’t
really observe/measure !" directly, but we get measurement #", for an
observable output!

u Idea remains similar: Do a weighted average of the prediction $!"|"&' and
new information

u We integrate new information by using the difference between the
predicted output and the observation

Step II: Correction

56

USC Viterbi
School of Engineering
Department of Computer Science

u Predicted output: !" #$"|"&', and error in predicted output = (" − !" #$"|"&'
u We denote this expression as the innovation *" ≔ (" − !" #$"|"&'
u Covariance of innovation (,") can be shown to be -" + !"/"|"&'!"0
u Then to do data fusion, we use a matrix known as (optimal) Kalman gain 1"

23"|" ≔ 23"|"&' + 1"4"
u Where, 1" is given by /"|"&'!"0,"&'
u Finally, the updated error covariance estimate is given by:

/"|" ≔ /"|"&' 5 − 1"!"

Step II: Correction continued

57

USC Viterbi
School of Engineering
Department of Computer Science

Correction step summary

58

Innovation !" ≔ $" − &" '("|"*+
Innovation Covariance ," ≔ -" + &"/"|"*+&"0
Optimal Kalman Gain 1" ≔ /"|"*+&"0,"*+
A posteriori state estimate 23"|" ≔ 23"|"*+ + 1"!"
A posteriori error covariance estimate /"|" ≔ /"|"*+ 4 − 1"&"

USC Viterbi
School of Engineering
Department of Computer Science

u Let’s take a simple one-dimensional example, with perfect observability (i.e. ! = #). So,
at each step, #$ is the measurement.

u Then, Kalman filter prediction equations become:
� %#$|$'(≔ *%#$'(|$'(+ ,- ; .$|$'(/ ≔ */.$'(|$'(/

01231 4567189258:
25 7;82<987

+ =.>
/

4567189258:
25 01367;;

u Also, the correction equations become:
� Innovation: ?$ ≔ #$ − %#$|$'(, Innovation variance = .A/ + .$|$'(/

� Optimal gain: B = ⁄1 (.A/ + .$|$'(/),
� Updated state estimate: %#$|$ ≔ %#$|$'(+ B(#$ − %#$|$'()
� I.e. updated state estimate: %#$|$ ≔ 1 − B %#$|$'(+ B#$ (Weighted average!)

What are all these equations? How to make sense?

59

USC Viterbi
School of Engineering
Department of Computer Science

u We skipped derivations of equations of the Kalman filter, but a fundamental
property assumed is that the process model and measurement model are
both linear.

u Under linear models and Gaussian process/measurement noise, a Kalman
filter is an optimal state estimator (minimizes mean square error between
estimate and actual state)

u In an EKF, state transitions and observations need not be linear functions of
the state, but can be any differentiable functions

u I.e., the process and measurement models are as follows:
!" = $ %"&',)" + +"

," = ℎ %" + ."

Extended Kalman Filter

60

USC Viterbi
School of Engineering
Department of Computer Science

u Functions ! and ℎ can be used directly to compute state-prediction, and
predicted measurement, but cannot be directly used to update covariances

u So, we instead use the Jacobian of the dynamics at the predicted state
u This linearizes the non-linear dynamics around the current estimate
u Prediction updates:

EKF updates

61

#$%|%'(≔ !(#$%'(|%'(, ,%)
.%|%'(≔ /%.%'(|%'(/%0 + 2%

/% ≔ 34!
4$ $5#$6|678,,5,6

USC Viterbi
School of Engineering
Department of Computer Science

u Correction updates

EKF updates continued

62

Innovation !" ≔ $" − ℎ(()"|"+,)
Innovation Covariance -" ≔ ." + 0"1"|"+,0"2
Near-Optimal Kalman Gain 3" ≔ 1"|"+,0"2-"+,
A posteriori state estimate 45"|" ≔ 45"|"+, + 3"!"
A posteriori error covariance estimate 1"|" ≔ 1"|"+, 6 − 3"0"

0" ≔ 78ℎ
8))9():|:;<

USC Viterbi
School of Engineering
Department of Computer Science

u Linear Control (State-Space View)
�Reference Tracking
�Pole Placement controller
�LQR
�PID

u Nonlinear Control
�Feedback linearization
�Model-Predictive Control

u Kalman filters: observers for dynamical systems

Summary

63

