
USC Viterbi
School of Engineering
Department of Computer Science

Cyber-Physical
Systems:

Temporal Logic

March 27, 2019
Lecture @ University of Trieste

Jyo Deshmukh
□ ",$ % > 0 ⇒ à ",$ (* > 0 ∧ à ,,,.,," * < 0 ⇒ % > 1 ∨ (% < −1)

□ ",$
% >

0 ∧ à ,,,.,
,"
* <

0 ⇒ % >
1 ∨ (%

< −
1)

□
",$ % > 0

∨ (% < −1)

□ ",$
% >

0 ∧
à ,

,,.,
,"
* <

0 ⇒
% >

1 ∨
(% <

−1
)

USC Viterbi
School of Engineering
Department of Computer Science

u Specifications for most programs: functional
�Program starts in some state !, and terminates in some other state ",

specification defines a relation between all pairs (!, ") given !, " ∈ '

u Specifications for reactive and cyber-physical systems:
�Program never terminates!
�Starting from some initial state (say !), all infinite behaviors of the program

should satisfy certain property

Specifications/Requirements

2

USC Viterbi
School of Engineering
Department of Computer Science

Small detour

3

USC Viterbi
School of Engineering
Department of Computer Science

u Most programmers have used regular expressions
u Formally, regular expressions specify acceptable sequences of finite length
u Example:

� [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one
lowercase letter or number

� [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely
many numbers followed by a lowercase letter

Detour to automata and formal languages

4

USC Viterbi
School of Engineering
Department of Computer Science

u Famous equivalence between finite state automata and regular expressions

Finite state automata

5

!" !#
a-z

!$ a-z,0-9

[a-z][a-z 0-9]

%$
!" !#a-z

!$
a-z

0-9
[a-z][0-9]*[a-z]

%&

State

Accepting
state

!'

*

0-9

USC Viterbi
School of Engineering
Department of Computer Science

How does a finite state automaton work?

6

u Starts at the initial state !"
u In !", if it receives a letter in a-z, goes to !#

else, it goes to !$
u In !#, if it receives a number in 0-9, it stays in !#

else, it goes to !% (as it received a-z)
u In !$, no matter what it gets, it stays in !$
u !% is an accepting state where computation halts
u Any string that takes the machine from !" to !% is

accepted by the machine

!" !%a-z

!#
a-z

0-9

&'

!$

*

0-9

USC Viterbi
School of Engineering
Department of Computer Science

u What strings are accepted by !"?
�ab, zy, s2r, q123s, u3123123v, etc.

u What strings are not accepted by !"?
�2b, 334a, etc.

u The set of all strings accepted by !" is
called its language

u The language of a finite state automaton
consists of strings, each of which can be
arbitrarily long, but finite

Language of a finite state automaton

7

#$ #%a-z

#&
a-z

0-9

!"

#'

*

0-9

USC Viterbi
School of Engineering
Department of Computer Science

LTL

8

USC Viterbi
School of Engineering
Department of Computer Science

u Temporal Logic (literally logic of time) allows us to specify infinite sequences
of states using logical formulae

u Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal
Logic (LTL) for requirements of reactive systems: later selected for the 1996
Turing Award

u Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model
checking algorithm, originally designed for checking Computation Tree Logic
(CTL) properties of distributed programs

Temporal Logic

9

USC Viterbi
School of Engineering
Department of Computer Science

u Syntax: A set of syntactic rules that allow us to construct formulas from
specific ground terms

u Semantics: A set of rules that assign meanings to well-formed formulas
obtained by using above syntactic rules

u Simplest form is Propositional Logic

What is a logic in context of today’s lecture?

10

USC Viterbi
School of Engineering
Department of Computer Science

u Simplest form of logic with a set
of atomic propositions and
Boolean connectives

u !" = {%, ', (, … }, Connectives =
∧,∨, ¬,⇒,≡

u Syntax recursively gives how new
formulae are constructed from
smaller formulae

Propositional Logic

11

Syntax of Propositional Logic
0 ∷= 2(34 | the true formula

% | % is a prop in AP

¬0 | Negation

0 ∧ 0 | Conjunction

0 ∨ 0 | Disjunction

0 ⇒ 0 | Implication

0 ≡ 0 | Equivalence

USC Viterbi
School of Engineering
Department of Computer Science

u Semantics (i.e. meaning) of a formula
can be defined recursively

u Semantics of an atomic proposition
defined by a valuation function !

u Valuation function assigns each
proposition a value 1 (true) or 0
(false), always assigns the "#$%
formula the value 1, and for other
formulae is defined recursively

Semantics

12

Semantics of Prop. Logic
!("#$%) 1

! ¬) 1 if !) = 0
0 if !) = 1

!()- ∧)/) 1 if !)- = 1 and !)/ = 1,
0 otherwise

)- ∨)/ ! ¬(¬)- ∧ ¬)/)
)- ⇒)/ ! ¬)- ∨)/
)- ≡)/ !)- ⇒)/ ∧)/ ⇒)-

USC Viterbi
School of Engineering
Department of Computer Science

u ! : There is an upright bicycle in the
middle of the road

u " : There is car in the field of vision
u ! ⇒ $: If there is an upright bicycle in

the middle of the road, the bicycle has
a rider

u %&: Car (is in the intersection
u %) ∧ ¬%, ∨ (¬%) ∧ %,)

Examples

13

USC Viterbi
School of Engineering
Department of Computer Science

u !: #$ ↦ 1, #(↦ 0, #* ↦ 0. What is ! #$ ∧ #(⇒ #* ?
u ! #$ ∧ #(⇒ #* = 1

u !: #$ ↦ 1, #(↦ 0, #* ↦ 0. What is ! (#$⇒ #*) ∧ #(⇒ #*
u ! (#$⇒ #*) ∧ #(⇒ #* = 0

u Is this true? ! #$ ∧ #(⇒ #* ≡ #$ ⇒ #* ∧ #(⇒ #* = 1? (For all
valuations)?

Interpreting a formula of prop. logic

14

USC Viterbi
School of Engineering
Department of Computer Science

u Propositional Logic is interpreted over valuations to atoms
u Temporal Logic is interpreted over traces/sequences/strings
u Trace is an infinite sequence of valuations
u !:

Temporal Logic = Prop. Logic + Temporal Operators

15

0 1 2 3 4 42⋯ ⋯
$,
&

$,
¬&

¬$,
¬&

$,
&

¬$,
&

$,
&

u Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), …

USC Viterbi
School of Engineering
Department of Computer Science

u LTL is a logic interpreted over infinite traces
u Temporal logic with a view that time evolves in a linear fashion

�Other logics where time is branching!
u Assumes that a trace is a discrete-time trace, with equal time intervals
u Actual interval between time-points does not matter : similar to rounds in

synchronous reactive components
u LTL can be used to express safety and liveness properties!

Linear Temporal Logic

16

USC Viterbi
School of Engineering
Department of Computer Science

u LTL formulas are built from
propositions and other smaller
LTL formulas using:
�Boolean connectives
�Temporal Operators

u Only shown ∧ and ¬, but can
define ∨,⇒,≡ for convenience

LTL Syntax

17

Syntax of LTL
' ∷= * | * is a prop in AP

¬' | Negation

' ∧ ' | Conjunction

+' | NeXt Step

,' | Some Future Step

-' | Globally in all steps

' . ' | In all steps Until in
some step

USC Viterbi
School of Engineering
Department of Computer Science

u Semantics of LTL is defined by a valuation function that assigns to each
proposition at each time-point in the trace a truth value (0 or 1)

u We use the symbol ⊨ (read models) to show that a trace-point satisfies a
formula

u ", $ ⊨ % : Read as trace " at time $ satisfies formula %
u If we omit $, then the meaning is time 0. I.e. " ⊨ % is the same as ", 0 ⊨ %
u Semantics is defined recursively over the formula
u Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics

18

USC Viterbi
School of Engineering
Department of Computer Science

u !, # ⊨ % if &' % = 1,
� i.e. if % is true at time #

u !, # ⊨ ¬+ if !, # ⊭ +,
� i.e. if + is not true for the trace starting time #

u !, # ⊨ +- ∧ +/ if !, # ⊨ +- and !, # ⊨ +/
� i.e. if +- and +/ both hold starting time #

u !, # ⊨ 0+ if !, # + 1 ⊨ +
� i.e. if + holds starting at the next time point

Recursive semantics of LTL: I

19

USC Viterbi
School of Engineering
Department of Computer Science

u !, # ⊨ % & if ∃(≥ # such that !,(⊨ &
� i.e. & is true starting now, or there is some future time-point (from

where & is true
u !, # ⊨ * & if ∀(≥ # : !,(⊨ &

� i.e. & is true starting now, and for all future time-points (, & is true
starting at (

u !, # ⊨ &,-&. if ∃(≥ # s.t. !,(⊨ &. and ∀ℓ s.t. (≤ ℓ < #, !, ℓ ⊨ &,
� i.e. &. eventually holds, and for all positions till &. holds, &, holds

Recursive semantics of LTL: II

20

USC Viterbi
School of Engineering
Department of Computer Science

u !" : NeXt Step
Visualizing the temporal operators

21

0 1 2 3 4 42
¬" $ ¬" ¬" ¬" "

u %" : Some Future step
0 1 2 3 4 42⋯ ⋯
¬" ¬" ¬" ¬" ¬" $
0 1 2 3 4 42⋯ ⋯
$ ¬" " ¬" ¬" "

USC Viterbi
School of Engineering
Department of Computer Science

u !": Globally " holds

Visualizing the temporal operators

22

0 1 2 3 4 42⋯ ⋯
$ $ $ $ $ $

u " % &: " holds Until & holds

0 1 2 3 4 42⋯ ⋯
$
¬&

$
¬&

$
¬&

$
¬&

"
(

USC Viterbi
School of Engineering
Department of Computer Science

u What does !" # mean?
�Trace satisfies !"# (at time 0) if at time 1, "# holds. I.e. # holds at some

point strictly in the future

You can nest operators!

23

⋯ ⋯0 1 2 3 4 42
¬# ¬# ¬# ¬# ¬# &

u What does '" # mean?
�Trace satisfies '"# (at time 0) if at (, there is always a & in the future

0 1 2
¬# ¬# &

⋯ 14 ⋯15
&¬#

65
&

⋯

USC Viterbi
School of Engineering
Department of Computer Science

u What does !"# mean?

More operator fun

24

10 11 12 13 14 42⋯ ⋯
% % % % % %

0
¬#

⋯
u What does " # ⇒ !(mean?

0 1 2
%)

14 15
)

65
)%

54
%

⋯ ⋯⋯

USC Viterbi
School of Engineering
Department of Computer Science

u What does the following formula mean: !" ∧ $!% ∧ $!& ∧ $(!(∧ $!) ?

More, more operator fun

25

0 1 2 3 4 5
!" !% !& !(!)

u Is this true? *(! ∧ +) is the same as *! ∧ *+?

0 1 2 3 4 42⋯ ⋯
!,
¬+

¬!,
+

!,
¬+

¬!,
+

!,
¬+

!,
¬+

No! Because this trace
satisfies *! ∧ *+, but

not *(! ∧ +)

USC Viterbi
School of Engineering
Department of Computer Science

u !" ≡ ¬%¬"
u %!" ≡ ¬!%¬"
u ! " ∨ ' ≡ !" ∨ !'
u % " ∧ ' ≡ %" ∧ %'
u !!" ≡ !"
u %%" ≡ %"
u !%!" ≡ %!"
u %!%" ≡ !%"

Operator duality and identities

26

USC Viterbi
School of Engineering
Department of Computer Science

u Suppose you are designing a robot that has to do a number of missions

Example specifications

27

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the
kitchen, it should visit the bedroom
after.

u Robot should never go to the
bathroom

u The robot should keep working until
its battery becomes low

u The robot should repeatedly visit
the living room

u Whenever the TV is on and the
living room has no person in it, then
within three steps, the robot should
turn off the TVTV

Passage (()

USC Viterbi
School of Engineering
Department of Computer Science

u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

28

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the
kitchen, it should visit the
bedroom after.

((") ⇒ + $))
u Robot should never go to the

bathroom.
(¬&)

u The robot should keep working
until its battery becomes low
-./"012 3 4.-_&6778/9

TV

USC Viterbi
School of Engineering
Department of Computer Science

u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

29

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u The robot should repeatedly visit
the living room

() ℓ
u Whenever the TV is on and the

living room has no person in it,
then within three steps, the robot
should turn off the TV

*(+): room occupied by a person

(¬* ℓ ∧ /012 ⇒)45(/0166)

)457 ≡ 7 ∨ :7 ∨ ::7 ∨ :::7TV

USC Viterbi
School of Engineering
Department of Computer Science

u So far we have seen how we can express
behaviors of individual system traces using LTL

u A system ! starting from some initial state "#
satisfies a LTL requirement $ if all system
behaviors starting in "# satisfy the requirement $

u Denoted as !, "# ⊨ $
u E.g. a system is safe w.r.t. a safety requirement $

if all behaviors satisfy $
u Does (Blinker, (x↦0,y↦0)) ⊨ ((x≥0)?

LTL is a language for expressing system requirements

30

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker

USC Viterbi
School of Engineering
Department of Computer Science

Processes & Fairness

31

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker

u Liveness property: # (x ≥ 10)

� Is this property guaranteed to hold?

�No, task A may be executed less than 10 times.

u Liveness Property: # y (eventually y is 1)

� Is this property guaranteed to hold?

�No, task B may never be selected for execution!

u But, this seems like a very unrealistic or broken

scheduler!

u For infinite executions involving multiple tasks, it is

important for the execution to be fair to each task

USC Viterbi
School of Engineering
Department of Computer Science

u A fairness assumption is a property that encodes the
meaning of what it means for an infinite execution to
be fair with respect to a task.

u Weak fairness: If a task is persistently enabled, then it
is repeatedly executed.

� I.e. if after some point the task guard is always true,
then the task is infinitely often executed.

u Strong fairness: If a task is repeatedly enabled, then it
is repeatedly executed.

� I.e. if the task guard is infinitely often true, then the
task is infinitely often executed.

Weak vs. Strong fairness

32

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker

USC Viterbi
School of Engineering
Department of Computer Science

u Fairness assumptions can be expressed in LTL!
u Add a new variable taken that takes value ‘A’, ‘B’
u Weak fairness: !" #$%&'_) ⇒ ("!(taken = +,))
u Task A: #$%&'_- is .&$/, so this simplifies to: wf(A) ≔

"!(taken=A)
u Task B: wf(B) ≔ !" (even(x)) ⇒"! (taken=B)
u Does (wf(A)∧ wf(B)) ⇒ ! (x ≥ 10)?

�Yes!
u Does (wf(A)∧ wf(B)) ⇒ ! y?

�No!

Expressing fairness assumptions in LTL: I

33

nat x ∶= 0; bool y ∶= 0

A: x := x + 1; taken≔ A
B: even(x) →

y: = 1-y; taken ≔ B

Blinker

{A,B,∅} taken ≔ ∅

USC Viterbi
School of Engineering
Department of Computer Science

u Strong fairness: !" #$%&'_) ⇒ (!"(taken = +,))
u Task A: #$%&'_- is .&$/, so this simplifies to: sf(A) ≔

!"(taken=A)
u Task B: sf(B) ≔ !" (even(x)) ⇒!" (taken=B)
u Does (sf(A)∧ sf(B)) ⇒ " (x ≥ 0)?

�Yes!
u Does (sf(A)∧ sf(B)) ⇒ " y?

�Yes!

Expressing fairness assumptions in LTL: II

34

nat x ∶= 0; bool y ∶= 0

A: x := x + 1; taken≔ A
B: even(x) →

y: = 1-y; taken ≔ B

Blinker

{A,B,∅} taken ≔ ∅

If a process satisfies a liveness requirement under strong fairness, it satisfies it
under weak fairness: strong fairness is a stronger formula than weak fairness

USC Viterbi
School of Engineering
Department of Computer Science

u Hard Requirements: Violation leads to endangering safety-criticality or
mission-criticality
�Safety Requirements: system never does something bad
�Liveness Requirements: from any point of time, system eventually does

something good
u Soft Requirements: Violations lead to inefficiency, but are not critical

� (Absolute) Performance Requirements: system performance is not worst
than a certain level

� (Average) Performance Requirements: average system performance is at a
certain level

Types of Specifications/Requirements

35

USC Viterbi
School of Engineering
Department of Computer Science

u Security Requirements: system should protect against modifications in its
behavior by an adversarial actor
�Failure to satisfy security requirements may lead to a hard requirement

violation
u Privacy Requirements: the data revealed by the system to the external world

should not leak sensitive information
u These requirements will become increasingly important for autonomous

CPS, especially as IoT technologies and smart transportation initiatives are
deployed!

Other kind of requirements

36

USC Viterbi
School of Engineering
Department of Computer Science

Büchi Automata

37

USC Viterbi
School of Engineering
Department of Computer Science

u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors

38

USC Viterbi
School of Engineering
Department of Computer Science

u Extension of finite state automata to accept infinite strings
Büchi automaton Example 1

39

!" !#

$%& = 0
& = 1

u States (: {!", !#}
u Input variable & with domain Σ: 0,1
u Final state: {!#}
u Transitions: (as shown)
u Given trace / (infinite sequence of symbols from

Σ), / is accepted by $%, if !# appears inf. often

u What is the language of $%?
�LTL formula 12(& = 1)

& = 1

& = 0

USC Viterbi
School of Engineering
Department of Computer Science

Büchi automaton Example 2

40

!" !#

$%& = 0|1

& = 0|1

& = 1

u +: !", !# , Σ: 0,1 , .: {!#}
u Transitions: (as shown)

u Note that this is a nondeterministic
Büchi automaton

u $% accepts 1 if there exists a path
along which a state in . appears
infinitely often

u What is the language of $%?
�LTL formula 23(& = 1)

Fun fact: there is no deterministic Büchi
automaton that accepts this language

USC Viterbi
School of Engineering
Department of Computer Science

u What is the language of !"?
�LTL formula:

$ = 1 ⇒ ((* = 1)
� I.e. always when $ = 1 , in some

future step, (* = 1)
� In other words, ($ = 1) must be

followed by (* = 1)

Büchi automaton Example 3

41

,-

!"$ = 0 |
* = 1

$ = 1 & * = 0
* = 0

* = 1
u /: ,0, ,- , Σ: 0,1 , 3: {,5}
u Transitions: (as shown)

,0

USC Viterbi
School of Engineering
Department of Computer Science

u Theoretical result: Every LTL formula ! can be converted to a Büchi
monitor/automaton "#

u Size of "# is generally exponential in the size of !; blow-up unavoidable in general
u Construct composition of the original process $ and the Büchi monitor "#
u If there are cycles in the composite process that do not visit the states specified by

the liveness property, then we have found a violation.
u Reachable cycles in process composition correspond to counterexamples to

liveness properties
u Implemented in many verification tools (e.g. the SPIN model checker developed at

NASA JPL)

Using Büchi monitors

42

USC Viterbi
School of Engineering
Department of Computer Science

CTL

43

USC Viterbi
School of Engineering
Department of Computer Science

u LTL was a linear-time logic where we reason about traces
u CTL is a logic where we reason over the tree of executions generated by a

program, also known as the computation tree
u We care about CTL because:

� There are some properties that cannot be expressed in LTL, but can be
expressed in CTL: From every system state, there is a system execution that
takes it back to the initial state (also known as the reset property)

�To understand pCTL (Probabilistic CTL), it’s good if you understand CTL J
�Can express interesting properties for multi-agent systems

Computation Tree Logic

44

USC Viterbi
School of Engineering
Department of Computer Science

u We saw computation
trees when
understanding
semantics of
asynchronous
processes

u Basically a tree that
considers “all
possibilities” in a
reactive program

Computation Tree

45

nat x := 0; bool y:= 0

A: x := (x + 1) mod 2
B: even(x) → y: = 1-y

(0,0)

(1,0)

(0,1)

(1,1)

Process

Finite State machine

(0,0)

(0,1)(1,0)

(0,0) (1,1)(0,0)

USC Viterbi
School of Engineering
Department of Computer Science

CTL Syntax

46

Syntax of CTL

! ∷= $ ¬! ! ∧ ! | Prop. in '(, negation, conjunction

)*! | Exists NeXt Step

)+! | Exists a Future Step

),! | Exists an execution where Globally in all steps

) ! - ! | Exists an execution where in all steps Until in some step

.*! | In All NeXt Steps

.+! | In All possible future paths, there is a future step

.,! | In All possible future paths, Globally in all steps

. ! - ! | In All possible future executions, in all steps Until in some step

USC Viterbi
School of Engineering
Department of Computer Science

u Path properties: properties of any given path or execution in the program
u Quantification over runs: Checking if a property holds over all paths or over

some path
u Example CTL operator:

! " #

CTL semantics

47

For All executions Eventually/In Some Future step

USC Viterbi
School of Engineering
Department of Computer Science

CTL Semantics through examples

48

!"

!# !$% %

&' %

!"

!# !$%

(' %

!"

!# !$%

&' % ∧ (' !

%
!

USC Viterbi
School of Engineering
Department of Computer Science

CTL semantics through examples

49

!" #: Along all
Paths, There is
some future step
where # holds

$%

#

#
#

$%

#
&" #: Along some
path, there is
some future step
where # holds

USC Viterbi
School of Engineering
Department of Computer Science

CTL semantics through examples

50

!" #: Across all
paths, and for every
successor in the
path, # holds

$%

#

#

#

$%

#
&" #: Along
some
path, # always
holds

#

#

#

#

#

USC Viterbi
School of Engineering
Department of Computer Science

u !"#$ %
u !"!$ %
u #"!$ %
u !" (% ⇒ #())

CTL Operator fun

51

USC Viterbi
School of Engineering
Department of Computer Science

u Checking if a given state machine (program) satisfies a CTL formula can be
done quite efficiently (linear in the size of the machine and the property)

u Native CTL cannot express fairness properties
�Extension Fair CTL can express fairness

u CTL* is a logic that combines CTL and LTL: You can have formulas like !"# $
u CTL: Less used than LTL, but an important logic in the history of temporal

logic

CTL advantages and limitations

52

USC Viterbi
School of Engineering
Department of Computer Science

PCTL

53

USC Viterbi
School of Engineering
Department of Computer Science

u LTL
�Can be interpreted over individual executions
�Can be interpreted over a state machine: do all paths satisfy property

u CTL
� Is interpreted over a computation tree

u PCTL
� Is interpreted over a discrete-time Markov chain
�Encodes uncertainties in computation due to environment etc.

Probabilistic CTL

54

USC Viterbi
School of Engineering
Department of Computer Science

Probabilistic CTL

55

Syntax of PCTL
! ∷= $ ¬! ! ∧ ! | Prop. in '(, negation, conjunction

(State) (∼* + | ∼∈ {<,≤,>,≥}, 4 ∈ [0,1] : Probability of + being true

+ ∷= 9! | NeXt Time

(Path) ! :;<! | Bounded Until (upto = steps)

! : ! Until (Recall >! = ?@AB : !, and C! = ¬>¬!
PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula

USC Viterbi
School of Engineering
Department of Computer Science

u Semantics of path formulas is straightforward (similar to LTL/CTL)
u Semantics of state formula with Probabilistic operator:

�!"#$ %, '(: ∑*+⊨- ! %, %+

�Does !./.1 ' 2 hold in state q/?
�No, because ! %/, ' 2 = 0.1 + 0.2 = 0.3

u Semantics of state formula with Until !"#$ %, :;<=> :
�1 if % ⊨ >
�0 if % ⊭ α or % ⊭> and A = 0
�∑! %, %+ . !"#$(%+, : CDEF>) for A > 0, otherwise

Semantics

56

%/

%I

%F

%J

0.4

0.10.22

2

¬2

USC Viterbi
School of Engineering
Department of Computer Science

PCTL

57

0.2 1

Accelerate
Constant

Speed

Idling Brake

0.2

0.5

0.3

0.8

0.05

0.05

0.5

0.4
0.5

0.4¬",
¬$

", $

", $

¬", $

0

0.1

u Does this formula %&'.) *" hold in
state Brake?
� Yes

u Value of +? %&, -./$ in state Accel
� Compute %$01(3, -./$) for all 3,

pick smallest

� % 5, 6 + % 5, 8 + % 5, 5, 6 +
% 5, 5, 8
= 0.5 + 0.2 + 0.3*0.5 + 0.3*0.2
= 0.91

� + = 0.91
u I.e. with probability ≥ 0.91, driver

checks cell phone within 2 steps

0 0

$: Checking cellphone

": Feeling sleepy

USC Viterbi
School of Engineering
Department of Computer Science

u Toss a coin repeatedly until “tails” is thrown
u Is “tails” eventually thrown along all paths?

�CTL: AF tails
�Result: false
�Why? !"!#!"!# …

u Is the probability of eventually thrown “tails”
equal to 1?
�PCTL: %&#(()*+,-)
�Result: true
�Probability of path !"!#!"!# … is zero!

Quantitative in PCTL vs. Qualitative in CTL

58

!"

!#

!/

0.5

0.5 1

1 ℎ1*2-

)*+,-

USC Viterbi
School of Engineering
Department of Computer Science

u LTL
u Büchi automata
u CTL
u PCTL

Summary

59

□ ",$ % > 0 ⇒ à ",$ (* > 0 ∧ à ,,,.,," * < 0 ⇒ % > 1 ∨ (% < −1)

□ ",$
% >

0 ∧ à ,,,.,
,"
* <

0 ⇒ % >
1 ∨ (%

< −
1)

□
",$ % > 0

∨ (% < −1)

□ ",$
% >

0 ∧
à ,

,,.,
,"
* <

0 ⇒
% >

1 ∨
(% <

−1
)

