Cyber-Physical Systems: Temporal Logic $D_{11,3}^{(K,7)} D_{10}^{(0,0,0,0,1)} (Y = 0)^{-2} (X^{7})^{V(X_{L-1})} (Y = 0)^{-2} (X^{7})^{V(X_{L-1})} (Y = 0)^{-2} ($

March 27, 2019 Lecture @ University of Trieste Jyo Deshmukh

 $\Box_{[1,3]}(x > 0) \Rightarrow \Diamond_{[1,3]}((y > 0) \land \Diamond_{[0,0.001]}(y < 0) \Rightarrow (x > 1) \lor (x < -1)$

USC Viterbi

Specifications/Requirements

- Specifications for most programs: functional
 - ▶ Program starts in some state q, and terminates in some other state r, specification defines a relation between all pairs (q,r) given $q,r \in Q$
- Specifications for reactive and cyber-physical systems:
 - Program never terminates!
 - Starting from some initial state (say q), all infinite behaviors of the program should satisfy certain property

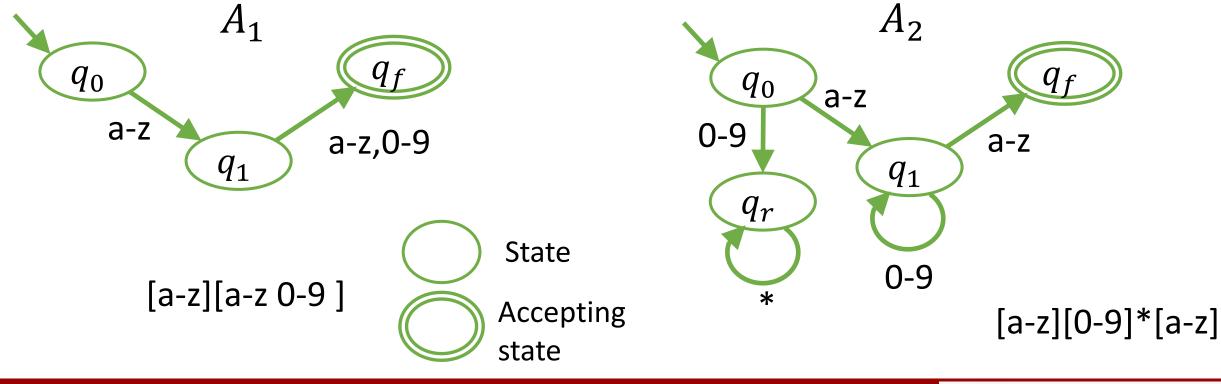
Small detour

Detour to automata and formal languages

- Most programmers have used regular expressions
- Formally, regular expressions specify acceptable sequences of *finite* length
- Example:
 - [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one lowercase letter or number
 - [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by *finitely* many numbers followed by a lowercase letter

Finite state automata

Famous equivalence between finite state automata and regular expressions



USC Viterbi

How does a finite state automaton work?

 q_f

a-z

- Starts at the initial state q_0
 - In q_0 , if it receives a letter in a-z, goes to q_1 else, it goes to q_r
 - In q_1 , if it receives a number in 0-9, it stays in q_1
 - else, it goes to q_f (as it received a-z)
- In q_r , no matter what it gets, it stays in q_r
- q_f is an accepting state where computation halts
- Any string that takes the machine from q_0 to q_f is *accepted* by the machine

USC Viterbi

 q_0

 q_r

*

0-9

School of Engineering Department of Computer Science

 A_2

 q_1

0-9

a-z

Language of a finite state automaton

- A_2 q_0 a-z q_f a-z q_1 a-z q_r 0-9 0-9
- What strings are accepted by A₂?
 ▶ ab, zy, s2r, q123s, u3123123v, etc.
- What strings are not accepted by A₂? ► 2b, 334a, etc.
- The set of all strings accepted by A₂ is called its *language*
- The language of a finite state automaton consists of strings, each of which can be arbitrarily long, but finite

LTL

School of Engineering Department of Computer Science

Temporal Logic

- Temporal Logic (literally logic of time) allows us to specify infinite sequences of states using logical formulae
- Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal Logic (LTL) for requirements of reactive systems: later selected for the 1996 Turing Award
- Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model checking algorithm, originally designed for checking Computation Tree Logic (CTL) properties of distributed programs

What is a logic in context of today's lecture?

- Syntax: A set of syntactic rules that allow us to construct formulas from specific ground terms
- Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Simplest form is Propositional Logic

USC Viterbi

Propositional Logic

- Simplest form of logic with a set of atomic propositions and Boolean connectives
- ► $AP = \{p, q, r, ...\}$, Connectives = $\land, \lor, \neg, \Rightarrow, \equiv$
- Syntax recursively gives how new formulae are constructed from smaller formulae

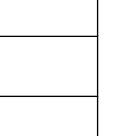
Syntax of Propositional Logic								
φ	::=	true	the true formula					
		$p\mid$	p is a prop in AP					
		$\neg arphi$	Negation					
		$\varphi \land \varphi \mid$	Conjunction					
		$\varphi \lor \varphi \mid$	Disjunction					
		$\varphi \Rightarrow \varphi \mid$	Implication					
		$\varphi \equiv \varphi \mid$	Equivalence					

USC Viterbi

Semantics

- Semantics (i.e. meaning) of a formula can be defined recursively
- Semantics of an atomic proposition defined by a *valuation* function ν
- Valuation function assigns each proposition a value 1 (true) or 0 (false), always assigns the *true* formula the value 1, and for other formulae is defined recursively

Semantics of Prop. Logic							
v(true)	1						
$\nu(\neg \phi)$	$1 \text{ if } \nu(\varphi) = 0$ $0 \text{ if } \nu(\varphi) = 1$						
$(\varphi_1 \wedge \varphi_2)$	1 if $\nu(\varphi_1) = 1$ and $\nu(\varphi_2) = 1$, 0 otherwise						
$\varphi_1 \lor \varphi_2$	$\nu(\neg(\neg\varphi_1 \land \neg\varphi_2))$						
$\varphi_1 \Rightarrow \varphi_2$	$\nu(\neg \varphi_1 \lor \varphi_2)$						
$\varphi_1 \equiv \varphi_2$	$\nu((\varphi_1 \Rightarrow \varphi_2) \land (\varphi_2 \Rightarrow \varphi_1))$						

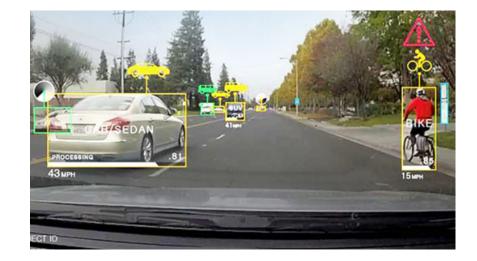


Viterbi

School of Engineering Department of Computer Science ν (

Examples

- p : There is an upright bicycle in the middle of the road
- q : There is car in the field of vision
- p ⇒ r: If there is an upright bicycle in the middle of the road, the bicycle has a rider
- *o_i*: Car *i* is in the intersection
- $(o_1 \land \neg o_2) \lor (\neg o_1 \land o_2)$



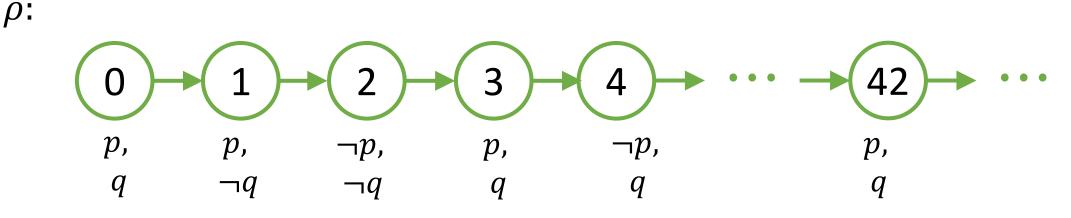
USC Viterbi

- ν: $p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0$. What is $v((p_1 \land p_2) \Rightarrow p_3)$?
 $v((p_1 \land p_2) \Rightarrow p_3) = 1$
- ν: $p_1 \mapsto 1, p_2 \mapsto 0, p_3 \mapsto 0$. What is $v((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3))$ $v((p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3)) = 0$
- ► Is this true? $\nu((p_1 \land p_2) \Rightarrow p_3 \equiv (p_1 \Rightarrow p_3) \land (p_2 \Rightarrow p_3)) = 1$? (For all valuations)?

USC Viterbi

Temporal Logic = Prop. Logic + Temporal Operators

- Propositional Logic is interpreted over valuations to atoms
- Temporal Logic is interpreted over traces/sequences/strings
- Trace is an infinite sequence of valuations



Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1), (4,0,1),..., (42,1,1), ...

USC Viterbi

Linear Temporal Logic

- LTL is a logic interpreted over infinite traces
- Temporal logic with a view that time evolves in a linear fashion
 - Other logics where time is branching!
- Assumes that a trace is a discrete-time trace, with equal time intervals
- Actual interval between time-points does not matter : similar to rounds in synchronous reactive components
- LTL can be used to express safety and liveness properties!

LTL Syntax

- LTL formulas are built from propositions and other smaller LTL formulas using:
 - Boolean connectives
 - Temporal Operators
- Only shown ∧ and ¬, but can define ∨, ⇒, ≡ for convenience

Syntax of LTL				
=	p		p is a prop in AP	
	$\neg arphi$		Negation	
	$\varphi \wedge \varphi$		Conjunction	
	$\mathbf{X} arphi$		Ne X t Step	
	$\mathbf{F} arphi$		Some F uture Step	
	$\mathbf{G}arphi$		G lobally in all steps	
	$\varphi ~ \mathbf{U} ~ \varphi$		In all steps U ntil in some step	

UNIVERSITY

TRIESTE

USC Viterbi

LTL Semantics

- Semantics of LTL is defined by a valuation function that assigns to each proposition at each time-point in the trace a truth value (0 or 1)
- We use the symbol ⊨ (read models) to show that a trace-point satisfies a formula
- ▶ $\rho, n \vDash \varphi$: Read as trace ρ at time n satisfies formula φ
- If we omit *n*, then the meaning is time 0. I.e. $\rho \models \varphi$ is the same as ρ , $0 \models \varphi$
- Semantics is defined recursively over the formula
- Base case: Propositional formulas, Recursion over structure of formula

USC Viterbi

Recursive semantics of LTL: I

- *ρ*, *n* ⊨ *p* if $v_n(p) = 1$,
 i.e. if *p* is true at time *n*
- ▶ $\rho, n \vDash \neg \varphi$ if $\rho, n \nvDash \varphi$,
 - \blacktriangleright i.e. if φ is \pmb{not} true for the trace starting time n
- $\rho, n \vDash \varphi_1 \land \varphi_2 \text{ if } \rho, n \vDash \varphi_1 \text{ and } \rho, n \vDash \varphi_2$
 - ▶ i.e. if φ_1 and φ_2 **both hold** starting time n
- ▶ $\rho, n \models \mathbf{X}\varphi$ if $\rho, n + 1 \models \varphi$
 - \blacktriangleright i.e. if φ holds starting at the next time point

USC Viterbi

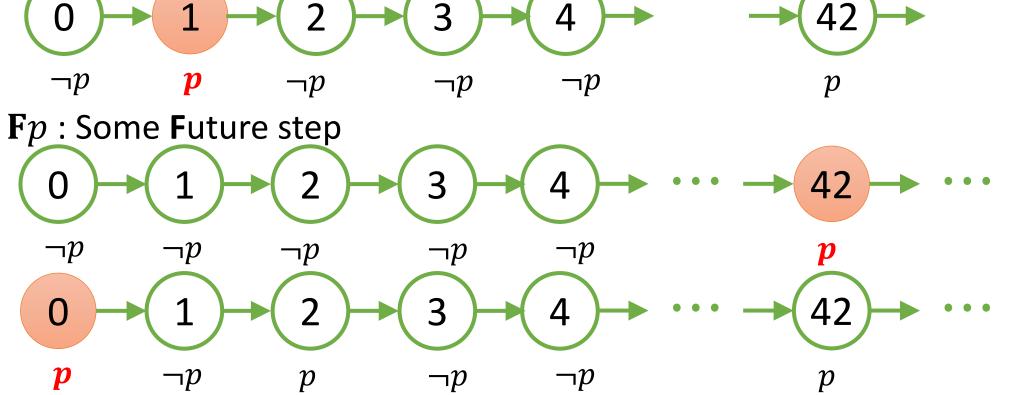
Recursive semantics of LTL: II

- $\rho, n \models \mathbf{F} \varphi$ if $\exists m \ge n$ such that $\rho, m \models \varphi$
 - i.e. φ is true starting now, or there is some future time-point m from where φ is true
- ▶ ρ , $n \models \mathbf{G} \varphi$ if $\forall m \ge n : \rho$, $m \models \varphi$

 \blacktriangleright i.e. φ is true starting now, and for all future time-points m, φ is true starting at m

ρ, *n* ⊨ *φ*₁ U*φ*₂ if ∃*m* ≥ *n* s.t. *ρ*, *m* ⊨ *φ*₂ and ∀*l* s.t. *m* ≤ *l* < *n*, *ρ*, *l* ⊨ *φ*₁
 i.e. *φ*₂ eventually holds, and for all positions till *φ*₂ holds, *φ*₁ holds

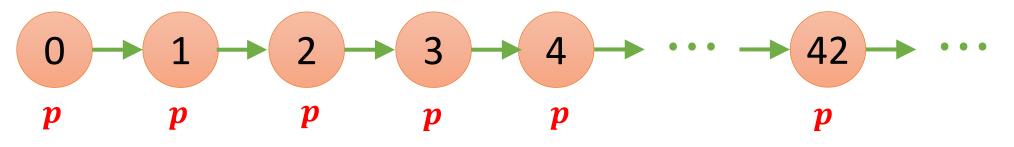
Visualizing the temporal operators Xp : NeXt Step



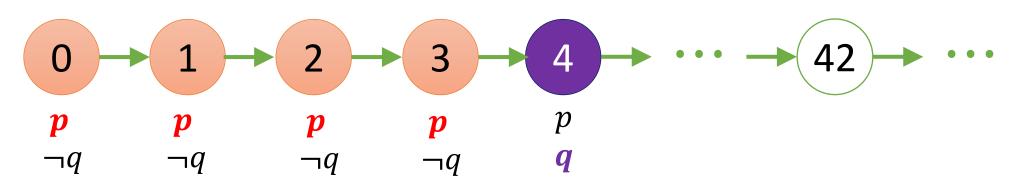
USC Viterbi

Visualizing the temporal operators

G*p*: **G**lobally *p* holds



 $\blacktriangleright p \mathbf{U} q: p$ holds Until q holds



USC Viterbi

You can nest operators!

- What does XF p mean?
 - Trace satisfies XFp (at time 0) if at time 1, Fp holds. I.e. p holds at some point strictly in the future

$$0 \rightarrow 1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow \dots \rightarrow 42 \rightarrow \dots$$
$$\neg p \qquad \neg p \qquad \neg p \qquad \neg p \qquad p \qquad p$$

What does **GF** *p* mean?

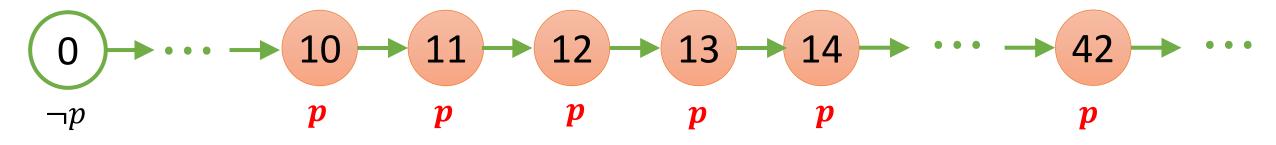
Frace satisfies $\mathbf{GF}p$ (at time 0) if at n, there is always a p in the future

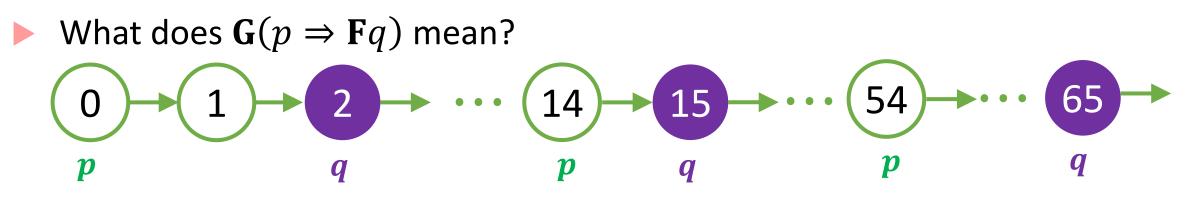
$$0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots \qquad 14 \rightarrow 15 \rightarrow \cdots \qquad 65 \rightarrow \cdots \\ \neg p \qquad \neg p \qquad p \qquad p \qquad p \qquad p$$

USC Viterbi

More operator fun

What does FGp mean?





USC Viterbi

More, more operator fun

What does the following formula mean: $p_1 \wedge \mathbf{X}(p_2 \wedge \mathbf{X}(p_3 \wedge \mathbf{X}(p_4 \wedge \mathbf{X}p_5)))$?

USC Viterbi

IS

School of Engineering Department of Computer Science 25

TRIESTE

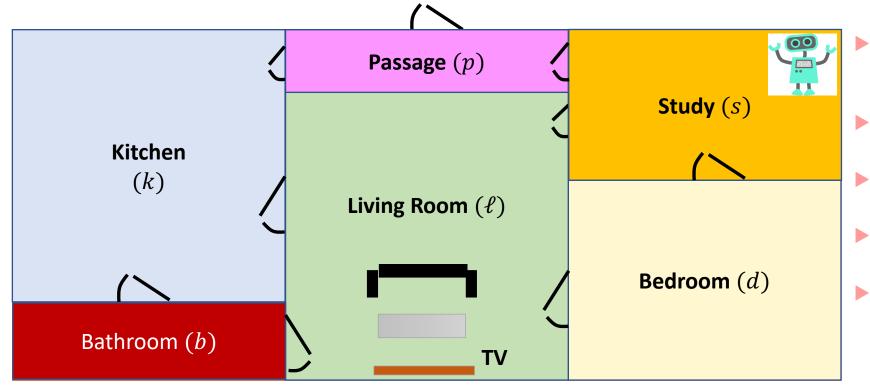
Operator duality and identities

- $\mathbf{F}\varphi \equiv \neg \mathbf{G}\neg \varphi$
- $\blacktriangleright \mathbf{GF}\varphi \equiv \neg \mathbf{FG}\neg \varphi$
- $\models \mathbf{F}(\varphi \lor \psi) \equiv \mathbf{F}\varphi \lor \mathbf{F}\psi$
- $\blacktriangleright \mathbf{G}(\varphi \land \psi) \equiv \mathbf{G}\varphi \land \mathbf{G}\psi$
- $\blacktriangleright \mathbf{F}\mathbf{F}\varphi \equiv \mathbf{F}\varphi$
- $\blacktriangleright \mathbf{G}\mathbf{G}\varphi \equiv \mathbf{G}\varphi$
- $\blacktriangleright \mathbf{F}\mathbf{G}\mathbf{F}\varphi \equiv \mathbf{G}\mathbf{F}\varphi$
- $\blacktriangleright \mathbf{GFG}\varphi \equiv \mathbf{FG}\varphi$

USC Viterbi

Example specifications

Suppose you are designing a robot that has to do a number of missions



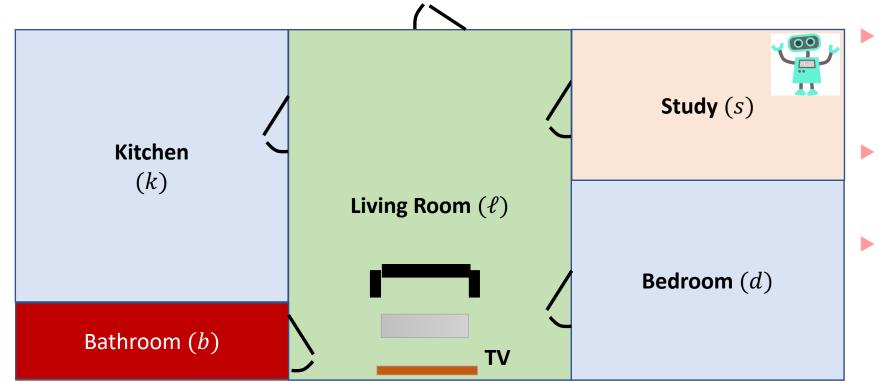
- Whenever the robot visits the kitchen, it should visit the bedroom after.
- Robot should never go to the bathroom
- The robot should keep working until its battery becomes low
- The robot should repeatedly visit the living room
- Whenever the TV is on and the living room has no person in it, then within three steps, the robot should turn off the TV

USC Viterbi

School of Engineering Department of Computer Science

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



Whenever the robot visits the kitchen, it should visit the bedroom after.

$$\mathbf{G}(k_r \Rightarrow \mathbf{F} \, d_r)$$

Robot should never go to the bathroom.

 $\mathbf{G} \neg b_r$

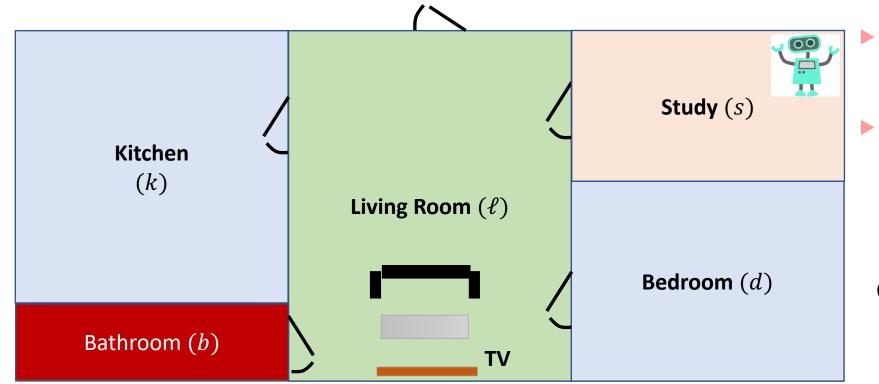
The robot should keep working until its battery becomes low working U low_battery

USC Viterbi

School of Engineering Department of Computer Science

Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions



- The robot should repeatedly visit the living room **GF**ℓ
- Whenever the TV is on and the living room has no person in it, then within three steps, the robot should turn off the TV

o(r): room occupied by a person

 $\mathbf{G}\left((\neg o(\ell) \land TV_{on}) \Rightarrow \mathbf{F}^{\leq 3}(TV_{off})\right)$

 $\mathbf{F}^{\leq 3}\varphi \equiv \varphi \lor \mathbf{X}\varphi \lor \mathbf{X}\mathbf{X}\varphi \lor \mathbf{X}\mathbf{X}\varphi$

USC Viterbi

School of Engineering Department of Computer Science

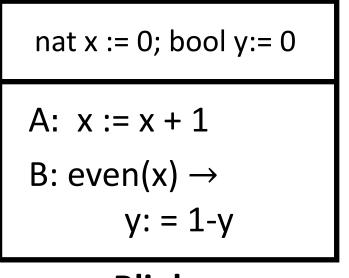
LTL is a language for expressing system requirements

nat x := 0; bool y:= 0 A: x := x + 1 B: even(x) \rightarrow y: = 1-y

Blinker

- So far we have seen how we can express behaviors of individual system traces using LTL
- A system M starting from some initial state q_0 satisfies a LTL requirement φ if **all system behaviors** starting in q_0 satisfy the requirement φ
- Denoted as $M, q_0 \vDash \varphi$
- E.g. a system is safe w.r.t. a safety requirement φ if all behaviors satisfy φ
- ► Does (**Blinker**, $(x \mapsto 0, y \mapsto 0)$) \models **G** $(x \ge 0)$?

Processes & Fairness

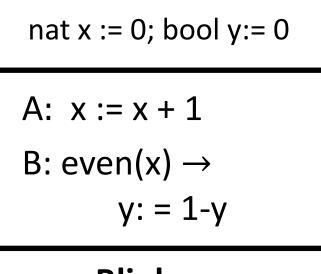


Blinker

- Liveness property: **F** ($x \ge 10$)
 - Is this property guaranteed to hold?
 - No, task A may be executed less than 10 times.
- Liveness Property: F y (eventually y is 1)
 - Is this property guaranteed to hold?
 - No, task B may never be selected for execution!
- But, this seems like a very unrealistic or broken scheduler!
- For infinite executions involving multiple tasks, it is important for the execution to be *fair* to each task

USC Viterbi

Weak vs. Strong fairness



Blinker

- A *fairness assumption* is a property that encodes the meaning of what it means for an infinite execution to be fair with respect to a task.
- Weak fairness: If a task is persistently enabled, then it is repeatedly executed.
 - I.e. if after some point the task guard is always true, then the task is infinitely often executed.
- **Strong fairness**: If a task is repeatedly enabled, then it is repeatedly executed.
 - I.e. if the task guard is infinitely often true, then the task is infinitely often executed.

USC Viterbi

Expressing fairness assumptions in LTL: I

nat x := 0; bool y := 0Fairn{A,B,Ø} taken := ØAdd a

A: x := x + 1; taken≔ A B: even(x) → y: = 1-y; taken ≔ B

Blinker

- Fairness assumptions can be expressed in LTL!
- Add a new variable *taken* that takes value 'A', 'B'
- Weak fairness: (**FG** $guard_i$) \Rightarrow (**GF**(taken = T_i))
- ► Task A: guard_A is true, so this simplifies to: wf(A) ≔ GF(taken=A)
- ► Task B: wf(B) \coloneqq FG (even(x)) \Rightarrow GF (taken=B)
- Does (wf(A)∧ wf(B)) ⇒ F (x ≥ 10)?
 Yes!
- ► Does (wf(A) \land wf(B)) \Rightarrow **F** y?
 - ► No!

Expressing fairness assumptions in LTL: II

- Strong fairness: (**GF** $guard_i$) \Rightarrow (**GF**(taken = T_i))
- ► Task A: guard_A is true, so this simplifies to: sf(A) ≔ GF(taken=A)
- ► Task B: sf(B) := **GF** (even(x)) \Rightarrow **GF** (taken=B)
- Does (sf(A)∧ sf(B)) ⇒ F (x ≥ 0)?
 Yes!
- Does $(sf(A) \land sf(B)) \Rightarrow \mathbf{F} y$?

Yes!

If a process satisfies a liveness requirement under strong fairness, it satisfies it under weak fairness: strong fairness is a **stronger formula** than weak fairness

nat x := 0; bool y := 0

A: x := x + 1; taken \coloneqq A

Blinker

y: = 1-y; taken \coloneqq B

 $\{A,B,\emptyset\}$ taken $\coloneqq \emptyset$

B: even(x) \rightarrow

Types of Specifications/Requirements

- Hard Requirements: Violation leads to endangering safety-criticality or mission-criticality
 - Safety Requirements: system never does something bad
 - Liveness Requirements: from any point of time, system eventually does something good
 - Soft Requirements: Violations lead to inefficiency, but are not critical
 - (Absolute) Performance Requirements: system performance is not worst than a certain level
 - (Average) Performance Requirements: average system performance is at a certain level

USC Viterbi

Other kind of requirements

- Security Requirements: system should protect against modifications in its behavior by an adversarial actor
 - Failure to satisfy security requirements may lead to a hard requirement violation
- Privacy Requirements: the data revealed by the system to the external world should not leak sensitive information
- These requirements will become increasingly important for autonomous CPS, especially as IoT technologies and smart transportation initiatives are deployed!

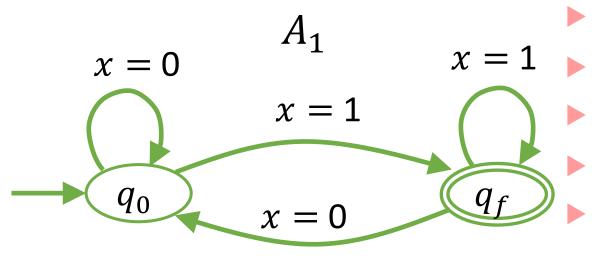
Büchi Automata

Monitors

- A safety monitor classifies system behaviors into good and bad
- Safety verification can be done using inductive invariants or analyzing reachable state space of the system
 - A bug is an execution that drives the monitor into an error state
- Can we use a monitor to classify infinite behaviors into good or bad?
- Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

Büchi automaton Example 1

Extension of finite state automata to accept infinite strings



States $Q: \{q_0, q_f\}$

Input variable x with domain Σ : {0,1}

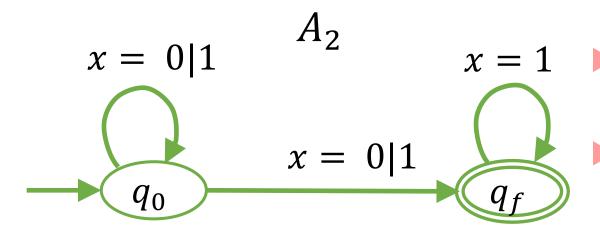
Final state: $\{q_f\}$

Transitions: (as shown)

Given trace ρ (infinite sequence of symbols from Σ), ρ is accepted by A_1 , if q_f appears inf. often

What is the language of A₁?
LTL formula **GF**(x = 1)

Büchi automaton Example 2



•
$$Q: \{q_0, q_f\}, \Sigma: \{0, 1\}, F: \{q_f\}$$

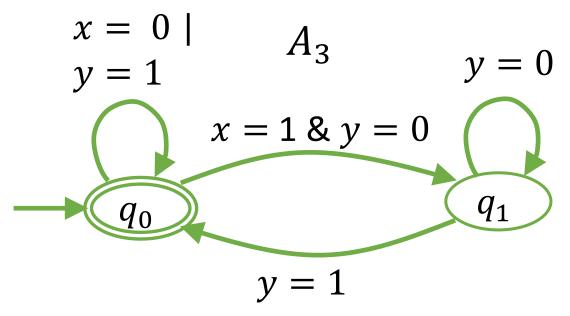
Transitions: (as shown)

Fun fact: there is no deterministic Büchi automaton that accepts this language

USC Viterbi

- Note that this is a nondeterministic Büchi automaton
- A_2 accepts ρ if **there exists a path** along which a state in F appears infinitely often
- What is the language of A_2 ?
 - LTL formula FG(x = 1)

Büchi automaton Example 3



- $\blacktriangleright Q: \{q_0, q_1\}, \Sigma: \{0, 1\}, F: \{q_f\}$
- Transitions: (as shown)

What is the language of A_3 ?

► LTL formula: $G((x = 1) \Rightarrow F(y = 1))$

- I.e. always when (x = 1), in some future step, (y = 1)
- In other words, (x = 1) must be followed by (y = 1)

Using Büchi monitors

- For the oretical result: Every LTL formula φ can be converted to a Büchi monitor/automaton A_{φ}
- Size of A_{φ} is generally exponential in the size of φ ; blow-up unavoidable in general
- Construct composition of the original process P and the Büchi monitor A_{φ}
- If there are cycles in the composite process that do not visit the states specified by the liveness property, then we have found a violation.
- Reachable cycles in process composition correspond to counterexamples to liveness properties
- Implemented in many verification tools (e.g. the SPIN model checker developed at NASA JPL)

CTL

Computation Tree Logic

- LTL was a linear-time logic where we reason about traces
- CTL is a logic where we reason over the tree of executions generated by a program, also known as the *computation tree*
- We care about CTL because:
 - There are some properties that cannot be expressed in LTL, but can be expressed in CTL: From every system state, there is a system execution that takes it back to the initial state (also known as the reset property)
 - ▶ To understand pCTL (Probabilistic CTL), it's good if you understand CTL ☺
 - Can express interesting properties for multi-agent systems

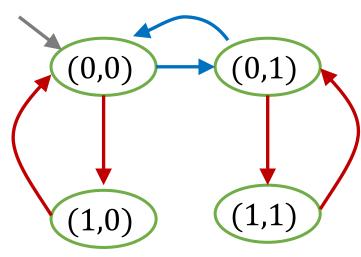
USC Viterbi

Computation Tree

nat x := 0; bool y:= 0

A: $x := (x + 1) \mod 2$ B: $even(x) \rightarrow y := 1-y$

Process



USC Viterbi

School of Engineering Department of Computer Science (0,0)

(0,0)

(1,0)

(0,0)

(0,1)

(1,1)

We saw computation trees when understanding semantics of asynchronous processes

Basically a tree that considers "all possibilities" in a reactive program

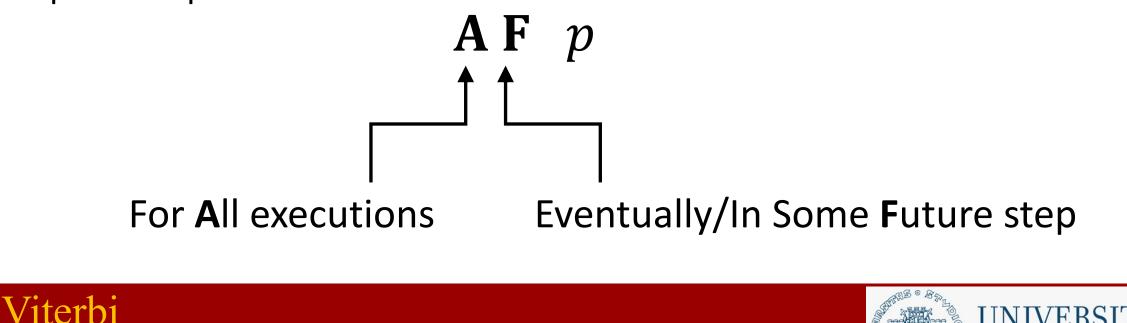
CTL Syntax

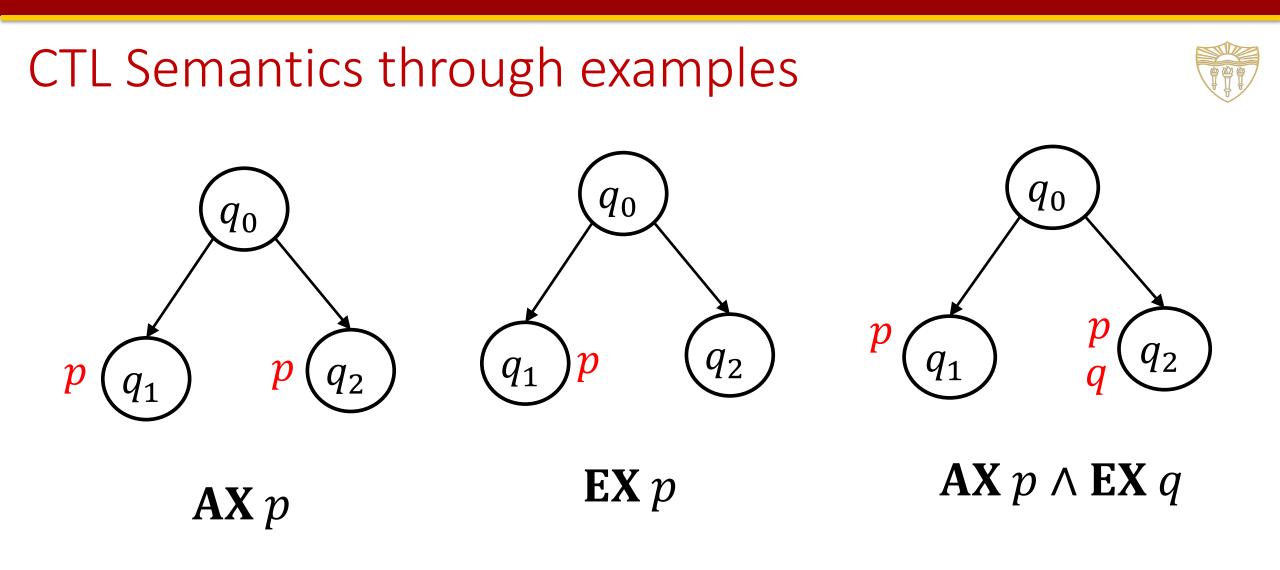
Syntax of CTL				
φ ::=	$p \mid \neg \varphi \mid \varphi \land \varphi$		Prop. in <i>AP</i> , negation, conjunction	
	$\mathbf{E}\mathbf{X}arphi$	I	Exists NeXt Step	
	${f EF}arphi$	I	Exists a Future Step	
	${f EG}arphi$	I	Exists an execution where Globally in all steps	
	$\mathbf{E} \ arphi \ \mathbf{U} \ arphi$	I	Exists an execution where in all steps Until in some step	
	$\mathbf{A}\mathbf{X}arphi$	I	In A ll Ne X t Steps	
	${f AF}arphi$	I	In All possible future paths, there is a future step	
	${f AG}arphi$	I	In All possible future paths, Globally in all steps	
	Α φ U φ		In All possible future executions, in all steps Until in some step	

USC Viterbi

CTL semantics

- Path properties: properties of any given path or execution in the program
- Quantification over runs: Checking if a property holds over all paths or over some path
- Example CTL operator:





USC Viterbi

CTL semantics through examples

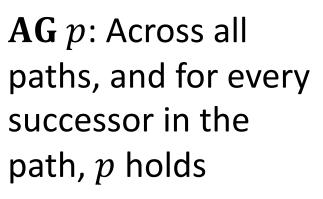
AF *p*: Along all q_0 Paths, There is some future step where p holds pn

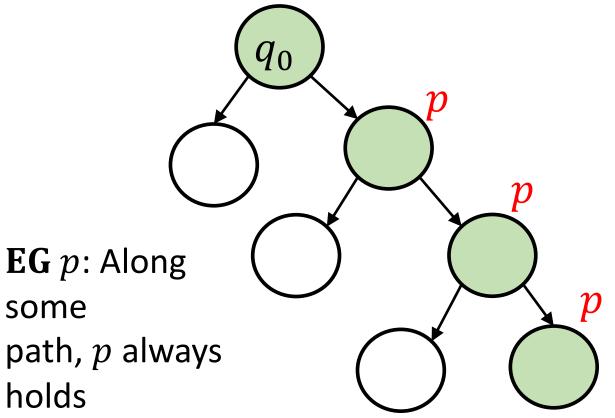
 q_0 **EF** *p*: Along some path, there is p some future step where p holds

USC Viterbi

School of Engineering Department of Computer Science 49

CTL semantics through examples





USC Viterbi

р

p

 q_0

School of Engineering Department of Computer Science

Ŋ

50

CTL Operator fun

- ► AGEF p
- ► AGAF p
- **EGAF** *p*
- $\blacktriangleright \mathbf{AG} \ (p \Rightarrow \mathbf{EX} \ q)$

CTL advantages and limitations

- Checking if a given state machine (program) satisfies a CTL formula can be done quite efficiently (linear in the size of the machine and the property)
- Native CTL cannot express fairness properties
 - Extension Fair CTL can express fairness
- \blacktriangleright CTL^{*} is a logic that combines CTL and LTL: You can have formulas like AGF p
- CTL: Less used than LTL, but an important logic in the history of temporal logic

PCTL

Probabilistic CTL

LTL

- Can be interpreted over individual executions
- Can be interpreted over a state machine: do all paths satisfy property

CTL

Is interpreted over a computation tree

PCTL

- Is interpreted over a discrete-time Markov chain
- Encodes uncertainties in computation due to environment etc.

USC Viterbi

Probabilistic CTL

USC Viterbi

School of Engineering

Department of Computer Science

Syntax of PCTL						
φ ::=	$p \mid \neg \varphi \mid \varphi \land \varphi$		Prop. in AP, negation, conjunction			
(State)	$P_{\sim\lambda}(\psi)$		$\sim \in \{<, \leq, >, \geq\}, \lambda \in [0,1]$: Probability of ψ being true			
$\psi ::=$	${f X}arphi$		Ne X t Time			
(Path)	$\varphi \mathbf{U}^{\leq k} \varphi$		Bounded U ntil (upto k steps)			
	arphi U $arphi$		U ntil (Recall $\mathbf{F}\varphi = true \mathbf{U} \varphi$, and $\mathbf{G}\varphi = \neg \mathbf{F} \neg \varphi$			
PCTI formu	CTL formulas are state formulas, nath formulas used to define how to build a PCTL formula					

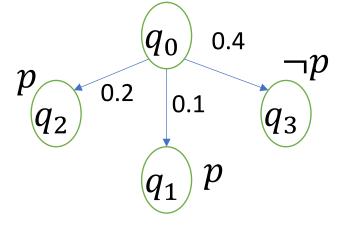
PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula

Semantics

- Semantics of path formulas is straightforward (similar to LTL/CTL)
- Semantics of state formula with Probabilistic operator:
 - ► $Prob(q, \mathbf{X}\varphi): \sum_{q' \models \varphi} P(q, q')$
 - ▶ Does $P_{\ge 0.5}(X p)$ hold in state q_0 ?
 ▶ No, because $P(q_0, X p) = 0.1 + 0.2 = 0.3$

Semantics of state formula with Until $Prob(q, \alpha \mathbf{U}^{\leq k}\beta)$:

1 if q ⊨ β
0 if q ⊭ α or q ⊭β and k = 0
∑ P(q,q'). Prob(q', α U^{k-1}β) for k > 0, otherwise



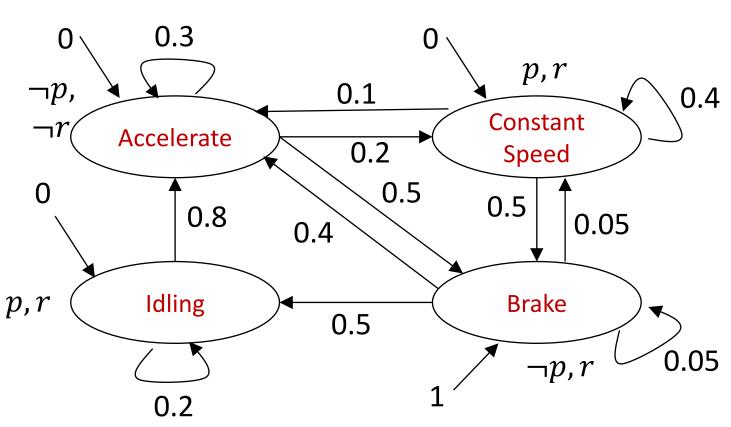
PCTL

Does this formula P_{≥0.5}(Xp) hold in state Brake?

Yes

- Value of ϵ ? $P_{\geq \epsilon}(\mathbf{F}^{\leq 2}r)$ in state Accel
 - Compute Prob(q, F^{≤2}r) for all q, pick smallest
 - P(A,B) + P(A,C) + P(A,A,B) + P(A,A,C)= 0.5 + 0.2 + 0.3*0.5 + 0.3*0.2 = 0.91
- I.e. with probability \geq 0.91, driver checks cell phone within 2 steps

r: Checking cellphonep: Feeling sleepy



USC Viterbi

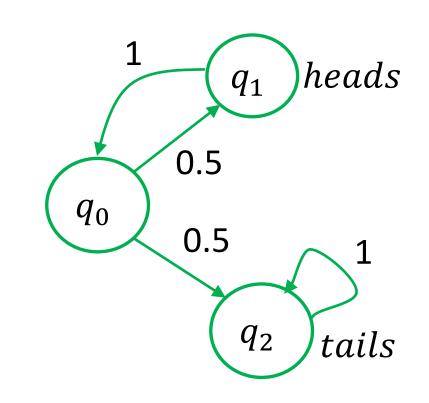
School of Engineering Department of Computer Science 57

Quantitative in PCTL vs. Qualitative in CTL

- Toss a coin repeatedly until "tails" is thrown
- Is "tails" eventually thrown along all paths?
 - CTL: AF tails
 - Result: false
 - Why? $q_0 q_1 q_0 q_1 \dots$
- Is the probability of eventually thrown "tails" equal to 1?
 - ▶ PCTL: $P_{\geq 1}$ (**F** tails)
 - Result: true

USC Viterbi

▶ Probability of path $q_0q_1q_0q_1$... is zero!



School of Engineering Department of Computer Science 58

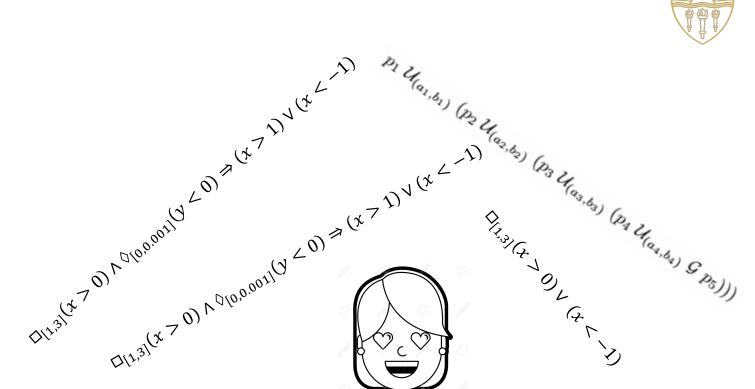
Summary

► LTL

Büchi automata

CTL

PCTL



 $\Box_{[1,3]}(x > 0) \Rightarrow \Diamond_{[1,3]}((y > 0) \land \Diamond_{[0,0.001]}(y < 0) \Rightarrow (x > 1) \lor (x < -1)$

