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u Specifications for most programs: functional
�Program starts in some state !, and terminates in some other state ", 

specification defines a relation between all pairs (!, ") given !, " ∈ '

u Specifications for reactive and cyber-physical systems: 
�Program never terminates!
�Starting from some initial state (say !), all infinite behaviors of the program 

should satisfy certain property

Specifications/Requirements
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Small detour
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u Most programmers have used regular expressions
u Formally, regular expressions specify acceptable sequences of finite length
u Example:

� [a-z][a-z 0-9] : strings starting with a lowercase letter (a-z) followed by one 
lowercase letter or number

� [a-z][0-9]*[a-z] : strings starting with a lowercase letter, followed by finitely 
many numbers followed by a lowercase letter

Detour to automata and formal languages

4



USC Viterbi
School of Engineering
Department of  Computer Science

u Famous equivalence between finite state automata and regular expressions

Finite state automata
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How does a finite state automaton work?
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u Starts at the initial state !"
u In !", if it receives a letter in a-z, goes to !#

else, it goes to !$
u In !#, if it receives a number in 0-9, it stays in !#

else, it goes to !% (as it received a-z)
u In !$, no matter what it gets, it stays in !$
u !% is an accepting state where computation halts
u Any string that takes the machine from !" to !% is 

accepted by the machine

!" !%a-z

!#
a-z

0-9

&'

!$

*

0-9
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u What strings are accepted by !"?
�ab, zy, s2r, q123s, u3123123v, etc.

u What strings are not accepted by !"?
�2b, 334a, etc.

u The set of all strings accepted by !" is 
called its language 

u The language of a finite state automaton 
consists of strings, each of which can be 
arbitrarily long, but finite

Language of a finite state automaton
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LTL
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u Temporal Logic (literally logic of time) allows us to specify infinite sequences 
of states using logical formulae

u Amir Pnueli in 1977 used a form of temporal logic called Linear Temporal 
Logic (LTL) for requirements of reactive systems: later selected for the 1996 
Turing Award

u Clarke, Emerson, Sifakis in 2007 received the Turing Award for the model 
checking algorithm, originally designed for checking Computation Tree Logic 
(CTL) properties of distributed programs

Temporal Logic
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u Syntax: A set of syntactic rules that allow us to construct formulas from 
specific ground terms

u Semantics: A set of rules that assign meanings to well-formed formulas 
obtained by using above syntactic rules

u Simplest form is Propositional Logic

What is a logic in context of today’s lecture?
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u Simplest form of logic with a set 
of atomic propositions and 
Boolean connectives

u !" = {%, ', (, … }, Connectives =  
∧,∨, ¬,⇒,≡

u Syntax recursively gives how new 
formulae are constructed from 
smaller formulae

Propositional Logic
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Syntax of Propositional Logic
0 ∷= 2(34 | the true formula

% | % is a prop in AP

¬0 | Negation

0 ∧ 0 | Conjunction

0 ∨ 0 | Disjunction

0 ⇒ 0 | Implication

0 ≡ 0 | Equivalence
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u Semantics (i.e. meaning) of a formula 
can be defined recursively

u Semantics of an atomic proposition 
defined by a valuation function !

u Valuation function assigns each 
proposition a value 1 (true) or 0 
(false), always assigns the "#$%
formula the value 1, and for other 
formulae is defined recursively

Semantics 
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Semantics of Prop. Logic
!("#$%) 1

! ¬) 1 if ! ) = 0
0 if ! ) = 1

!()- ∧ )/) 1 if ! )- = 1 and ! )/ = 1,
0 otherwise

)- ∨ )/ ! ¬(¬)- ∧ ¬)/)
)- ⇒ )/ ! ¬)- ∨ )/
)- ≡ )/ ! )- ⇒ )/ ∧ )/ ⇒ )-
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u ! : There is an upright bicycle in the 
middle of the road

u " : There is car in the field of vision
u ! ⇒ $: If there is an upright bicycle in 

the middle of the road, the bicycle has 
a rider

u %&: Car ( is in the intersection
u %) ∧ ¬%, ∨ (¬%) ∧ %,)

Examples

13
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u !: #$ ↦ 1, #( ↦ 0, #* ↦ 0. What is ! #$ ∧ #( ⇒ #* ?
u ! #$ ∧ #( ⇒ #* = 1

u !: #$ ↦ 1, #( ↦ 0, #* ↦ 0. What is ! (#$⇒ #*) ∧ #( ⇒ #*
u ! (#$⇒ #*) ∧ #( ⇒ #* = 0

u Is this true?  ! #$ ∧ #( ⇒ #* ≡ #$ ⇒ #* ∧ #( ⇒ #* = 1? (For all 
valuations)?

Interpreting a formula of prop. logic

14



USC Viterbi
School of Engineering
Department of  Computer Science

u Propositional Logic is interpreted over valuations to atoms
u Temporal Logic is interpreted over traces/sequences/strings
u Trace is an infinite sequence of valuations
u !:

Temporal Logic = Prop. Logic + Temporal Operators
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0 1 2 3 4 42⋯ ⋯
$,
&

$,
¬&

¬$,
¬&

$,
&

¬$,
&

$,
&

u Can also write as: (0,1,1), (1,1,0), (2,0,0), (3,1,1),(4,0,1),… ,(42,1,1), … 
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u LTL is a logic interpreted over infinite traces
u Temporal logic with a view that time evolves in a linear fashion

�Other logics where time is branching!
u Assumes that a trace is a discrete-time trace, with equal time intervals
u Actual interval between time-points does not matter : similar to rounds in 

synchronous reactive components
u LTL can be used to express safety and liveness properties!

Linear Temporal Logic

16
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u LTL formulas are built from 
propositions and other smaller 
LTL formulas using:
�Boolean connectives
�Temporal Operators

u Only shown ∧ and ¬, but can 
define ∨,⇒,≡ for convenience

LTL Syntax
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Syntax of LTL
' ∷= * | * is a prop in AP

¬' | Negation

' ∧ ' | Conjunction

+' | NeXt Step

,' | Some Future Step

-' | Globally in all steps

' . ' | In all steps Until in 
some step
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u Semantics of LTL is defined by a valuation function that assigns to each 
proposition at each time-point in the trace a truth value (0 or 1)

u We use the symbol ⊨ (read models) to show that a trace-point satisfies a 
formula

u ", $ ⊨ % : Read as trace " at time $ satisfies formula %
u If we omit $, then the meaning is time 0. I.e. " ⊨ % is the same as ", 0 ⊨ %
u Semantics is defined recursively over the formula
u Base case: Propositional formulas, Recursion over structure of formula

LTL Semantics

18
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u !, # ⊨ % if &' % = 1, 
� i.e. if % is true at time #

u !, # ⊨ ¬+ if !, # ⊭ +, 
� i.e. if + is not true for the trace starting time #

u !, # ⊨ +- ∧ +/ if !, # ⊨ +- and !, # ⊨ +/
� i.e. if +- and +/ both hold starting time #

u !, # ⊨ 0+ if !, # + 1 ⊨ +
� i.e. if + holds starting at the next time point

Recursive semantics of LTL: I

19
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u !, # ⊨ % & if ∃( ≥ # such that !,( ⊨ &
� i.e. & is true starting now, or there is some future time-point ( from 

where & is true
u !, # ⊨ * & if ∀( ≥ # : !,( ⊨ &

� i.e. & is true starting now, and for all future time-points (, & is true 
starting at (

u !, # ⊨ &,-&. if ∃( ≥ # s.t. !,( ⊨ &. and ∀ℓ s.t. ( ≤ ℓ < #, !, ℓ ⊨ &,
� i.e. &. eventually holds, and for all positions till &. holds, &, holds

Recursive semantics of LTL: II

20
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u !" : NeXt Step 
Visualizing the temporal operators

21

0 1 2 3 4 42
¬" $ ¬" ¬" ¬" "

u %" : Some Future step 
0 1 2 3 4 42⋯ ⋯
¬" ¬" ¬" ¬" ¬" $
0 1 2 3 4 42⋯ ⋯
$ ¬" " ¬" ¬" "
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u !": Globally " holds

Visualizing the temporal operators

22

0 1 2 3 4 42⋯ ⋯
$ $ $ $ $ $

u " % &: " holds Until & holds

0 1 2 3 4 42⋯ ⋯
$
¬&

$
¬&

$
¬&

$
¬&

"
(
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u What does !" # mean?
�Trace satisfies !"# (at time 0) if at time 1, "# holds. I.e. # holds at some 

point strictly in the future

You can nest operators!

23

⋯ ⋯0 1 2 3 4 42
¬# ¬# ¬# ¬# ¬# &

u What does '" # mean?
�Trace satisfies '"# (at time 0) if at (, there is always a & in the future

0 1 2
¬# ¬# &

⋯ 14 ⋯15
&¬#

65
&

⋯
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u What does !"# mean?

More operator fun

24

10 11 12 13 14 42⋯ ⋯
% % % % % %

0
¬#

⋯
u What does " # ⇒ !( mean?

0 1 2
% )

14 15
)

65
)%

54
%

⋯ ⋯⋯
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u What does the following formula mean: !" ∧ $ !% ∧ $ !& ∧ $(!(∧ $!) ?

More, more operator fun

25

0 1 2 3 4 5
!" !% !& !( !)

u Is this true? *(! ∧ +) is the same as *! ∧ *+?

0 1 2 3 4 42⋯ ⋯
!,
¬+

¬!,
+

!,
¬+

¬!,
+

!,
¬+

!,
¬+

No! Because this trace 
satisfies *! ∧ *+, but 

not *(! ∧ +)
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u !" ≡ ¬%¬"
u %!" ≡ ¬!%¬"
u ! " ∨ ' ≡ !" ∨ !'
u % " ∧ ' ≡ %" ∧ %'
u !!" ≡ !"
u %%" ≡ %"
u !%!" ≡ %!"
u %!%" ≡ !%"

Operator duality and identities

26
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u Suppose you are designing a robot that has to do a number of missions

Example specifications

27

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the 
kitchen, it should visit the bedroom 
after.

u Robot should never go to the 
bathroom

u The robot should keep working until 
its battery becomes low

u The robot should repeatedly visit 
the living room

u Whenever the TV is on and the 
living room has no person in it, then 
within three steps, the robot should 
turn off the TVTV

Passage (()
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u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL
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Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the 
kitchen, it should visit the 
bedroom after.

((") ⇒ + $))
u Robot should never go to the 

bathroom.
(¬&)

u The robot should keep working 
until its battery becomes low
-./"012 3 4.-_&6778/9

TV
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u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

29

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u The robot should repeatedly visit 
the living room

() ℓ
u Whenever the TV is on and the 

living room has no person in it, 
then within three steps, the robot 
should turn off the TV

*(+): room occupied by a person

( ¬* ℓ ∧ /012 ⇒ )45(/0166)

)457 ≡ 7 ∨ :7 ∨ ::7 ∨ :::7TV
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u So far we have seen how we can express 
behaviors of individual system traces using LTL

u A system ! starting from some initial state "#
satisfies a LTL requirement $ if all system 
behaviors starting in "# satisfy the requirement $

u Denoted as !, "# ⊨ $
u E.g. a system is safe w.r.t. a safety requirement $

if all behaviors satisfy $
u Does (Blinker, (x↦0,y↦0)) ⊨ ((x≥0)?

LTL is a language for expressing system requirements

30

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker
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Processes & Fairness

31

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker

u Liveness property: # (x ≥ 10)

� Is this property guaranteed to hold?

�No, task A may be executed less than 10 times.

u Liveness Property: # y (eventually y is 1)

� Is this property guaranteed to hold?

�No, task B may never be selected for execution!

u But, this seems like a very unrealistic or broken 

scheduler!

u For infinite executions involving multiple tasks, it is 

important for the execution to be fair to each task
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u A fairness assumption is a property that encodes the 
meaning of what it means for an infinite execution to 
be fair with respect to a task.

u Weak fairness: If a task is persistently enabled, then it 
is repeatedly executed.

� I.e. if after some point the task guard is always true, 
then the task is infinitely often executed.

u Strong fairness: If a task is repeatedly enabled, then it 
is repeatedly executed.

� I.e. if the task guard is infinitely often true, then the 
task is infinitely often executed.

Weak vs. Strong fairness

32

nat x := 0; bool y:= 0

A: x := x + 1

B: even(x) →
y: = 1-y

Blinker
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u Fairness assumptions can be expressed in LTL!
u Add a new variable taken that takes value ‘A’, ‘B’
u Weak fairness: !" #$%&'_) ⇒ ("!(taken = +,))
u Task A: #$%&'_- is .&$/, so this simplifies to: wf(A) ≔

"!(taken=A)
u Task B: wf(B) ≔ !" (even(x)) ⇒"! (taken=B)
u Does (wf(A)∧ wf(B)) ⇒ ! (x ≥ 10)? 

�Yes!
u Does (wf(A)∧ wf(B)) ⇒ ! y?

�No!

Expressing fairness assumptions in LTL: I

33

nat x ∶= 0; bool y ∶= 0

A: x := x + 1; taken≔ A
B: even(x) →

y: = 1-y; taken ≔ B 

Blinker

{A,B,∅} taken ≔ ∅
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u Strong fairness: !" #$%&'_) ⇒ (!"(taken = +,))
u Task A: #$%&'_- is .&$/, so this simplifies to: sf(A) ≔

!"(taken=A)
u Task B: sf(B) ≔ !" (even(x)) ⇒!" (taken=B)
u Does (sf(A)∧ sf(B)) ⇒ " (x ≥ 0)? 

�Yes!
u Does (sf(A)∧ sf(B)) ⇒ " y?

�Yes!

Expressing fairness assumptions in LTL: II

34

nat x ∶= 0; bool y ∶= 0

A: x := x + 1; taken≔ A
B: even(x) →

y: = 1-y; taken ≔ B 

Blinker

{A,B,∅} taken ≔ ∅

If a process satisfies a liveness requirement under strong fairness, it satisfies it 
under weak fairness: strong fairness is a stronger formula than weak fairness
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u Hard Requirements: Violation leads to endangering safety-criticality or 
mission-criticality
�Safety Requirements: system never does something bad
�Liveness Requirements: from any point of time, system eventually does 

something good 
u Soft Requirements: Violations lead to inefficiency, but are not critical

� (Absolute) Performance Requirements: system performance is not worst 
than a certain level

� (Average) Performance Requirements: average system performance is at a 
certain level

Types of Specifications/Requirements

35



USC Viterbi
School of Engineering
Department of  Computer Science

u Security Requirements: system should protect against modifications in its 
behavior by an adversarial actor
�Failure to satisfy security requirements may lead to a hard requirement 

violation
u Privacy Requirements: the data revealed by the system to the external world 

should not leak sensitive information
u These requirements will become increasingly important for autonomous 

CPS, especially as IoT technologies and smart transportation initiatives are 
deployed!

Other kind of requirements

36
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Büchi Automata

37
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u A safety monitor classifies system behaviors into good and bad
u Safety verification can be done using inductive invariants or analyzing 

reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?
u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi

in 1960

Monitors 

38
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u Extension of finite state automata to accept infinite strings
Büchi automaton Example 1

39

!" !#

$%& = 0
& = 1

u States (: {!", !#}
u Input variable & with domain Σ: 0,1
u Final state: {!#}
u Transitions: (as shown)
u Given trace / (infinite sequence of symbols from 

Σ), / is accepted by $%, if !# appears inf. often

u What is the language of $%?
�LTL formula 12(& = 1)

& = 1

& = 0
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Büchi automaton Example 2

40

!" !#

$%& = 0|1

& = 0|1

& = 1

u +: !", !# , Σ: 0,1 , .: {!#}
u Transitions: (as shown)

u Note that this is a nondeterministic 
Büchi automaton

u $% accepts 1 if there exists a path 
along which a state in . appears 
infinitely often

u What is the language of $%? 
�LTL formula 23(& = 1)

Fun fact: there is no deterministic Büchi
automaton that accepts this language
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u What is the language of !"?
�LTL formula: 

# $ = 1 ⇒ ((* = 1)
� I.e. always when $ = 1 , in some 

future step, (* = 1)
� In other words, ($ = 1) must be 

followed by (* = 1)

Büchi automaton Example 3

41

,-

!"$ = 0 |
* = 1

$ = 1 & * = 0
* = 0

* = 1
u /: ,0, ,- , Σ: 0,1 , 3: {,5}
u Transitions: (as shown)

,0
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u Theoretical result: Every LTL formula ! can be converted to a Büchi
monitor/automaton "#

u Size of "# is generally exponential in the size of !; blow-up unavoidable in general
u Construct composition of the original process $ and the Büchi monitor "#
u If there are cycles in the composite process that do not visit the states specified by 

the liveness property, then we have found a violation.
u Reachable cycles in process composition correspond to counterexamples to 

liveness properties
u Implemented in many verification tools (e.g. the SPIN model checker developed at 

NASA JPL)

Using Büchi monitors

42
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CTL

43
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u LTL was a linear-time logic where we reason about traces
u CTL is a logic where we reason over the tree of executions generated by a 

program, also known as the computation tree
u We care about CTL because:

� There are some properties that cannot be expressed in LTL, but can be 
expressed in CTL: From every system state, there is a system execution that 
takes it back to the initial state (also known as the reset property)

�To understand pCTL (Probabilistic CTL), it’s good if you understand CTL J
�Can express interesting properties for multi-agent systems

Computation Tree Logic

44
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u We saw computation 
trees when 
understanding 
semantics of 
asynchronous 
processes

u Basically a tree that 
considers “all 
possibilities” in a 
reactive program

Computation Tree

45

nat x := 0; bool y:= 0

A: x := (x + 1) mod 2
B: even(x) → y: = 1-y

(0,0)

(1,0)

(0,1)

(1,1)

Process

Finite State machine

(0,0)

(0,1)(1,0)

(0,0) (1,1)(0,0)
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CTL Syntax

46

Syntax of CTL

! ∷= $ ¬! ! ∧ ! | Prop. in '(, negation, conjunction

)*! | Exists NeXt Step

)+! | Exists a Future Step

),! | Exists an execution where  Globally in all steps

) ! - ! | Exists an execution where in all steps Until in some step

.*! | In All NeXt Steps

.+! | In All possible future paths, there is a future step

.,! | In All possible future paths, Globally in all steps

. ! - ! | In All possible future executions, in all steps Until in some step
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u Path properties: properties of any given path or execution in the program
u Quantification over runs: Checking if a property holds over all paths or over 

some path
u Example CTL operator:

! " #

CTL semantics

47

For All executions Eventually/In Some Future step
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CTL Semantics through examples

48

!"

!# !$% %

&' %

!"

!# !$%

(' %

!"

!# !$%

&' % ∧ (' !

%
!
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CTL semantics through examples

49

!" #: Along all
Paths, There is 
some future step 
where # holds

$%

#

#
# #

$%

#
&" #: Along some
path, there is 
some future step 
where # holds
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CTL semantics through examples

50

!" #: Across all
paths, and for every 
successor in the 
path, # holds

$%

#

#

# #

$%

#
&" #: Along 
some
path, # always 
holds

#

#

#

#

#
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u !"#$ %
u !"!$ %
u #"!$ %
u !" (% ⇒ #( ))

CTL Operator fun

51
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u Checking if a given state machine (program) satisfies a CTL formula can be 
done quite efficiently (linear in the size of the machine and the property)

u Native CTL cannot express fairness properties
�Extension Fair CTL can express fairness

u CTL* is a logic that combines CTL and LTL: You can have formulas like !"# $
u CTL: Less used than LTL, but an important logic in the history of temporal 

logic

CTL advantages and limitations

52
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PCTL

53
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u LTL 
�Can be interpreted over individual executions 
�Can be interpreted over a state machine: do all paths satisfy property

u CTL
� Is interpreted over a computation tree

u PCTL
� Is interpreted over a discrete-time Markov chain
�Encodes uncertainties in computation due to environment etc.

Probabilistic CTL

54
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Probabilistic CTL

55

Syntax of PCTL
! ∷= $ ¬! ! ∧ ! | Prop. in '(, negation, conjunction

(State) (∼* + | ∼∈ {<,≤,>,≥}, 4 ∈ [0,1] : Probability of + being true 

+ ∷= 9! | NeXt Time

(Path) ! :;<! | Bounded Until (upto = steps) 

! : ! Until   (Recall >! = ?@AB : !, and C! = ¬>¬!
PCTL formulas are state formulas, path formulas used to define how to build a PCTL formula
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u Semantics of path formulas is straightforward (similar to LTL/CTL)
u Semantics of state formula with Probabilistic operator:

�!"#$ %, '( : ∑*+⊨- ! %, %+

�Does !./.1 ' 2 hold in state q/?
�No, because ! %/, ' 2 = 0.1 + 0.2 = 0.3

u Semantics of state formula with Until !"#$ %, :;<=> : 
�1 if % ⊨ >
�0 if % ⊭ α or % ⊭> and A = 0
�∑! %, %+ . !"#$(%+, : CDEF>) for A > 0, otherwise

Semantics
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%/

%I

%F

%J

0.4

0.10.22

2

¬2



USC Viterbi
School of Engineering
Department of  Computer Science

PCTL
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0.2 1

Accelerate
Constant 

Speed

Idling Brake

0.2

0.5

0.3

0.8

0.05

0.05

0.5

0.4
0.5

0.4¬",
¬$

", $

", $

¬", $

0

0.1

u Does this formula %&'.) *" hold in 
state Brake?
� Yes

u Value of +? %&, -./$ in state Accel
� Compute %$01(3, -./$) for all 3, 

pick smallest

� % 5, 6 + % 5, 8 + % 5, 5, 6 +
% 5, 5, 8
= 0.5 + 0.2 + 0.3*0.5 + 0.3*0.2
= 0.91

� + = 0.91
u I.e. with probability ≥ 0.91, driver 

checks cell phone within 2 steps

0 0

$: Checking cellphone

": Feeling sleepy 
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u Toss a coin repeatedly until “tails” is thrown
u Is “tails” eventually thrown along all paths?

�CTL: AF tails
�Result: false
�Why? !"!#!"!# …

u Is the probability of eventually thrown “tails” 
equal to 1?
�PCTL: %&#( ( )*+,- )
�Result: true
�Probability of path !"!#!"!# … is zero!

Quantitative in PCTL vs. Qualitative in CTL
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!"

!#

!/

0.5

0.5 1
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)*+,-



USC Viterbi
School of Engineering
Department of  Computer Science

u LTL
u Büchi automata
u CTL
u PCTL

Summary
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□ ",$ % > 0 ⇒ à ",$ ( * > 0 ∧ à ,,,.,," * < 0 ⇒ % > 1 ∨ (% < −1)

□ ",$
% >

0 ∧ à ,,,.,
,"
* <

0 ⇒ % >
1 ∨ (%

< −
1)

□
",$ % > 0

∨ (% < −1)

□ ",$
% >

0 ∧
à ,

,,.,
,"
* <

0 ⇒
% >

1 ∨
(% <

−1
)


