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Mitochondria are key cell organelles in that they are responsible for energy

production and control many processes from signalling to cell death. The

function of the mitochondrial electron transport chain is coupled with the pro-

duction of reactive oxygen species (ROS) in the form of superoxide anion or

hydrogen peroxide. As a result of the constant production of ROS, mitochon-

dria are protected by highly efficient antioxidant systems. The rapidly chang-

ing levels of ROS in mitochondria, coupled with multiple essential cellular

functions, make ROS apt for physiological signalling. Thus, mutations, envi-

ronmental toxins and chronic ischaemic conditions could affect the mitochon-

drial redox balance and lead to the development of pathology. In long-living

and non-mitotic cells such as neurons, oxidative stress induced by overproduc-

tion of mitochondrial ROS or impairment of the antioxidant defence results

in a dysfunction of mitochondria and initiation of the cell death cascade.

Mitochondrial ROS overproduction and changes in mitochondrial redox

homeostasis have been shown to be involved in both a number of neurological

conditions and a majority of neurodegenerative diseases. Here, we summarise

the involvement of mitochondrial ROS in the mechanism of neuronal loss of

major neurodegenerative disorders.
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Mitochondria are organelles that play multiple impor-

tant functions in the cell. Despite their versatile duties,

the main function of mitochondria is the production

of energy in the form of ATP and almost all other

processes inside mitochondria are connected or depen-

dent on bioenergetics. ATP synthesis by oxidative

phosphorylation is coupled with mitochondrial respira-

tion. Respiration is the generation of mitochondrial

transmembrane potential by pumping the protons via

mitochondrial complexes I, III and IV of the electron

transport chain (ETC). Mitochondrial membrane

potential (Δwm) is a cross-linked element in mitochon-

drial function and is used as a proton motive force for

ATP synthesis, helping to maintain the shape of this

organelle and mitochondrial pro-apoptotic proteins,

which are released into cytosol in the case of Δwm col-

lapse.

The distribution of mitochondrial in the cells from

diverse tissues is dependent on energy demands. How-

ever, despite the density of mitochondria in myocytes

being higher than in neurons, the brain consumes

almost ten times more oxygen and glucose compared
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to other tissues. Considering the high energy demand

and high rate of ATP production and consumption in

the brain, most of mitochondrial mutations or mito-

chondrial toxins damage brain function and lead to

neurological pathology [1].

Mitochondria produce free radicals, which are

mostly reactive oxygen species (ROS) as a result of the

high accessibility of oxygen in this organelle. Although

mitochondria produce ROS in number of enzymes, the

vast majority of the free radicals termed ‘mitochon-

drial ROS’ in the literature are produced in the ETC.

The rate of ROS production, mitochondrial membrane

potential (Δwm) and the activity of the complexes of

the ETC are highly interdependent [2]. Therefore, on

the one hand, dissipation of the mitochondrial mem-

brane potential could lead to an increase in ROS gen-

eration when respiration is inhibited. On the other

hand, if the drop in Δwm is stimulated by uncoupling,

this could lead to a reduced rate of free radical pro-

duction. Similarly, hyperpolarisation of mitochondria

could lead to an increase of ROS production. Thus,

the production of ROS in the ETC is dependent on

the release of electrons out of the electron transport

chain followed by the formation of free radicals. The

process of the release of electrons could be induced by

the reverse flux of electrons and the activity of com-

plexes I and II as donors of electrons and partial inhi-

bition of the complexes by hyperpolarisation of

mitochondrial membrane, ischaemic conditions or

chemical compounds [3,4] (Fig. 1). Although hydrogen

peroxide was the first ROS shown to be produced in

mitochondria [5–7], electron escape from the ETC

generates free radicals predominantly in the form of

super oxide radical O��
2 which later converts to H2O2.

Despite the fact that respiratory chain is a major

ROS producer in mitochondria under resting condi-

tions, several matrix proteins and complexes, including

enzymes of the tricarboxylic acid (TCA) cycle (e.g.

aconitase, pyruvate dehydrogenase and a-ketoglutarate
dehydrogenase), could produce O��

2 [8,9]. Some inner

Fig. 1. Mitochondria is a producer and target of ROS. Mitochondria generating ROS in the ETC, TCA cycle enzymes and MAO. Production

of hydrogens peroxide in MAO, or superoxide in ETC, can stimulate lipid peroxidation and the inositol trisphosphate-dependent calcium

signal. Overproduction of ROS in NADPH oxidase in PS or AD activates PARP, which consumes NAD and reduces NADH for complex I.

Mitochondrial ROS production can inhibit glucose transporter and induce the limitation of mitochondrial substrates for mitochondria.
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mitochondrial membrane proteins (various cytochrome

P450 enzymes, glycerol-3-phosphate dehydrogenase)

for which activity is partially dependent on Δwm can

produce ROS. Located on the outer membrane of the

mitochondria, enzyme monoamine oxidase (MAO) uti-

lizes monoamines producing aldehydes and hydrogen

peroxide. Another outer membrane protein, cyto-

chrome b5 reductase, can also produce ROS (Fig. 1).

Redox balance in the mitochondrial matrix is main-

tained by an effective antioxidant system. The lifetime

of the superoxide anion is 1 ns and it can rapidly dis-

mutate spontaneously or enzymatically, with the help

of manganese superoxide dismutase (SOD) in the

mitochondrial matrix or by Cu,Zn-SOD in the inter-

membrane space, to hydrogen peroxide. Major

endogenous antioxidant glutathione (GSH) is dis-

tributed throughout the mitochondria and the rest of

the cell and isolates major peptides from oxidation by

O��
2 or other forms of ROS. The permeable H2O2 par-

ticipates in signalling cascades and is degraded by the

enzymes catalase, glutathione peroxidase and peroxire-

doxin 3 [10,11].

One of the major initial forms of ROS in the mito-

chondria is superoxide anion radical O��
2 . Considering

the very short lifetime of this free radical (approxi-

mately 1 9 10–9 s), it is very unlikely that superoxide

can play role in physiology, although it can possibly

induce oxidative damage in the neighbouring area.

SOD1 is more likely to be a signalling rather than

antioxidative enzyme because it convert O��
2 to the

more stable hydrogen peroxide, which can be trans-

ported as a signalling molecule (Fig. 1). However,

H2O2 is dangerous for cells when it produces the most

toxic form of ROS: hydroxyl anion in the Fenton reac-

tion [12].

Mitochondria possess a number of ‘tools’ to pro-

duce ROS in response to extracellular (e.g. decrease of

the oxygen level, toxins, increase of glucose uptake),

cellular (hormones, transmitters) or intramitochondrial

(availability of substrates) triggers. Mitochondrially

generated ROS (from MAO) can stimulate lipid perox-

idation, which activates phospholipase C and the inosi-

tol trisphosphate-triggered calcium signal [13–15]
(Fig. 1). An increase in mitochondrial ROS in

response to hypoxia stimulates the calcium signal in

astrocytes [16] and actives respiration [17]. Mitochon-

drial calcium uptake is redox sensitive and can be reg-

ulated by ROS [18]. A more prolonged elevation of

ROS in mitochondria was shown to be involved in a

number of cell processes, including cell proliferation

[19]. However, any well balanced system, even that of

mitochondria, could be disrupted, resulting in pathol-

ogy. Overproduction of ROS or dysregulation of the

antioxidant system leads to a number of pathologies.

In the brain, it leads to cell death and neurodegenera-

tion.

Neurodegenerative diseases are progressive, devas-

tating and incurable, and are becoming increasingly

prevalent in our aging populations. An aging popula-

tion worldwide means that neurodegenerative diseases

are one of the top medical and social problems. There

are two major neurodegenerative disorders, namely

Alzheimer’s disease (AD) and Parkinson’s disease

(PD), affecting 5% (AD) and 1% (PD) of individuals

aged ≥ 65 years [20,21]. The annual cost of nursing

home care for major neurodegenerative disorders in

European countries is estimated to be hundreds of

millions of Euros [22].

Neurodegenerative diseases, including AD, PD,

motor neuron disease and Huntington’s disease, all

share several common features, such as an accumula-

tion of abnormally aggregated proteins termed patho-

logical inclusions, the involvement of oxidative

damage and mitochondrial dysfunction in pathogene-

sis. Many of the genes associated with PD, amy-

otrophic lateral sclerosis (ALS) or ataxias are linked to

mitochondria. All aggregated misfolded proteins that

are involved in neurodegenerative disorders (b-amy-

loid, tau, a-synuclein and huntingtin) inhibit mito-

chondrial function and induce oxidative stress [23,24].

Importantly, mutations in mitochondrial DNA result

not only in mitochondrial myopathy, encephalopathy,

lactic acidosis and stroke-like episodes, or myoclonic

epilepsy with ragged red fibres, but also PD. The

involvement of oxidative stress in the mechanism neu-

ronal loss is demonstrated for the majority of neurode-

generative disorders [1]. However, antioxidant therapy

approaches have failed as a treatment at the clinical

level for most of these diseases.

Although mitochondria produce far less ROS com-

pared to NADPH oxidase, in long-lived neurons,

where active mitochondria function must be main-

tained for an entire lifetime, the implication of mito-

chondrial ROS in physiology and pathology may be

crucial. Here, we review the role of mitochondrial

ROS in the pathology of neurodegeneration.

Alzheimer’s disease

Alzheimer’s disease is a most common neurodegenera-

tive disorder affecting the aged population. The

pathology of AD is characterised by senile plagues

(predominantly consisting of aggregated b-amyloid)

and intracellular neurofibrillary tangles (formed by tau

aggregates). The involvement of mitochondria in the

mechanism of AD pathology is not so direct compared
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to other neurodegenerative disorders, although the role

of oxidative stress and mitochondrial dysfunction is

shown for diverse models of AD [24]. Thus, a reduc-

tion in complex IV activity has been demonstrated in

mitochondria from the hippocampus and platelets of

AD patients and in AD cybrid cells [1,25,26]. Aggrega-

tion of bA leads to oxidative stress, mitochondrial dys-

function and energy failure prior to the development

of plaque pathology [27].

Aggregated bA can reduce mitochondrial respiration

in neurons and astrocytes via the inhibition of com-

plexes I and IV [28,29]. Inhibition of ETC potentially

can induce ROS production, although a direct increase

in mitochondrial ROS production was shown in some

studies [30,31]. However, superoxide production from

mitochondria, but not from NADPH oxidase, was

shown to be associated with blocked long-term poten-

tiation in a Tg2576 mouse model of AD [32]. The

importance of mitochondrial ROS was also confirmed

by the results obtained with mitochondrially located

antioxidant MitoQ, which prevented cognitive decline,

Ab accumulation, astrogliosis and synaptic loss in a

triple transgenic mouse model of AD [33]. MitoQ

extends lifespan and improves health in a transgenic

Caenorhabditis elegans model of AD [34]. The role of

oxidative damage in sporadic AD is confirmed in

experiments where the inhibition of lipid peroxidation

as a result of a deuterium-reinforced polyunsaturated

fatty acids diet improves cognition and memory in

aldehyde dehydrogenase 2 null mice, which is an estab-

lished model of oxidative stress-related cognitive

impairment that exhibits AD-like pathologies [35].

Olfactory bulbectomy leads to a strong AD phenotype

in mice. In mice, neurodegeneration caused by olfac-

tory bulbectomy is accompanied by energy metabolism

disturbances and oxidative stress in the brain mito-

chondriam, similar to those occurring in transgenic

animals, familial AD models and patients with spo-

radic AD [36].

Many cases of autosomal dominant early onset AD

result from mutations in the genes encoding presenilins

1 or 2. Mitochondrial ROS was shown to be impor-

tant for triggering the mitochondrial permeability tran-

sition pore (PTP) and activation of the process of cell

death in presenilin 1 cells [37].

Mitochondrial ROS production in AD models is

much smaller compared to the effects with respect to

the production of ROS in NADPH oxidase [38,39].

However, the production of ROS in NADPH oxidase

leads to mitochondrial depolarisation because of a lack

of substrates as a result of activation of the DNA-

repairing enzyme PARP [40–42]. Combination of cal-

cium and ROS production under b-amyloid

stimulation induces the opening of mitochondrial PTP

and cell death [38,43,44]. Prevention of PTP opening

by inducing cyclophilin D deficiency (molecular

blocker of PTP opening) also improved mitochondrial

function and learning/memory in an aging AD mouse

model [45].

Oxidative stress is one of the major triggers for

pathology in AD [1], although mitochondria are

shown to be a target for oxidative damage rather than

a source of ROS production.

The familial form of frontotemporal dementia is

induced by a mutation in the MAPT gene, encoding

tau. The function of mitochondria is altered in the

neurons of these patients. This results in a higher

mitochondrial membrane potential, with overproduc-

tion of ROS in mitochondria, which in turn causes

oxidative stress and cell death. Mitochondrial ROS

overproduction in these cells is a major trigger for neu-

ronal cell death and can be prevented by mitochon-

drial antioxidants [46].

Vascular diseases causing dementia

Vascular dementia is the cognitive decline resulting

from cerebral vasculature hypoperfusion. A chronic

hypoperfusion or blockade of a brain blood vessel

could lead to a damage of the surrounding brain tissue

and a build-up of toxic waste substances and this

could result in various conditions (e.g. cerebral small

vessel disease induced by hypercholesterolemia, cere-

bral amyloid angiopathy, stroke and ischaemia reper-

fusion injury, etc.). Very often, vascular dementia is a

prerequisite for the development of AD when a defect

clearance of b- amyloid is present. Undeniably, all of

these conditions have the same output phenotype:

impairment of mitochondrial function and increased

oxidative stress as a result of chronic hypoxia and sub-

strate deprivation. Oxidative stress and mitochondrial

dysfunction are linked to the development of dementia

in a majority of cases [47]. Supplementation with last

generation antioxidant resveratrol in the form of solid

lipid nanoparticles or edaravone has been very promis-

ing. This type of treatment could activate the Nrf-2/

HO-1 pathway and mitigate mitochondrial ROS pro-

duction, consequent lipid peroxidation, formation of

protein carbonyls and improve MnSOD activity in a

permanent bilateral common carotid artery occlusion

rodent model of vascular dementia [48,49].

Parkinson’s disease

There is much evidence that oxidative stress occurs in

and contributes to the pathogenesis of PD. Post
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mortem studies of the brains of patients with PD

reveal increased levels of lipid peroxidation markers

(malondialdehyde and 4-hydroxynonenal) and the

presence of protein oxidative damage in the form of

protein carbonyls [50]. It has been reported that there

is an increase in mtDNA common deletions in the sur-

viving dopaminergic neurons in the substantia nigra of

patients with PD. These deletions are caused by oxida-

tive stress [51]. Both the toxin and genetic models of

PD also demonstrate increased oxidative stress, which

is connected with mitochondrial function. Inhibitors of

mitochondrial complex I, rotenone or 1-methyl-4-phe-

nylpyridinium (MPP+) produce superoxide anions in

submitochondrial particles, and the neurotoxic effects

of MPP+ and rotenone are probably caused by oxida-

tive stress rather than metabolic changes because they

can effectively be prevented by treatment with antioxi-

dants [52]. Importantly, mutations in mitochondrial

complex I lead to neurodegeneration. In neurons

derived from stem cell cybrids that contain such

mtDNA mutations, the major trigger for cell death is

overproduction of superoxide in the matrix of mito-

chondria, but not energy deprivation [53]. Mild uncou-

pling of mitochondria with mitochondrial uncoupling

protein-2 (UCP-2) overexpression reduces ROS pro-

duction in a toxic (MPP+, rotenone) mouse model of

PD. UCP-2 deficiency also increases the sensitivity of

dopamine neurons to MPTP, whereas UCP-2 overex-

pression decreases MPTP-induced nigral dopamine cell

loss [54]. Mutations in Parkinson protein-1 (DJ-1)

cause a rare autosomal-recessive form of PD. Loss of

function of DJ-1 results in oxidative stress, with DJ-1

exerting neuroprotection via its antioxidant mechanism

in mitochondria [55,56]. DJ-1 knockout mice demon-

strate increased mitochondrial oxidant stress and

downregulation of mitochondrial uncoupling proteins

[57].

Mutations in PINK1 cause a recessive form of PD.

PINK1 is a mitochondrial kinase and it has been

demonstrated previously that PINK1 deficiency results

in impaired respiration with inhibition of complex I,

as well as rotenone-like increased production of ROS

in mitochondria [58,59]. Fibroblasts from patients with

PINK1-associated PD exhibit impaired oxidative phos-

phorylation and oxidative stress [60,61]. Excessive

ROS production in the mitochondria of PINK1

knockout neurons can be an inductor of the inhibition

of mitochondrial Na2+/Ca2+ exchanger or glucose

transporter and is rescued by antioxidants [58,62,63]

(Fig. 1). Activation of Nrf2 by pharmacological activa-

tors restores mitochondrial metabolism in PINK1 defi-

cient cells [64]. Additional ROS production by MAO

via the application of dopamine induces the opening

of mitochondrial PTP and cell death in PINK1 defi-

cient neurons [65].

Mitochondrial ROS play an important role not only

in the pathology of PINK1 (mutation or deficiency),

but also in the physiology of PINK1/Parkin related

mitophagy. Mitochondrial ROS production has been

shown to be important for the induction of mitochon-

drial recruitment of Parkin and the initiation of

mitophagy [66].

Excessive ROS production in mitochondria of the

familial and sporadic form of PD damage DNA that

activates DNA repairing enzyme PARP which induce

energy deprivation in neurons due to NAD consump-

tion [67,68] (Fig. 1). Both familial and sporadic forms

of PD are characterised by the formation of Lewy

bodies, which consist of aggregated a-synuclein.
Although monomeric a-synuclein plays a physiological

role in synaptic transduction and mitochondrial bioen-

ergetics [69,70], the oligomeric peptide becomes toxic

for cells [23]. Oligomeric a-synuclein is detected in

mitochondria [71] where it inhibits complex I [72,73].

Despite the fact that a-synuclein-induced oxidative

stress can be quenched by application of coenzyme

Q10 [74], the effect of any form of a-synuclein on

mitochondrial ROS production was not identified [75].

Oligomeric a-synuclein produces ROS independently

of the known enzymatic pathways that affect mito-

chondrial function and induce lipid peroxidation

[75,76].

Progressive supranuclear palsy (PSP)

Progressive supranuclear palsy is a form of atypical

Parkinsonism that is characterised by the accumulation

of 4R tau inclusions and is classified as tauopathy.

The MAPT H1 haplotype is the major genetic risk fac-

tor associated with PSP but, recently, many genes

encoding proteins important in mitochondrial function

or oxidative stress management (e.g. debrisoquine

4-hydroxylase, paraoxonases 1 and 2, N-acetyltrans-

ferases 1 and 2, and SOD1 and SOD2) have also been

implicated [77]. This links to mitochondrial dysfunc-

tion and excess mitochondrial ROS production, as well

as early lipid peroxidation as occurs in mesenchymal

stem cells from patients with the sporadic form of

PSP, indicating the essential contribution of cellular

pathology. Importantly, even in the early developmen-

tal state, the mesenchymal stem cells exhibit metaboli-

cally dysfunctional mitochondria and this negatively

influences their differentiation capacity [78], thus

diminishing the possibility of the autologous transplan-

tation of mitochondria as a possible therapeutic direc-

tion for this disease.

696 FEBS Letters 592 (2018) 692–702 ª 2018 Federation of European Biochemical Societies

Role of mitochondrial ROS in the brain P. R. Angelova and A. Y. Abramov



Amyotrophic lateral sclerosis (ALS)

The role of mitochondrially driven oxidative stress is

linked to the familial form of ALS with a mutation in

mitochondrial SOD1. ALS is a devastating neurode-

generative disease in which the loss of spinal cord and

cortical motor neurons leads to progressive paralysis

and premature death [79,80]. Mitochondrial oxidative

damage has been demonstrated in patients affected by

sporadic ALS [81,82] and also in transgenic mice

expressing a familial ALS-linked mutant Cu,Zn-SOD1

[83]. Importantly, reduction of the mitochondrial ROS

in neurons with a SOD1 mutant mouse model by gen-

erating a double transgenic model with UCP-2 did not

recover mitochondrial function and accelerated disease

progression [84]. Mutations in RNA transactivation

response DNA-binding protein 43, FUS/TLS and p62

are also associated with ALS and cells with these

mutations also show increased mitochondrial ROS and

oxidative stress [85,86].

Neurodegeneration with brain iron
accumulation (NBIA)

Neurodegeneration with brain iron accumulation com-

prises a heterogeneous group of diseases characterised

by the accumulation of iron in the basal ganglia and a

mutation in pantothenate kinase (PANK2). The

PANK2 mutation leads to a deficiency in CoA, which in

turn impairs energy metabolism in mitochondria. Acetyl

CoA plays a role in the synthesis and oxidation of fatty

acids and the oxidation of pyruvate in TCA. Animal

models of the disease have failed so far because the

rodent PANK�/� phenotype is not the typical neurode-

generative phenotype with brain iron accumulation and

defective movements unless it is subjected to a ketogenic

diet [87]. This is probably because the localisation of the

murine PANK2 homolog is cytosolic, in contrast to that

of human PANK2, which has been attributed to the

mitochondria. Induced pluripotent stem cells derived

from PANK2 patient fibroblasts were recently used in

an attempt to model the disease. These neurons have

been shown to exhibit reduced glutathione levels and

increased cytosolic and mitochondrial ROS production.

Moreover, supplementation with CoA was reported to

be protective [88]. Similarly, our PANK2-induced

pluripotent stem cell-based model demonstrated defec-

tive function of mitochondrial complexes I and II,

increased ROS production and lower levels of cellular

GSH, which further resulted in increased lipid peroxida-

tion [89]. Application in conjunction with the iron chela-

tor desferal further increased ROS production and

exacerbated the PANK2 phenotype.

However, mutations in several genes have been

known to cause neurodegeneration with brain iron

accumulation (e.g. PLA2G6, C19orf12, COASY,

FA2H, ATP13A2, FTL/FTL1, etc.) [90] and, impor-

tantly, most of them are connected to oxidative stress.

PLA2G6 mutation

The PLA2G6 mutation is an autosomal recessive

mutation in the gene encoding the calcium-indepen-

dent phospholipase A2 located on chromosome 22q12-

q13, which leads to infantile neuroaxonal dystrophy.

Recently, it was found that the PLA2G6 mutation also

lead to NBIA [91]. The PLA2G6 mutation leads to the

development of early onset Parkinsonism [92]. Previ-

ously, a discovery linking the pathology of NBIA

phospholipid metabolism with the disruption of brain

iron homeostasis was reported [91,92]. Mitochondrial

dysfunction, increased mitochondrial ROS generation

and lipid peroxidation in fibroblasts from patients with

PLA2G6 mutation were noted. Importantly, feeding

Drosophila iPLA2-VIA�/� flies with deuterated

polyunsaturated fatty acids reduced the rates of lipid

peroxidation to basal levels and also partially rescued

their locomotor deficits [93].

Friedrich’s ataxia (FRDA)

Cerebellar ataxia is caused by a mutation in the FXN

gene, leading to a GAA repeat expansion and a lower

availability of the protein frataxin, which is a key com-

ponent for the formation of the Fe-S clusters of mito-

chondrial complexes I, II and III from the ETC.

Fig. 2. Balance and interrelation between ROS production, energy

metabolism and antioxidant homeostasis. Any changes in this

balance lead to oxidative damage.

697FEBS Letters 592 (2018) 692–702 ª 2018 Federation of European Biochemical Societies

P. R. Angelova and A. Y. Abramov Role of mitochondrial ROS in the brain



Increased levels of mitochondrial (and cytosolic) ROS

production and the level of lipid peroxidation from

cerebellar granule cells from FRDA granule cells [94]

are a result of inhibition of mitochondrial respiration

complex I and an abnormal accumulation of iron in

the mitochondria. In fibroblasts from two FRDA

mouse models (YG8R and KIKO), inhibition of lipid

peroxidation with deuterated polyunsaturated fatty

acids and Nrf-2 activators (TBE31 and sulforaphane)

prevented lipid peroxidation damage and consequent

cell death in these cells [95].

Huntington’s disease

Huntington’s disease, an autosomal dominant muta-

tion of the mhtt gene, arises as a result of a CAG

repeat expansion of the gene coding the protein hunt-

ingtin. Similar to many other neurodegenerative dis-

eases, oxidative stress and inflammation are heavily

implicated. Characteristic of HD brain samples are

increased levels of SOD (Zn/Cu-SOD and mitochon-

drial MnSOD), glutathione peroxidase and catalase,

although there are no canonical antioxidant response

element gene products (NQO1, GCLM, GCLC,

HMOX1/HO-1) [96]. However, neither overexpression

of cytosolic Zn/Cu-SOD or mitochondrial MnSOD,

nor nutritional supplementation with a-tocopherol and
coenzyme Q10, has led to prolongation of the lifespan

of Drosophila HD model flies. By contrast, activation

of the Nrf2 pathway by SIRT2 inhibition and induc-

tion of NQO1 appears to be very promising and effec-

tive with respect to protecting oxidative damage in

rodent and human HD models [97].

Conclusions

Mitochondria extensively generate ROS or/and are tar-

geted by free radicals in the aetiopathology of the

major neurodegenerative diseases. In most of these dis-

eases, the overproduction of ROS or a loss of function

of antioxidant pathways leads to oxidative damage of

biological molecules. This in turn leads to deregulation

of the function for which they are responsible or, ulti-

mately, the initiation of cell death. Thus, even a small

increase in ROS production over the basal rates

requires elevated antioxidant activity. Maintenance of

the major antioxidant systems (predominantly GSH in

the brain) is a highly energy consuming process and

any increased activity of antioxidant production may

lead to a limitation of substrates required for the nor-

mal functioning of mitochondria (Fig. 2).

Mitochondrial redox balance and the physiological

role of mitochondrial ROS are very important for

neuronal housekeeping. Despite the vast number of

studies confirming the damaging role of mitochondrial

ROS in neurodegeneration, mitochondrially targeted

antioxidants are not effective in the treatment of neu-

rodegenerative diseases at a patient level for various

reasons, including a quenching effect on the physiolog-

ical signalling function of ROS. Antioxidant therapy

has been confirmed to be effective for a number of

neurodegenerative disorders in experiments conducted

at a cellular level, although most of the clinical trials

have failed to demonstrate neuroprotection or efficacy

in patients. This failure to translate the positive effects

of antioxidants is usually attributed to difficulties with

respect to the delivery of antioxidants to cells in the

brain or the chemical instability of antioxidants. We

propose that oxidative damage in neurodegeneration

should be prevented or restricted via the direct inhibi-

tion of ROS production from specific sources, rather

than via the use of scavengers. Furthermore, identify-

ing ways of quenching the production of free radicals

in these cells specifically, either via direct inhibition of

an enzyme, or by increasing the endogenous antioxi-

dants or increasing energy production, represents one

of the most promising future directions for the devel-

opment of therapeutic strategies.
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