
Docs » 3. Basic Operations and Numerical Descriptions

3. Basic Operations and
Numerical Descriptions

Contents

Basic Operations

Basic Numerical Descriptions

Operations on Vectors

We look at some of the basic operations that you can

perform on lists of numbers. It is assumed that you know

how to enter data or read data files which is covered in the

first chapter, and you know about the basic data types.

3.1. Basic Operations

Once you have a vector (or a list of numbers) in memory

most basic operations are available. Most of the basic

operations will act on a whole vector and can be used to

quickly perform a large number of calculations with a single

command. There is one thing to note, if you perform an

operation on more than one vector it is often necessary

that the vectors all contain the same number of entries.

Here we first define a vector which we will call “a” and will

look at how to add and subtract constant numbers from all

of the numbers in the vector. First, the vector will contain

the numbers 1, 2, 3, and 4. We then see how to add 5 to

each of the numbers, subtract 10 from each of the

numbers, multiply each number by 4, and divide each

number by 5.

http://www.cyclismo.org/tutorial/R/index.html

> a <- c(1,2,3,4)
> a
[1] 1 2 3 4
> a + 5
[1] 6 7 8 9
> a - 10
[1] -9 -8 -7 -6
> a*4
[1] 4 8 12 16
> a/5
[1] 0.2 0.4 0.6 0.8

We can save the results in another vector called b:

> b <- a - 10
> b
[1] -9 -8 -7 -6

If you want to take the square root, find e raised to each

number, the logarithm, etc., then the usual commands can

be used:

> sqrt(a)
[1] 1.000000 1.414214 1.732051 2.000000
> exp(a)
[1] 2.718282 7.389056 20.085537 54.598150
> log(a)
[1] 0.0000000 0.6931472 1.0986123 1.3862944
> exp(log(a))
[1] 1 2 3 4

By combining operations and using parentheses you can

make more complicated expressions:

> c <- (a + sqrt(a))/(exp(2)+1)
> c
[1] 0.2384058 0.4069842 0.5640743 0.7152175

Note that you can do the same operations with vector

arguments. For example to add the elements in vector a to

the elements in vector b use the following command:

> a + b
[1] -8 -6 -4 -2

The operation is performed on an element by element

basis. Note this is true for almost all of the basic functions.

So you can bring together all kinds of complicated

expressions:

> a*b
[1] -9 -16 -21 -24
> a/b
[1] -0.1111111 -0.2500000 -0.4285714 -0.6666667
> (a+3)/(sqrt(1-b)*2-1)
[1] 0.7512364 1.0000000 1.2884234 1.6311303

You need to be careful of one thing. When you do

operations on vectors they are performed on an element by

element basis. One ramification of this is that all of the

vectors in an expression must be the same length. If the

lengths of the vectors differ then you may get an error

message, or worse, a warning message and unpredictable

results:

> a <- c(1,2,3)
> b <- c(10,11,12,13)
> a+b
[1] 11 13 15 14
Warning message:
longer object length
 is not a multiple of shorter object length in:
a + b

As you work in R and create new vectors it can be easy to

lose track of what variables you have defined. To get a list of

all of the variables that have been defined use the ls()

command:

> ls()
[1] "a" "b" "bubba" "c"
"last.warning"
[6] "tree" "trees"

Finally, you should keep in mind that the basic operations

almost always work on an element by element basis. There

are rare exceptions to this general rule. For example, if you

look at the minimum of two vectors using the min

command you will get the minimum of all of the numbers.

There is a special command, called pmin, that may be the

command you want in some circumstances:

> a <- c(1,-2,3,-4)
> b <- c(-1,2,-3,4)
> min(a,b)
[1] -4
> pmin(a,b)
[1] -1 -2 -3 -4

3.2. Basic Numerical Descriptions

Given a vector of numbers there are some basic commands

to make it easier to get some of the basic numerical

descriptions of a set of numbers. Here we assume that you

can read in the tree data that was discussed in a previous

chapter. It is assumed that it is stored in a variable called

tree:

> tree <-
read.csv(file="trees91.csv",header=TRUE,sep=",");
> names(tree)
 [1] "C" "N" "CHBR" "REP" "LFBM"
"STBM" "RTBM" "LFNCC"
 [9] "STNCC" "RTNCC" "LFBCC" "STBCC" "RTBCC"
"LFCACC" "STCACC" "RTCACC"
[17] "LFKCC" "STKCC" "RTKCC" "LFMGCC" "STMGCC"
"RTMGCC" "LFPCC" "STPCC"
[25] "RTPCC" "LFSCC" "STSCC" "RTSCC"

Each column in the data frame can be accessed as a vector.

For example the numbers associated with the leaf biomass

(LFBM) can be found using tree$LFBM:

> tree$LFBM
 [1] 0.430 0.400 0.450 0.820 0.520 1.320 0.900 1.180
0.480 0.210 0.270 0.310
[13] 0.650 0.180 0.520 0.300 0.580 0.480 0.580 0.580
0.410 0.480 1.760 1.210
[25] 1.180 0.830 1.220 0.770 1.020 0.130 0.680 0.610
0.700 0.820 0.760 0.770
[37] 1.690 1.480 0.740 1.240 1.120 0.750 0.390 0.870
0.410 0.560 0.550 0.670
[49] 1.260 0.965 0.840 0.970 1.070 1.220

The following commands can be used to get the mean,

median, quantiles, minimum, maximum, variance, and

standard deviation of a set of numbers:

> mean(tree$LFBM)
[1] 0.7649074
> median(tree$LFBM)
[1] 0.72
> quantile(tree$LFBM)
 0% 25% 50% 75% 100%
0.1300 0.4800 0.7200 1.0075 1.7600
> min(tree$LFBM)
[1] 0.13
> max(tree$LFBM)
[1] 1.76
> var(tree$LFBM)
[1] 0.1429382
> sd(tree$LFBM)
[1] 0.3780717

Finally, the summary command will print out the min, max,

mean, median, and quantiles:

> summary(tree$LFBM)
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.1300 0.4800 0.7200 0.7649 1.0080 1.7600

The summary command is especially nice because if you

give it a data frame it will print out the summary for every

vector in the data frame:

> summary(tree)
 C N CHBR REP
LFBM
 Min. :1.000 Min. :1.000 A1 : 3 Min. :
1.00 Min. :0.1300
 1st Qu.:2.000 1st Qu.:1.000 A4 : 3 1st Qu.:
9.00 1st Qu.:0.4800
 Median :2.000 Median :2.000 A6 : 3 Median
:14.00 Median :0.7200
 Mean :2.519 Mean :1.926 B2 : 3 Mean
:13.05 Mean :0.7649
 3rd Qu.:3.000 3rd Qu.:3.000 B3 : 3 3rd
Qu.:20.00 3rd Qu.:1.0075
 Max. :4.000 Max. :3.000 B4 : 3 Max.
:20.00 Max. :1.7600
 (Other):36 NA's
:11.00
 STBM RTBM LFNCC
STNCC
 Min. :0.0300 Min. :0.1200 Min. :0.880
Min. :0.3700
 1st Qu.:0.1900 1st Qu.:0.2825 1st Qu.:1.312 1st
Qu.:0.6400
 Median :0.2450 Median :0.4450 Median :1.550
Median :0.7850
 Mean :0.2883 Mean :0.4662 Mean :1.560
Mean :0.7872
 3rd Qu.:0.3800 3rd Qu.:0.5500 3rd Qu.:1.788 3rd
Qu.:0.9350
 Max. :0.7200 Max. :1.5100 Max. :2.760
Max. :1.2900

 RTNCC LFBCC STBCC
RTBCC
 Min. :0.4700 Min. :25.00 Min. :14.00 Min.
:15.00
 1st Qu.:0.6000 1st Qu.:34.00 1st Qu.:17.00 1st
Qu.:19.00
 Median :0.7500 Median :37.00 Median :18.00
Median :20.00
 Mean :0.7394 Mean :36.96 Mean :18.80 Mean
:21.43
 3rd Qu.:0.8100 3rd Qu.:41.00 3rd Qu.:20.00 3rd
Qu.:23.00
 Max. :1.5500 Max. :48.00 Max. :27.00 Max.
:41.00

 LFCACC STCACC RTCACC
LFKCC
 Min. :0.2100 Min. :0.1300 Min. :0.1100
Min. :0.6500
 1st Qu.:0.2600 1st Qu.:0.1600 1st Qu.:0.1600
1st Qu.:0.8100
 Median :0.2900 Median :0.1700 Median :0.1650
Median :0.9000
 Mean :0.2869 Mean :0.1774 Mean :0.1654
Mean :0.9053
 3rd Qu.:0.3100 3rd Qu.:0.1875 3rd Qu.:0.1700
3rd Qu.:0.9900

 Max. :0.3600 Max. :0.2400 Max. :0.2400
Max. :1.1800

NA's :1.0000
 STKCC RTKCC LFMGCC
STMGCC
 Min. :0.870 Min. :0.330 Min. :0.0700 Min.
:0.100
 1st Qu.:0.940 1st Qu.:0.400 1st Qu.:0.1000 1st
Qu.:0.110
 Median :1.055 Median :0.475 Median :0.1200
Median :0.130
 Mean :1.105 Mean :0.473 Mean :0.1109 Mean
:0.135
 3rd Qu.:1.210 3rd Qu.:0.520 3rd Qu.:0.1300 3rd
Qu.:0.150
 Max. :1.520 Max. :0.640 Max. :0.1400 Max.
:0.190

 RTMGCC LFPCC STPCC
RTPCC
 Min. :0.04000 Min. :0.1500 Min. :0.1500
Min. :0.1000
 1st Qu.:0.06000 1st Qu.:0.2000 1st Qu.:0.2200
1st Qu.:0.1300
 Median :0.07000 Median :0.2400 Median :0.2800
Median :0.1450
 Mean :0.06648 Mean :0.2381 Mean :0.2707
Mean :0.1465
 3rd Qu.:0.07000 3rd Qu.:0.2700 3rd Qu.:0.3175
3rd Qu.:0.1600
 Max. :0.09000 Max. :0.3100 Max. :0.4100
Max. :0.2100

 LFSCC STSCC RTSCC
 Min. :0.0900 Min. :0.1400 Min. :0.0900
 1st Qu.:0.1325 1st Qu.:0.1600 1st Qu.:0.1200
 Median :0.1600 Median :0.1800 Median :0.1300
 Mean :0.1661 Mean :0.1817 Mean :0.1298
 3rd Qu.:0.1875 3rd Qu.:0.2000 3rd Qu.:0.1475
 Max. :0.2600 Max. :0.2800 Max. :0.1700

3.3. Operations on Vectors

Here we look at some commonly used commands that

perform operations on lists. The commands include the

sort, min, max, and sum commands. First, the sort

command can sort the given vector in either ascending or

descending order:

Next 

> a = c(2,4,6,3,1,5)
> b = sort(a)
> c = sort(a,decreasing = TRUE)
> a
[1] 2 4 6 3 1 5
> b
[1] 1 2 3 4 5 6
> c
[1] 6 5 4 3 2 1

The min and the max commands find the minimum and the

maximum numbers in the vector:

> min(a)
[1] 1
> max(a)
[1] 6

Finally, the sum command adds up the numbers in the

vector:

> sum(a)
[1] 21

 Previous

 Sponsorship

This site generously supported by Datacamp.

Datacamp offers a free interactive introduction to R

coding tutorial as an additional resource. Already over

100,000 people took this free tutorial to sharpen their

R coding skills.

http://www.cyclismo.org/tutorial/R/probability.html
http://www.cyclismo.org/tutorial/R/types.html
https://www.datacamp.com/
https://www.datacamp.com/courses/free-introduction-to-r

