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Today's lecture

@ Variational inference - mathematical foundations

© Mean field - Variational Bayes

© Parametric variational inference
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Variational inference - mathematical foundations

The Bayesian Inference problem

@ Bayesian inference provides an appealing mathematical
formulation to perform learning/ prediction in uncertain
scenarios

@ The world (system) is divided in two sets of random variables:
latent (or hidden) 6 and visible (or observed) x

@ Assumptions are encoded in a prior distribution p(f) and a
likelihood function connecting latent to visibles p(x|6)

@ Then we update our beliefs on the latent world according to

Bayes rule (x(6)p(6)
_ PX|0)p

where p(x) is the marginal likelihood (probability of the
visibles regardless of the latents).

(1)
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Variational inference - mathematical foundations

The Bayesian Inference problem

@ Bayesian inference provides an appealing mathematical
formulation to perform learning/ prediction in uncertain
scenarios

@ The world (system) is divided in two sets of random variables:
latent (or hidden) 6 and visible (or observed) x

@ Assumptions are encoded in a prior distribution p(f) and a
likelihood function connecting latent to visibles p(x|6)

@ Then we update our beliefs on the latent world according to

Bayes rule
o(0he) — PR
p(x)
where p(x) is the marginal likelihood (probability of the
visibles regardless of the latents).
o IMPOSSIBLE: we'd need to evaluate the likelihood for all
possible configurations of the latents!!!!
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Variational inference - mathematical foundations

The Variational Principle

@ Various strategies exist for approximating posterior
distributions.

@ One popular class constructs Markov chains that
asymptotically sample from the posterior (MCMC).

@ Variational methods recast inference as optimisation in
function space, using methods of calculus of variation.

e Specifically, one minimises the Kullback-Leibler divergence (or
cross-entropy)

q(0)
KL[q(0)|[p(0]x)] /deq(9) log o(01) (2)
where g() is an approximating distribution
@ Since the marginal likelihood does not depend on the data, its
knowledge is not required to find the optimum

@ Free form optimisation problem is just as hard; need
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Variational inference - mathematical foundations

Why the KL: the ELBO

@ We've seen in the last lecture that EM is based on optimising
a lower bound on the log-marginal likelihood (evidence)

o Explicitly
log p(x) = Iog/d@p(x, 0) = Iog/ deps((’e?)q(e) >
| doa(6)108 P55 — i) - KLLG(O) (610

(3)

@ Minimising the KL divergence makes the evidence lower
bound (ELBO) tight
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Variational inference - mathematical foundations

Why KL: the perturbative expansion

e Consider a complicated probability distribution P = exp(H)

@ We would like to replace it with an easier probability
distribution Q = exp(Ho)

@ We define an intermediate distribution
Q) = exp(Ho) exp[—A(Ho — H)] that is P for A =1 and Q for
A=0

o Taylor expand
P = exp(H) = exp(Ho) exp[~A(Ho — H)] =

=exp(Ho) [1 — M(Ho — H) + O(\})] = Q [1 - \Q Iog% + 0(\?)

@ So minimizing KL (on average) minimises the first order
correction
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Variational inference - mathematical foundations

How to minimise KL

o KL is a functional of the approximating distribution g
@ Functionals can be thought of as functions of functions

@ To minimise a functional, one sets its functional derivative to
zero

@ Excursus: let's work out on the board!
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Variational inference - mathematical foundations

What about parameters?

@ Functional optimisation of KL enables approximate posterior
inference

@ What about model parameters?
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Variational inference - mathematical foundations

What about parameters?

@ Functional optimisation of KL enables approximate posterior
inference

@ What about model parameters?

@ ELBO can be used as a surrogate of the marginal likelihood
and optimised w.r.t. to model parameters (either in the prior
or likelihood), directly (gradient descent) or analytically when
possible

@ Sometimes called VBEM
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Mean field - Variational Bayes

Talk outline

© Mean field - Variational Bayes
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Mean field - Variational Bayes

Factorizing complicated distributions

@ Most complex models involve several latent variables
01,...,0n

@ Even if they are a priori independent, the data usually couples
the latent variables making inference complicated

@ Mean-field variational inference breaks these dependencies by
replacing them with averaged effects
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Mean field - Variational Bayes

Coordinate Ascent Variational Inference (CAVI)

@ Assume the approximating distribution is factorized

q(elv .- .,9/\/) = q1(91), T ?qN(eN)

e Computing functional derivatives of (3) and setting to zero we
get
q; o< exp(log p(x, 0))
where <>] means expectation w.r.t. all the latent variables
except 0;
@ Provided you can compute these expectations, iterating these
fixed point equations leads to a (local) optimum
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Mean field - Variational Bayes

Exercise

Consider a Gaussian mixture model with Dirichlet priors over the
mixing components and normal-inverse Wishart priors over the
component means/ variances. Work out the CAVI algorithm. See
excellent worked out example here
https://rpubs.com/cakapourani/variational-bayes-gmm
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Parametric variational inference

Talk outline

© Parametric variational inference
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Parametric variational inference

Families of distributions

@ Mean-field posits a factorised form for the approximating
distribution but does not restrict the functional form of the
factors

@ Alternatively, one could choose a parametric family for the
approximating distribution (e.g. a Gaussian)

@ Then KL becomes a normal function of the parameters of the
distribution and one may compute its gradient and optimise

@ CAVEAT: you will still need to be able to compute
expectations to get this gradient analytically
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Parametric variational inference

Exercise

Compute the Gaussian variational approximation for a standard
normal latent variable observed through an exponential link with
Poisson noise, i.e.

p(x|0) = Poisson(exp(0)),6 ~ N(0,1)

Guido Sanguinetti Variational Inference - Lecture 2



	Variational inference - mathematical foundations
	Mean field - Variational Bayes
	Parametric variational inference

