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Parametric variational inference revisited

Variational Inference maximises the Evidence Lower BOund
(ELBO)

L =

∫
dθq(θ) log

p(x, θ)

q(θ)

with respect to the variational distribution q(θ)

If q(θ) = qλ(θ) is in a parametric family indexed by λ ∈ Rn,
then this is a finite dimensional optimisation problem

PROBLEM: analytical expressions for the gradients
contingent on being able to perform expectations analytically
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Monte-Carlo estimation

The ELBO can be rewritten as

L = Eqλ [log p(x, θ)]− H[qλ]

i.e. as an expectation of the joint under the approximating
distribution

If we can easily sample from qλ, then we can obtained an
unbiased estimate of L by Monte-Carlo

More importantly, the gradient w.r.t. λ

∇λL = Eqλ [∇λ(log qλ(θ))p(x, θ)]−∇λH[qλ] (1)

so it is still an expectation (prove on board)

A Monte-Carlo estimate of the gradient (1) is a stochastic
gradient
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Mini-batch up-scaling

In the common case where the data are i.i.d. conditioned on
the latent variables, the likelihood is a product

p(x|θ) =
N∏
i=1

p(xi |θ)

The gradient estimator in (1) contains the logarithm of the
likelihood therefore becomes

∇λL = Eqλ

[∑
i

∇λ(log qλ(θ))p(xi |θ)p(θ)

]
−∇λH[qλ] (2)

Randomly subsampling the data (mini-batch) yields an
unbiased estimate of the gradient (??)
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Black-Box variational inference (Ranganath et al 2013)

Framework for parametric variational inference by stochastic
gradient descent

Assumptions: q distribution is easy to sample from, likelihood
p(x |θ) can be computed easily and observaitons are iid

Procedure: sample mini-batch, Monte-Carlo estimate gradient
from finet sample from qλ, take noisy gradient step

In the paper, additional tricks to reduce variance of the
estimator via Rao-Blackwellisation or control variables (now
not used)
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Autoencoders

”Old” neural networks way of performing unsupervised
learning

Data are regressed on themselves via nonlinear maps (encoder
and decoder) going through a low-dimensional bottleneck

If the neural networks are linear (a.k.a. matrices), then the
autoencoder is PCA

Nonlinear neural networks can in principle capture non-trivia
structure in data

BIG CAVEAT: PCA solution is unique modulo rotation.
Nonlinear autoencoders have multiple local optima; looking at
structures may or may not make sense.
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Variational autoencoders (Kingma and Welling 2014)

Originally formulated as free-form variational inference for a
general dimensionality reduction model p(x|z)

In practice, for continuous x the assumption is that
p(x|z) = N (µθ(z), σθ(z)) where µθ(z), σθ(z) are complex
nonlinear functions (neural networks) parametrised by
(weights) θ (switched notation to paper)

The posterior p(z|x) is approximated variationally as a
Gaussian qφ(z) using BBVI

Innovation (and link to autoencoders): the parameters of the
approximating distribution are themselves neural networks
dependent on the data x

Discuss various interpretations of this
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Stein variational gradient (Liu and Wang 2016)

New idea for exact gradient-based inference using functional
optimisation

The idea is to deform a base distribution using a bijective
transformation T(z) that will map a base distribution q(z)
into the desired posterior p(z|x)

The optimal (infinitesimal) transformation is given by the
so-called Stein gradient, which is the gradient of the KL
divergence KL[q‖p] evaluated at q

Amazingly, this gradient transformation can be computed
analytically when restricting to a RKHS

Algorithm: sample a set of particles from a starting
distribution q0 (e.g. Gaussian) and iteratively transform them
using the Stein gradients.
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Deterministic variational inference (Wu et al 2019)

How do we compute the gradient in BBVI or VAEs?

The sample-based approximation needs to be propagated
through layers to obtain an estimate of the likelihood →
potentially problems due to sampling in regions of low
posterior mass/ strong non-linearities

Wu et al propose to propagate moments of the q distribution
through the layers, instead of particles

Some Central Limit Theorem justification, empirical validation
rather impressive
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Final considerations

VI is a very powerful approximation to perform Bayesian
inference

In general, quality of the approximation can be poor when the
true distribution is far from the approximator

In neural network context, ELBO provides a differentiable
objective for complex unsupervised learning models

NOT a credible approach to quantify uncertainty

Many interesting novel approaches in recent years
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