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Today's lecture

@ Black-box variational inference

© The reparametrisation trick and variational autoencoders

© Further developments and concluding remarks
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Black-box variational inference

Parametric variational inference revisited

@ Variational Inference maximises the Evidence Lower BOund

(ELBO)
_ p(x,0)
L= /dﬂq(@) log 4(0)

with respect to the variational distribution g(#)

e If g(0) = gx(0) is in a parametric family indexed by A € R”,
then this is a finite dimensional optimisation problem

o PROBLEM: analytical expressions for the gradients
contingent on being able to perform expectations analytically
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Black-box variational inference

Monte-Carlo estimation

@ The ELBO can be rewritten as
L = Eg, [log p(x,0)] — H[g,]

i.e. as an expectation of the joint under the approximating
distribution

o If we can easily sample from g, then we can obtained an
unbiased estimate of £ by Monte-Carlo

@ More importantly, the gradient w.r.t. A

VAL = Eq, [Va(log ax(0))p(x,0)] — VaH[ax] (1)

so it is still an expectation (prove on board)

@ A Monte-Carlo estimate of the gradient (1) is a stochastic
gradient
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Black-box variational inference

Mini-batch up-scaling

@ In the common case where the data are i.i.d. conditioned on
the latent variables, the likelihood is a product

N

p(x19) = T] p(xi16)

i=1

@ The gradient estimator in (1) contains the logarithm of the
likelihood therefore becomes

VAL = Eg, ZV,\(logQA(G))P(XiW)P(H) — VaH[a\] (2)

e Randomly subsampling the data (mini-batch) yields an
unbiased estimate of the gradient (?7?)
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Black-box variational inference

Black-Box variational inference (Ranganath et al 2013)

@ Framework for parametric variational inference by stochastic
gradient descent

@ Assumptions: g distribution is easy to sample from, likelihood
p(x|0) can be computed easily and observaitons are iid

@ Procedure: sample mini-batch, Monte-Carlo estimate gradient
from finet sample from gy, take noisy gradient step

@ In the paper, additional tricks to reduce variance of the
estimator via Rao-Blackwellisation or control variables (now
not used)
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The reparametrisation trick and variational autoencoders

Autoencoders

@ "Old" neural networks way of performing unsupervised
learning

e Data are regressed on themselves via nonlinear maps (encoder
and decoder) going through a low-dimensional bottleneck

@ If the neural networks are linear (a.k.a. matrices), then the
autoencoder is PCA

@ Nonlinear neural networks can in principle capture non-trivia
structure in data
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The reparametrisation trick and variational autoencoders

Autoencoders

@ "Old" neural networks way of performing unsupervised
learning

e Data are regressed on themselves via nonlinear maps (encoder
and decoder) going through a low-dimensional bottleneck

@ If the neural networks are linear (a.k.a. matrices), then the
autoencoder is PCA

@ Nonlinear neural networks can in principle capture non-trivia
structure in data

o BIG CAVEAT: PCA solution is unique modulo rotation.
Nonlinear autoencoders have multiple local optima; looking at
structures may or may not make sense.

Guido Sanguinetti Variational Inference - Lecture 3



The reparametrisation trick and variational autoencoders

Variational autoencoders (Kingma and Welling 2014)

@ Originally formulated as free-form variational inference for a
general dimensionality reduction model p(x|z)

@ In practice, for continuous x the assumption is that
p(x|z) = N (ug(z), 09(z)) where pp(z), op(z) are complex
nonlinear functions (neural networks) parametrised by
(weights) 6 (switched notation to paper)

@ The posterior p(z|x) is approximated variationally as a
Gaussian gg(z) using BBVI

@ Innovation (and link to autoencoders): the parameters of the
approximating distribution are themselves neural networks
dependent on the data x
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The reparametrisation trick and variational autoencoders

Variational autoencoders (Kingma and Welling 2014)

@ Originally formulated as free-form variational inference for a
general dimensionality reduction model p(x|z)

@ In practice, for continuous x the assumption is that
p(x|z) = N(11g(2), 74(2)) where jig(2),  o0(z) are complex
nonlinear functions (neural networks) parametrised by
(weights) 6 (switched notation to paper)

@ The posterior p(z|x) is approximated variationally as a
Gaussian gg(z) using BBVI

@ Innovation (and link to autoencoders): the parameters of the
approximating distribution are themselves neural networks
dependent on the data x

@ Discuss various interpretations of this
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Further developments and concluding remarks

Stein variational gradient (Liu and Wang 2016)

@ New idea for exact gradient-based inference using functional
optimisation

@ The idea is to deform a base distribution using a bijective
transformation T(z) that will map a base distribution g(z)
into the desired posterior p(z|x)

@ The optimal (infinitesimal) transformation is given by the
so-called Stein gradient, which is the gradient of the KL
divergence KL[q||p] evaluated at g

@ Amazingly, this gradient transformation can be computed
analytically when restricting to a RKHS
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Further developments and concluding remarks

Stein variational gradient (Liu and Wang 2016)

@ New idea for exact gradient-based inference using functional
optimisation
@ The idea is to deform a base distribution using a bijective

transformation T(z) that will map a base distribution g(z)
into the desired posterior p(z|x)

@ The optimal (infinitesimal) transformation is given by the
so-called Stein gradient, which is the gradient of the KL
divergence KL[q||p] evaluated at g

@ Amazingly, this gradient transformation can be computed
analytically when restricting to a RKHS

@ Algorithm: sample a set of particles from a starting

distribution go (e.g. Gaussian) and iteratively transform them
using the Stein gradients.
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Further developments and concluding remarks

Deterministic variational inference (Wu et al 2019)

@ How do we compute the gradient in BBVI or VAEs?

@ The sample-based approximation needs to be propagated
through layers to obtain an estimate of the likelihood —
potentially problems due to sampling in regions of low
posterior mass/ strong non-linearities

@ Wu et al propose to propagate moments of the g distribution
through the layers, instead of particles

@ Some Central Limit Theorem justification, empirical validation
rather impressive
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Further developments and concluding remarks

Final considerations

VI is a very powerful approximation to perform Bayesian
inference

@ In general, quality of the approximation can be poor when the
true distribution is far from the approximator

@ In neural network context, ELBO provides a differentiable
objective for complex unsupervised learning models

@ NOT a credible approach to quantify uncertainty

@ Many interesting novel approaches in recent years

Guido Sanguinetti Variational Inference - Lecture 3



	Black-box variational inference
	The reparametrisation trick and variational autoencoders
	Further developments and concluding remarks

