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a b s t r a c t

The brain has a central role in the regulation of energy stability of the organism. It is the organ with the
highest energetic demands, the most susceptible to energy deficits, and is responsible for coordinating
behavioral and physiological responses related to food foraging and intake. Dietary interventions have
been shown to be a very effective means to extend lifespan and delay the appearance of age-related
pathological conditions, notably those associated with brain functional decline. The present review
focuses on the effects of these interventions on brain metabolism and cerebral redox state, and
summarizes the current literature dealing with dietary interventions on brain pathology.

& 2014 The Authors. Published by Elsevier B.V. All rights reserved.
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Introduction

The brain is responsible for a large amount of energy con-
sumption in vertebrate organisms, and especially in primates.
Although it accounts for only 2% body weight, it consumes 20%

of the oxygen and 25% of glucose from these organisms. This
energy consumption is required to maintain ionic balance in
neurons, produce action potentials, generate post-synaptic cur-
rents and recycle neurotransmitters [6]. Since metabolite diffusion
from the blood is restricted by the brain–blood barrier, the brain
must synthesize its own neuroactive compounds such as gluta-
mate, aspartate, glycine or D-serine from glucose [71]. In addition,
neurons are highly susceptible to oxidative damage and glucose
oxidation in the pentose phosphate pathway is required to obtain
NADPH and regenerate reduced glutathione, which is essential to
maintain redox balance in the brain [12]. All these characteristics
make the brain highly dependent on glucose and an organ
extremely sensitive to energy deficits.

In addition to its high energy expenditure, the brain is also
responsible for directly sensing and integrating energetic cues that
are sent from peripheral tissues in the form of nutrients and
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hormones (see Fig. 1), orchestrating physiological and behavioural
responses [31]. Therefore, the brain acts as a master regulator for
energy balance in the organism, determining food intake and
expenditure, at the same time as it is the primary energy consumer
of the body and the organ most susceptible to oxidative damage.

Dietary restriction prolongs lifespans in a wide range of organ-
isms, spanning from yeast to rodents. More importantly, animals
not only live longer, but their health is improved and the
appearance of aging markers delayed [39]. Despite huge interest
in the effects of dietary limitation, the causes that underlie these
beneficial effects are still incompletely understood, due both to
physiological and methodological reasons. Dietary restriction
produces large-scale systemic effects, with predicted synergic
interactions among tissues. For example, reducing total caloric
intake prevents the metabolic syndrome, which in turn is a risk
factor for other pathological conditions, such as stroke [41].
Therefore, discriminating between systemic and tissue-specific
effects is not always straightforward, hampering the identification
of molecular targets or specific pathways involved. Moreover, the
relevance of each of these targets or pathways might differ
between different pathological conditions. On the other hand,
methodological issues hampering the understanding of the effects
of restricted diets include the lack of consensus on how to perform
dietary restriction. The term “caloric restriction” is often used to
describe different diets, including some which don0t even limit the
amount of calories ingested [21]. As will be detailed below, the latest
literature is beginning to unveil important differences between these
diets. Interestingly, recent results show that, although the final effects
of different diets can sometimes be similar, the pathways and
mechanisms involved in these outcomes may not be the same
[3,22,67,70]. In addition, important differences arise based on the
animal model used, the duration of the diet and the age in which the
diet is started.

This review will briefly discuss the effects of different dietary
interventions on brain metabolism, redox balance and function,
focussing on some of the most important age-related brain
pathologies.

Systemic effects of different dietary interventions

Dietary restriction has pleiotropic effects that far exceed simple
reduction in body weight. Reducing food intake induces a concomi-
tant decrease in body fat, which in turn affects the levels of
circulating adipokines, endocrine molecules produced by the white
adipose tissue. Low levels of fat are usually correlated with decreased
circulating levels of insulin and leptin, and an increase in adiponectin
(see Fig. 1), all of which favour a better regulation of glucose
homeostasis [89]. Keeping fat tissue at low levels also favours the
production of anti-inflammatory over pro-inflammatory cytokines,
with inflammation now being regarded as an important player in the
pathogenesis of obesity-related insulin resistance [56]. Inflammatory
signals can in turn induce oxidative imbalance and reactive oxygen
species (ROS) production in many tissues. One of the means to
promote oxidative stress by these signals is the stimulation of the
inducible nitric oxide synthase (iNOS), which produces high levels of
nitric oxide, facilitating the formation of other reactive oxygen and
nitrogen species [17].

Historically, a number of different diets have been referred to
under the term “calorie restriction” [21]. In recent years, there has
been an increasing awareness of the particular effects of each
different dietary intervention and their specific mechanisms are
now beginning to be separately unravelled. In the present work,
we will focus on the three most prevalent protocols in the
literature: intermittent fasting (IF), food restriction (FR) and caloric
restriction (CR), and will use the term ‘dietary restriction0 to refer
generically to any of the three.

IF, also known as “every other day feeding”, is a dietary
protocol in which animals alternately fast and have access to food
ad libitum every 24 h. Under these conditions, body weight usually
decreases, although with 10–20% oscillations between feeding and
fasting days [69]. Interestingly, although animals kept on this diet
for short periods may eat less than their ad libitum-fed counter-
parts, food intake may be similar after longer periods, due to
overeating on feeding days [22]. Consistently with reduced food
intake, short periods of IF improve glucose tolerance. However,

Fig. 1. The brain as a master regulator of body energy control. The figure represents a simplified scheme of how the brain receives signals from peripheral tissues in the
hypothalamus. Orexigenic (AgRP/NPY) and anorexigenic (POMC/CART) neurons in the arcuate nucleus (ARC) of the hypothalamus sense these and other cues, such as
circulating blood glucose levels. These signals are further integrated by interaction with other hypothalamic nuclei (LH—lateral hypothalamus; PVN—paraventricular nucleus)
and finally project into the areas of the brain involved in the reward system, including the ventral tegmental area (VTA) and the nucleus accumbens in the striatum.
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after longer periods, insulin resistance is observed in abdominal
adipose tissue and skeletal muscle. Redox imbalance is also present
in these tissues, with high levels of hydrogen peroxide [22].

Another common way to limit caloric ingestion is to restrict the
total amount of food, a protocol that will be referred to here as
“food restriction” (FR). In this diet, restricted animals are given an
amount of food equal to 60–80% of that eaten by ad libitum-fed
animals. Rats and mice lose weight and fat and display many
beneficial features, such as good peripheral insulin sensitivity

[3,22]. However, FR can lead to malnutrition and low body growth
due to low levels of micronutrients such as copper, iron, selenium
or magnesium [21], which are essential for redox reactions such as
oxidative phosphorylation and ROS scavenging.

When FR is complemented with micronutrients, the diet can
legitimately be considered “caloric restriction” (CR), since only
calories are limited. Commonly, supplementation is performed by
increasing the percentage of micronutrients in the diet to an extent
equivalent to the calorie restriction imposed (i.e. a 60% micronutrient

Fig. 2. Glucose use in the brain. Glucose is used for multiple functions in the brain. Glycolysis followed by oxidation of acetyl-CoA in the TCA cycle provides reduced equivalents
that can be used by mitochondria to synthesize ATP. Alternatively, oxidation through the pentose phosphate pathway provides NADPH, required for the reduction of glutathione,
a central anti-oxidant in the brain. Glucose is also required as a precursor to synthesize neurotransmitters, and can be stored to some extent in astrocytes in the form of glycogen.
In the absence of glucose, ketone bodies produced in the liver can cross the blood–brain barrier and partially replace glucose as an energy source.
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supplemented diet to a 40% calorie restriction). Although the
phenotype is very similar to FR (especially when restriction is low
or in short-term diets) some differences have been observed after
long periods, such as a reduction in the nitration of the insulin
receptor in skeletal muscle and adipose tissue, indicating lower
oxidative damage [22].

How does dietary restriction affect brain function?

Although during fasting ketone bodies produced from fatty
acids in the liver can partially replace it, glucose is still required by
the brain under these conditions. First, glucose is necessary for the
biosynthesis of complex carbohydrates that are components of
glycoproteins and glycolipids, amino acids, one-carbon donors for
methylation reactions and neurotransmitter synthesis [71]. Sec-
ond, oxidation of ketone bodies requires activity of the tricar-
boxylic acid (TCA), since formation of acetoacetyl-CoA from β-
hydroxybutyrate and acetoacetate is dependent on succinyl-CoA
[25], and complete ketone body oxidation requires oxaloacetate to
promote TCA cycling. Finally, a significant amount of cerebral
glucose is metabolised through the pentose phosphate pathway
in order to regenerate reduced cytosolic glutathione via NADPH,
and maintain antioxidant activity [11]. In addition, astrocytes, but
not neurons, can accumulate glucose in the form of glycogen,
which acts as a short-term energetic reservoir in the brain during
fasting [16] (Fig. 2).

Consistent with these specific energetic demands of the brain,
dietary restriction induces a metabolic reprogramming in most
peripheral tissues in order to maintain sufficient glucose blood
levels. Whereas ad libitum diets favour oxidation of carbohydrates
over other energy sources, in dietary restriction fat metabolism is
increased [19]. This increase in the use of fatty acids is paralleled
by an increase in FADH2 use by mitochondria, since β-oxidation
produces FADH2 and NADH at the same proportion, while NADH
production due to carbohydrate oxidation is five-fold that of
FADH2.

Metabolic adaptions of the brain to dietary restriction are less
understood. Nisoli et al. [78] showed that IF could induce mitochon-
drial biogenesis in several mouse tissues, including brain, through a
mechanism that requires eNOS. However, other works using different
protocols and/or animal models have provided diverging results.
Whereas in brains from mice subjected to CR an increase in mito-
chondrial proteins and citrate synthase activity has been observed
[23], other studies using FR in rats have failed to observe changes in
mitochondrial proteins or oxygen consumption in the brain [51,60,93].
Interestingly, an increase in mitochondrial mass has also been
observed in cells cultured in the presence of serum from rats subjected
to 40% CR or FR, suggesting the existence of a serological factor
sufficient to induce mitochondrial biogenesis [23,63].

The idea that mitochondrial biogenesis is stimulated under
conditions of low food availability may seem counterintuitive.
Indeed, mitochondrial mass normally increases in response to
higher metabolic demands, such as exercise in muscle or cold in
brown adipose tissue [51]. Different hypotheses have been put
forward to explain this apparent discrepancy. Guarente suggested
that mitochondrial biogenesis could compensate for metabolic
adaptations induced by dietary restriction. In peripheral tissues,
more mitochondria would make up for the lower yield in ATP
production per reducing equivalent, due to an increase in FADH2

use relative to NADH [47]. Analogously, in brain the use of ketone
bodies also increases the FADH2/NADH ratio, although to a lesser
extent, suggesting that a similar explanation could apply.

How is this metabolic reprogramming induced? In recent years,
attention has been given to SIRT1, a protein deacetylase from the
sirtuin family. In many tissues, including brain, SIRT1 expression is
enhanced in response to dietary restriction, and pharmacological
activation of SIRT1, using drugs such as resveratrol, can mimic some
of its effects [26]. Since PGC-1α, the master regulator of mitochon-
drial biogenesis, is among SIRT1 targets [75], a mechanism was
initially suggested whereby SIRT1-mediated deacetylation of PGC-1α
would be responsible for the increase in mitochondrial mass
observed in response to SIRT1 activation by resveratrol, a mechanism
that could also extend to dietary restriction [59]. However, recent
reports using a more specific SIRT1 agonist, SRT1720, have shown
contradictory results regarding a direct role for SIRT1 in mitochon-
drial biogenesis [36,40,72]. Despite this, several observations support
the role of SIRT1 as a stimulator of fatty acid oxidation in liver and
muscle, and of lipid mobilization in white adipose tissue, indicating
that its activation could indeed induce a metabolic reprogramming
similar to that observed in dietary restriction [36,84,91]. Similarly,
adiponectin, whose levels increase when fat tissue is low, has also
been shown to promote fatty acid oxidation in skeletal muscle and
liver [100]. Furthermore, adiponectin knockout mice show increased
lipid retention in the liver [104], making this hormone another
suitable candidate for the role of metabolic reprogramming mediator.

At the cellular level, starvation stimulates macroautophagy
(which will be referred hereafter as “autophagy”) in a wide
number of tissues. Although nutrient deprivation is a well-
known inducer of autophagy in most tissues and cell types, until
recently it was believed that the brain was an exception to this rule
[73]. However, recent reports using more sensitive methods
indicate that autophagy is indeed induced in primary neuronal

Fig. 3. Effects of CR, FR and IF on some neurodegenerative conditions. The sizes of
the rectangles represent the relative number of publications for each pathology
(numbers are in parenthesis), summarized from the following: Anson et al. [3],
Armentero et al. [4], Arumugam et al. [5], Azarbar et al. [7], Bhattacharya et al. [10],
Bough et al. [13], Bough et al. [14], Bruce-Keller et al. [18], Contestabile et al. [27],
Costantini et al. [29], Dhurandar et al. [32], Duan and Mattson [34], Duan et al. [33],
Eagles et al. [35], Greene et al. [45], Griffioen et al. [46], Halagappa et al. [48],
Hamadeh and Tarnopolsky [49], Hamadeh et al. [50], Hartman et al. [52], Holmer
et al. [53], Kumar et al. [58], Lee et al. [58], Liu et al. [62], Mantis et al. [64], Mouton
et al. [74], Parinejad et al. [80], Patel et al. [81], Patel et al. [79], Pedersen and
Mattson [82], Qin et al. [85], Qin et al. [86], Qiu et al. [88], Wang et al. [98], Wu et al.
[99], Yoon et al. [102], Yu and Mattson [103], Zhu et al. [105].
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cultures [101] and neurons in vivo [2] in response to nutrient
deprivation. In addition SIRT1, which is highly expressed in rodent
brain in response to FR or IF [26,44,96], has been described as an
important regulator of autophagy in vivo, and overexpression of
SIRT1 in cell lines is sufficient to stimulate basal autophagy [61].

Although the classical view of autophagy was that of an
unspecific catabolic pathway, it is now common knowledge that
autophagy can also act in a more selective way, as in the case of
the removal of damaged mitochondria, a process termed mito-
phagy [43]. Observations in yeast support a preeminent role for
mitophagy in the effects of CR in aging [90]. In rats on a FR
regimen, an increase in mitophagic markers is observed in kidneys
[30] and an improved autophagic response in vivo is present in
liver [92]. The observation that both mitophagy and mitochondrial
biogenesis could be stimulated during dietary restriction suggests
an increased mitochondrial turnover, which could be acting as a
“quality control” mechanism to provide a healthier pool of these
organelles [47].

Dietary restriction in brain pathology

Aging is the most important risk factor for several pathological
conditions including cancer, cardiovascular disease and neurode-
generation [76]. By extending lifespan, dietary restriction is also
able to delay the onset of these age-associated diseases. In the
following paragraphs we have summarized the current literature
dealing with the effects of dietary restriction on some of the most
important brain pathologies (Fig. 3).

Stroke

Stroke is caused by an interruption in the blood supply to the
brain which in most cases is due to a blockage of the vessels that
irrigate the brain, and specifically in the middle cerebral artery.
During ischemia, lack of oxygen impairs oxidative phosphorylation
and maintains electron transport chain proteins in a reduced state.
Upon reperfusion, oxygen is restored and by interacting with these
reduced proteins promotes a burst of ROS production, which
mediates injury. In addition, ROS are also generated in the
cytoplasm and the plasma membrane by means of xanthine
oxidase, NOS and NADPH oxidase [66].

Most systemic changes induced by IF, CR and FR, such as
decreasing inflammation and improving glucose metabolism, are
potentially favourable against stroke. In addition, both IF and FR
have been shown to decrease blood pressure in rats [65]. Hyper-
tensive rats, which are stroke-prone, increase their survival
probabilities about 50% when subjected to a 40% FR diet [62]. IF
reduces infarct size and improves recovery of both mice [5] and
rats [103] subjected to middle cerebral arterial occlusion, a
common animal model for human stroke.

In heart, the beneficial effects observed after 30% FR could be
related to increased deacetylation of mitochondrial proteins, which in
turn decrease ROS formation upon reperfusion [94]. However, the role
of SIRT1 in the brain remains unclear since, although SIRT1 knockout
animals show larger infarct sizes than wild type mice, these animals
can still respond to a 40% FR diet by decreasing both the extent of the
infarct volume and the neurological deficit [62]. In addition, NADþ

consumption due to SIRT1 activation could be detrimental to stroke
outcome [83]. Loss of NAD(H) is has been demonstrated to play a
decisive role in post-ischemic neuronal loss [38].

A putative player in this scenario could be adiponectin, It has
been shown that adiponectin knockout mice are more susceptible
to middle cerebral arterial occlusion and that adenovirus-
mediated supplementation of adiponectin is protective both in

wild type and knockout animals, through a mechanism that
requires eNOS [77].

Alzheimer’s disease

One of the most common causes of dementia in the elderly is
Alzheimer’s disease (AD), a pathological condition that comprises
both genetic and environmental factors. Autosomal dominant forms,
which account for only a small percentage of cases, are linked to
mutations in the genes of amyloid precursor protein, presinilin 1 or
presenilin 2. Brains from AD patients often present senile plaques
and neurofibrillary tangles formed by hyper-phosphorylated forms of
the microtubule-associated protein tau, along with increased oxida-
tive imbalance and mitochondrial dysfunction [20,97].

Mitochondria from AD patients show characteristic alterations,
including reduced complex II and IV activity, and inhibition of
enzymes from the TCA cycle such as α-ketoglutarate dehydrogen-
ase, leading to impaired ATP production [24]. In addition, calcium
homeostasis and permeability transition pore opening suscept-
ibility are also affected [28].

Improvement in behavioural tests is observed in different AD
mouse models subjected to either IF, CR or FR. While FR and CR
also promote a decrease in the presence of beta amyloid and
phosphorylated tau in the brain [29,74,81,85,86,98,99] , IF could be
acting through a different mechanism, since improved outcome
occurs in the absence of detectable changes in amyloid peptide
deposition [48].

Evidence points to a possible role of SIRT1 in the beneficial
effects of CR in AD models. In p25-CK mice, a mouse strain which
displays similar features to AD, SIRT1 levels are increased and
stimulation of SIRT1 by resveratrol or injection with SIRT1 lenti-
virus protects against neuronal death [57]. In addition, 30% FR for
3 months further increased SIRT1 concentration in the brain,
delayed the onset of the disease and maintained synaptic function
[44]. Increasing SIRT1 levels or activating SIRT1 pharmacologically
with NADþ in vitro has also be shown to increase α-secretase
activity and decrease β-amyloid deposition in primary neuronal
cultures from Tg2576 mice, another AD mouse model [85].

Interestingly, a link between AD and type 2 diabetes has been
recently suggested, since both situations could share a common
inflammatory origin [37]. In this context, the benefits of dietary
restriction would not be restricted to direct effects on the brain,
but would also extend to indirect effects due to improved insulin
response.

Amyotrophic lateral sclerosis

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor
neuron disease. The etiology is complex, with 5–10% of the cases
related to autosomal mutations, of which 15–20% are in the
superoxide dismutase 1 gene. Sporadic ALS has poorly understood
environmental causes (reviewed in [42]).

Contrary to other pathologies, and despite the fact that dietary
restriction reduces oxidative imbalance, which is believed to be a
main cause in ALS progression, the benefits of dietary restriction in
ALS are far from clear. In a study using mice that overexpress a
G93A mutation in the superoxide dismutase 1 gene, a common
genetic model to study ALS, long-term 40% CR hastened the onset
of the disease [50,79]. Transient (13–15 days) CR followed by ad
libitum feeding also hastened disease development in males,
while females remained unaffected by the diet [49]. In the same
model, IF was also ineffective in delaying the onset of the disease
and detrimental for disease progression [82]. However, a delay
in the appearence of pathological traits and extended lifespan has
been observed following 40% FR in another ALS genetic model,
mutant H46R/H48Q mice, which harbour a different mutation in
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the superoxide dismutase 1 gene [10]. These results suggest that
the progression of the pathology is different in these two models,
and indicate that too little is known to predict what results would
be expected with the use of dietary restriction in human ALS.

Epilepsy

Epilepsy is a term used to describe a variety of disorders which
can arise from different causes, characterised by the appearance of
spontaneous and recurrent seizures. Although the etiology is not
clear, oxidative imbalance and mitochondrial dysfunction are
believed to be possible mediators of epileptogenesis [1].

Epilepsy is studied in rodents using convulsive drugs such as
pentylenetetrazole (PTZ) or kainic acid (KA), or by electrical stimula-
tion, which induces seizures and damage in the CA1 and CA3 regions
of the hippocampus. Early dietary treatments of epilepsy showed
that a ketogenic diet, which has high fat and low carbohydrate
content, was effective in reducing seizures (for a historical review see
[8]). By using fat over carbohydrates, the ketogenic diet promotes the
formation of ketone bodies in the liver which, unlike fatty acids, are
able to cross the blood–brain barrier and used in the brain as an
alternative to glucose (see Fig. 2). Thus, ketones have been identified
as putative mediators of the ketogenic diet effect.

Since the ketogenic diet itself has fewer calories than a normal
diet, it is plausible that some of its effects could be due to
restricting the amount of calories ingested. Supporting this
hypothesis, dietary restriction can partially mimic the ketogenic
diet in the context of epilepsy. Both IF and FR have been shown to
reduce the extent of cell death in the hippocampus following KA
injection [3,18,27]. The higher efficacy of IF over FR observed in
one of these works was correlated with the higher levels of β-
hydroxybutyrate, specifically increased in IF.

As for seizure appearance, FR as low as 10% is sufficient to greatly
increase the threshold to the toxin PTZ. Although this effect was
somewhat lower than with an isocaloric ketogenic diet, it occurred in
the absence of a noticeable increase in the concentration of β-
hydroxybutyrate, suggesting that the increase in circulating ketone
bodies could be less important in the development of seizures than
originally thought [13]. More insight was obtained in a recent work in
which the effects of short-term IF, FR and the ketogenic diets in
response to different epileptogenic stimuli in Swiss mice was studied.
When seizures were induced by 6 Hz treatment, the ketogenic diet
was protective, while both IF and FR increased seizure activity.
However, when seizures were induced by KA administration, IF, but
not the ketogenic diet, was protective (DRwas not assayed in this test).
In a third test, the maximal electroshock test, where a sine wave pulse
is delivered rather than the square waved pulse used in the 6 Hz test,
IF showed a lower threshold than AL, and the ketogenic diet showed
no effect. Finally, IF was also shown to be ineffective against PTZ.
Moreover, the authors failed to see a correlation between the levels of
glucose or circulating ketones with seizure susceptibility [52].

Interestingly, it has been reported that pre-treatment with
adiponectin protects cultured hippocampal neurons against KA-
induced excitotoxicity [87]. Protection has been also observed
in vivo using intracerebroventricular administration of adiponec-
tin, followed by subcutaneous injection of KA, which resulted in
decreased cell death in the hippocampus [55]. Although seizures
were not evaluated in this latter work, these observations pinpoint
adiponectin as a possible mediator of some of the effects of dietary
restriction in KA-induced neuronal damage.

Parkinson’s disease

Another well-known neurodegenerative condition is Parkin-
son’s disease (PD), which causes progressive motor dysfunction
due to selective loss of dopaminergic neurons from the substantia

nigra that project to the striatum. In addition, accumulation of
Lewy bodies containing aggregated proteins such as α-synuclein,
increased inflammation, mitochondrial dysfunction and oxidative
imbalance are all common features observed [54].

Mitochondrial alterations in PD include increased mitochondrial
permeability transition pore opening, loss of NAD, defective mito-
chondrial dynamics and impaired clearance of damaged mitochon-
dria, leading to accumulation of mitochondrial DNA mutations and
high ROS levels. PD-linked mutations in genes that codify for
mitochondrial proteins include PINK1, parkin, and LRRK2 [95,24].

Several models are used to study PD, including α-synuclein mutant
mice, which develop a degenerative condition similar to PD in
humans, and administration of rotenone or 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP), which induce a parkinsonian phe-
notype by impairing mitochondrial complex I activity [15].

Mice on an IF diet are protected against neuronal loss in the
substantia nigra and show improved motor function after MPTP
administration [34]. The same diet has shown beneficial effects even
when started after MPTP administration, decreasing the extracellular
levels of striatal glutamate [53]. In addition, reports indicate that IF
can alleviate some of the collateral effects of PD, such as the elevated
heart rate in a mouse model of α-synuclein accumulation [46] and
the high levels of circulating corticosterone, which are detrimental
for neuronal viability and plasticity [88]. However, the same diet was
ineffective in rats against nigrostriatal degeneration induced by 6-
hydroxydopamine, an alternative model for PD [4]. Interestingly, a
study carried out in primates indicates that a 30% CR diet prior to
MPTP administration increases the level of neurotrophic factors in
the brain, improves motor activity and reduces the loss of dopamine
and its related metabolites [68].

Recent evidence indicates that the gastrointestinal system
could play a noted role in the development of PD and that the
orexigenic signal ghrelin, which is produced in the stomach in
response to fasting and whose levels are increased during dietary
restriction, could be neuroprotective [9].

Conclusions

The special metabolic requirements of the brain, along with its
fundamental role in managing energy homeostasis of the organ-
ism, make this organ a primary target of dietary interventions. The
cellular adaptations of neurons and astrocytes under these condi-
tions are still poorly understood, but probably involve changes in
mitochondrial function and metabolic reprogramming, and take
place in a coordinated manner with alterations in other organs,
including a lower use of carbohydrates, mobilization of fat reser-
voirs and changes in levels of circulating hormones that regulate
energy use and inflammation.

Despite a lack of knowledge regarding its molecular mediators,
the effects of dietary restriction in the context of brain pathology
are remarkable. Importantly, the effects are usually not only
restricted to preventing the onset of these conditions, but they
also delay development once started or promote faster recovery.
In the search for the mechanisms through which dietary restric-
tion acts, special attention must be given to situations where
interventions have proven to be inefficient or even detrimental,
such as ALS. The identification of singularities in these models may
provide important clues as to how these diets operate. Detailed
and unified protocols are also vital in this pursuit.
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