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Cancer cells, relative to normal cells, demonstrate significant alterations in metabolism that are proposed
to result in increased steady-state levels of mitochondrial-derived reactive oxygen species (ROS) such as
O2

��and H2O2. It has also been proposed that cancer cells increase glucose and hydroperoxide
metabolism to compensate for increased levels of ROS. Given this theoretical construct, it is reasonable
to propose that forcing cancer cells to use mitochondrial oxidative metabolism by feeding ketogenic diets
that are high in fats and low in glucose and other carbohydrates, would selectively cause metabolic
oxidative stress in cancer versus normal cells. Increased metabolic oxidative stress in cancer cells would
in turn be predicted to selectively sensitize cancer cells to conventional radiation and chemotherapies.
This review summarizes the evidence supporting the hypothesis that ketogenic diets may be safely used
as an adjuvant therapy to conventional radiation and chemotherapies and discusses the proposed
mechanisms by which ketogenic diets may enhance cancer cell therapeutic responses.
& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
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Introduction

Numerous dietary components and supplements have been
evaluated as possible cancer prevention agents; however, until
recently few studies have investigated diet as a possible adjuvant
to cancer treatment. One of the most prominent and universal
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).



Fig. 1. Comparison of the caloric composition of the ketogenic diet, Atkins diet, and
American diet. On any given day Americans consume an average of 265 g of
carbohydrates (50% of total calories), 78.3 g of total fat (35% of total calories), and
78.1 g of protein (15% of total calories). Using percentage of total calories, these
values are consistent with current 2010 United States Department of Agriculture
recommendations that call for 45–65% of total calories from carbohydrate, 20–35%
of total calories from fat, and 10–15% of total calories from protein (80).
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metabolic alterations seen in cancer cells is an increase in the rate
of glycolytic metabolism even in the presence of oxygen [1].
Although increased glucose uptake by tumor cells was thought
to support increased cancer cell proliferation and energy demands,
recent studies suggest that increased tumor cell glycolytic meta-
bolism may represent an adaptive response to escape metabolic
oxidative stress caused by altered mitochondrial oxygen metabo-
lism [2–4]. These data support the hypothesis that cancer cells are
reliant on increased glucose consumption to maintain redox
homeostasis due to increased one electron reductions of O2 to
form O2

�� and H2O2 in mitochondria. This divergence from
normal cell metabolism has sparked a growing interest in target-
ing mitochondrial oxygen metabolism as a means of selectively
sensitizing cancer cells to therapy [5–17]. In this regard, dietary
modifications, such as high-fat, low-carbohydrate ketogenic diets
that enhance mitochondrial oxidative metabolism while limiting
glucose consumption could represent a safe, inexpensive, easily
implementable, and effective approach to selectively enhance
metabolic stress in cancer cells versus normal cells.
What is a ketogenic diet?

A ketogenic diet consists of high fat, with moderate to low
protein content, and very low carbohydrates, which forces the
body to burn fat instead of glucose for adenosine triphosphate
(ATP) synthesis. Generally, the ratio by weight is 3:1 or 4:1 fat to
carbohydrateþprotein, yielding a diet that has an energy distribu-
tion of about 8% protein, 2% carbohydrate, and 90% fat. Fig. 1 shows
the composition of the clinically available 4:1 KetoCal© ketogenic
diet in comparison to other related diets.

When an individual ingests a ketogenic diet, fat metabolism
occurs via the oxidation of fatty acids by the liver, producing the
ketone bodies including acetoacetate, β-hydroxybutyrate, and
acetone. Ketones are transported in the blood to tissues where
they are converted to acetyl-CoA, a substrate in the first step of the
citric acid cycle. The low carbohydrate content of the ketogenic
diet may cause a modest reduction of blood glucose and overall
greater glycemic control resulting in lower hemoglobin A1C levels
[18]. This treatment can also stimulate gluconeogenesis in humans
to compensate for the drop in blood glucose levels [19]. The
adherence and effectiveness of ketogenic diets can be monitored
by measuring serum and urine β-hydroxybutyrate [20].
The discovery of ketogenic diets as a disease therapy

Since Hippocrates, prolonged periods of fasting have been
recorded as a therapeutic tool for epilepsy [21]. Early 20th century
medical literature has multiple case reports suggesting patients
with various illnesses, including epilepsy, benefited from short, 2–
3 week fasts and these studies attributed the success of fasting to
dehydration, ketosis, or acidosis [21]. In 1921, Dr. R.M. Wilder at
the Mayo Clinic proposed a diet in which the major portion of
calories were derived from fat, mimicking the biochemical
changes of fasting for the treatment of epilepsy. He coined the
term ketogenic diet for this dietary composition [21]. With the
development of safe and effective anticonvulsant drugs such as
phenytoin and sodium valproate in the 1950s, interest in the
ketogenic diet waned but the therapy was still utilized in cases
where the symptoms of disease were refractory to other drug
therapies.

Based on clinical experiences, ketogenic diets began to re-
emerge in the mid-1990s as a frontline and acceptable alternative
in childhood epilepsy patients who were unresponsive to other
anticonvulsant drug therapies. A recent randomized controlled
study from University College London showed a clear benefit of
the ketogenic diet in controlling childhood seizures. In the final
analysis of the 54 patients in the diet group, 61% experienced
significant reductions in seizures compared to 8% of patients in the
control group [22]. In addition, after consuming the diet for
approximately 6 months, there was no evidence of significant
adverse effects on childhood cognition or social adaptation [23].
Clinical applications of ketogenic diet

Increased recognition of the safety and efficacy of using
ketogenic diets in the treatment of epilepsy has resulted in
successful application of this dietary intervention to other dis-
orders. The most notable and well-studied use of a ketogenic diet
is for the treatment of obesity popularized by Dr. Robert Atkins
(see Fig. 1) (Dr. Atkins Diet Revolution 1972). Ketogenic diets have
also been shown to be beneficial in the treatment of patients with
glucose transporter defects and other inborn metabolic disorders
[24]. The diet is reported to show promise in slowing the
progression of amyotrophic lateral sclerosis [25], and there is a
growing body of evidence suggesting ketogenic diets may be
beneficial in other neurodegenerative diseases including Alzhei-
mer’s disease and Parkinson’s disease [26]. In addition, there are
case reports and small case studies indicating improvement in
patients with autism [27] depression [28], polycystic ovary syn-
drome [29], and type 2 diabetes mellitus [18].
Ketogenic diets in cancer therapy

Recently, ketogenic diets have been studied as an adjuvant to
cancer therapy in both animal models and human case reports. As
early as 1987, Tisdale et al. saw decreased tumor weight and
improved cachexia in mice with colon adenocarcinoma xenografts
eating a ketogenic diet [30]. Additional studies have shown that
ketogenic diets reduce tumor growth and improve survival in
animal models of malignant glioma [31–33], colon cancer [34],
gastric cancer [35], and prostate cancer [36–38]. Furthermore,
ketogenic diets have been hypothesized, with some supporting
evidence, to potentiate the effects of radiation in malignant glioma
models [39] as well as in non-small cell lung cancer models [5].
Fasting, which also induces a state of ketosis, has been shown to
enhance responsiveness to chemotherapy in pre-clinical cancer
therapy models as well as possibly ameliorating some of the



Fig. 2. Comparison of normal cell and tumor cell metabolism on an American diet and a ketogenic diet. Relative to normal cells, tumor cells have been hypothesized to have
increased mitochondrial DNA mutations as well as alterations in the expression of nuclear encoded mitochondrial proteins, resulting in increased production of reactive
oxygen species (ROS) during mitochondrial respiration. Increased tumor cell ROS increases tumor cell dependence upon glucose metabolism, resulting in generation of
NADPH and pyruvate via the pentose phosphate shunt and pyruvate from glycolysis. NADPH and pyruvate reduce hydroperoxides. Ketogenic diets decrease the capability of
tumor cells to produce NADPH because, in most tissues, fat metabolism is unable to undergo gluconeogenesis to form glucose-6-phosphate (G-6-P) necessary to enter the
pentose phosphate shunt. Thus, ketogenic diets should further increase the oxidative stress in tumor cells relative to normal cells by limiting NADPH regeneration.
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normal tissue side effects seen with chemotherapy [40]. Fasting
cycles are also reported to retard the growth of tumors and
sensitize a range of cancer cell types to chemotherapy [40,41].

Some of the clinical results include a case report of two female
pediatric patients, with advanced stage malignant astrocytoma
who demonstrated a 21.8% decrease in tumor SUV when these
patients were fed a ketogenic diet, as determined by uptake of
2-deoxy-2[18F]fluoro-D-glucose (FDG) using positron emission
tomography (PET) [42]. A more recent case report showed im-
provement in a 65 year old female patient with glioblastoma
multiforme treated with calorie-restricted ketogenic diet together
with standard treatment [43]. Importantly, a quality of life study in
patients with advanced cancer found that a ketogenic diet had no
severe adverse effects, improved emotional functioning, and
reduced insomnia [44].
Proposed mechanism of action of ketogenic diet in cancer

Mitochondrial metabolism and cancer

Most cancer therapies are designed to take advantage of the
metabolic and physiological differences that exist between cancer
cells and normal cells. Compared to normal cells, cancer cells
exhibit increased glucose metabolism as well as alterations in
mitochondrial oxidative metabolism that are believed to be the
result of chronic metabolic oxidative stress [3,4,45] (Fig. 2). Mi-
tochondria are involved in the regulation of cellular energy
production through the process of oxidative phosphorylation
where electron transport chain (ETC) activity is used in the
generation of cellular ATP [46]. In the mitochondrial ETC, electrons
are shuttled down complexes I–IV, resulting in the generation of
transmembrane proton gradient that is coupled to ATP production



Fig. 3. Possible acute and chronic side effects associated with the ketogenic diet.
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through ATP synthase (Complex V). Studies have shown increased
prevalence of mitochondrial DNA mutations as well as alterations
in the expression of nuclear encoded mitochondrial proteins in
many human cancers [47–49] including head and neck [50],
prostate [51], ovary [52], and liver cancers [53]. Previous data
suggests that the susceptibility of mitochondrial DNA to mutations
is largely due to the increase in ROS levels in this organelle
[6,49,54–57]. Furthermore, recent studies have shown that breast
and colon cancer cells demonstrate significantly increased steady-
state levels of ROS relative to normal colon and breast cells [3].
These differences were even more pronounced in the presence of
mitochondrial ETC blockers, suggesting dysfunctional mitochon-
drial ETCs as the major source of elevated ROS production in
cancer cells [3]. Overall, there is substantial literature indicating
that there is a significant increase in intracellular O2

�� and H2O2

in cancer cell mitochondria relative to normal cells and that this
could represent a target for enhancing cancer therapy [5,7,9–
14,16,17].

Glucose dependence of cancer cells

Glycolysis mediates the enzymatic breakdown of glucose to
pyruvate, which in the presence of oxygen is converted to acetyl-
CoA and enters the Citric Acid Cycle in the mitochondria. In the
absence of oxygen, pyruvate is alternatively converted into lactate.
Normal cells link pyruvate production to mitochondrial respiration
to efficiently generate ATP via oxidative phosphorylation and
usually demonstrate low levels of glycolysis as well as lactate
production. In contrast to normal cells, cancer cells demonstrate
increased glucose consumption, even in the presence of oxygen [1]
which was suggested to occur because of defective mitochondrial
respiration requiring increased glycolysis as a compensatory
response.

Numerous animal studies over the past 60 years have not only
confirmed the observation of increased glucose consumption in
cancer cells but also demonstrate the importance of glucose for
tumor survival and metastasis. The flux of energy-yielding sub-
strates across colon carcinomas in patients has demonstrated that
net glucose uptake and lactate release by malignant tumors
exceeds the peripheral non-malignant exchange rates by 30 and
43 fold, respectively, while no significant differences existed
between tumor and peripheral tissue in fatty acid or ketone
balance. FDG PET conclusively demonstrates that most human
carcinomas have an increased glucose demand when compared to
the surrounding normal tissue [58].

In addition to abnormal aerobic glycolysis, cancer cells have
increased pentose phosphate pathway activity [3,59]. The pentose
phosphate pathway oxidizes glucose to produce two molecules of
the reducing equivalent nicotinamide adenine dinucleotide phos-
phate (NADPH) and ribose-5-phosphate. NADPH acts as a cofactor
for the glutathione/glutathione peroxidase system as well as the
thioredoxin/thioredoxin peroxidase system [60]. These thiol sys-
tems are responsible for detoxifying H2O2 and organic peroxides,
thereby maintaining the redox balance by preventing and repair-
ing oxidative damage.

Glucose metabolism is known to play a major role in the
detoxification of peroxides both through the formation of pyruvate
(which scavenges peroxides directly through a deacetylation
reaction) and the regeneration of the redox cofactor NADPH.
Previous studies have shown glucose deprivation selectively
causes oxidative stress and toxicity in human cancer cells relative
to normal cells that is reversed upon addition of superoxide and
peroxide scavengers [2,3]. Furthermore, many in vitro and in vivo
studies have successfully investigated the use of glycolytic inhibi-
tors to cause selective cancer cell toxicity via a mechanism
involving metabolic oxidative stress [3,7,61–65].
Ketogenic diets increase cancer cell oxidative stress

Ketogenic diets may act as an adjuvant cancer therapy by two
different mechanisms that both increase the oxidative stress inside
cancer cells. Lipid metabolism limits the availability of glucose for
glycolysis restricting the formation of pyruvate and glucose-6
phosphate which can enter the pentose phosphate pathway
forming NADPH necessary for reducing hydroperoxides (Fig. 2).
Additionally, lipid metabolism forces cells to derive their energy
from mitochondrial metabolism. Because cancer cells are believed
to have dysfunctional mitochondrial ETCs resulting in increased
one electron reductions of O2 leading to ROS production, cancer
cells will be predicted to selectively experience oxidative stress,
relative to normal cells, when glucose metabolism is restricted in
the case of feeding ketogenic diets (Fig. 2). Similar to fat metabo-
lism, protein derived energy production, such as in glutaminolysis,
forces cells to derive their energy from mitochondrial metabolism
and would be expected to increase cancer cell oxidative stress.
However, many amino acids enter the Citric Acid Cycle through
alpha-keto-glutarate which may undergo gluconeogenesis allow-
ing for the production of NADPH. Thus, protein metabolism may
not lead to the same levels of increased tumor cell oxidative stress
as fat metabolism.

Evidence of ketogenic diets increasing cancer cell oxidative
stress is present both clinically and in animal models. Hyperketotic
diabetic humans have a higher level of lipid peroxidation in red
blood cells and a significant decrease in cellular glutathione
relative to normal ketonic diabetic controls [66]. Jain et al. also
found elevated indices of lipid peroxidation in cultured human
endothelial cells treated with acetoacetate [66]. Acetoacetate was
also found to deplete cellular glutathione and increase intracel-
lular peroxides in primary rat hepatocytes [67]. Chronic exposure
to β-hydroxybutyrate was shown to increase ROS production in
cardiomyocytes [68]. Combining a ketogenic diet with hyperbaric
oxygen therapy decreased tumor growth rate, increased mean
survival time, and increased β-hydroxybutyrate compared to
controls in a metastatic mouse cancer model [69]. Thus combining
a ketogenic diet with hyperbaric oxygen may further increase the
oxidative stress inside of tumor cells. Furthermore, animals
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bearing lung cancer xenografts fed a ketogenic diet and treated
with chemotherapy and radiation had increased 4-hydroxy-2-
nonenal (4HNE)-modified protein relative to tumors treated with
chemotherapy and radiation therapy alone [5]. 4HNE is a product
of lipid peroxidation that damages proteins by forming adducts
and is therefore both a marker of lipid and protein damage during
oxidative stress.

Potential risks of ketogenic diets

Ketogenic diets haves been recognized to be effective at
controlling seizures and inducing weight loss but have been
suggested to cause some potential side effects. The acute side
effects of high fat intake are typically lethargy, nausea, and
vomiting due to intolerance of the diet, especially in children
[70] (Fig. 3). Children can be prone to hypoglycemia due to low
glucose intake and nausea [70]. In contrast, gastrointestinal dis-
comfort is a common side effect in adults due to the high fat
content of the diet [71]. A prospective pilot study on ketogenic
diets reported a substantial and progressive increase in the
cholesterol levels in patients after 1 year [72]. Past studies have
also reported some deficiencies in trace minerals like selenium,
copper, and zinc in the serum levels of patients on ketogenic diets,
suggesting that appropriate supplementation of trace minerals is
needed while on the diet [73].

Although no severe adverse changes have been reported with
long term consumption of a ketogenic diet, renal damage due to
excretion of nitrogenous waste products is also a possible side
effect [74]. While no studies report absolute renal damage asso-
ciated with ketogenic diet use, 6% of cases involving children with
intractable epilepsy have reported the presence of kidney stones
following eating the ketogenic diet for 1–5 years [75,76]. Most
studies that examine the adverse effects of ketogenic diets have
been done in children with epilepsy that had prolonged consump-
tion of the diet over a period of 1–6 years. Most adverse
effects reported in children only occur in patients who are on
the ketogenic diet for greater than 1 year and include
Fig. 4. (A) Ketogenic diet phase I clinical trial schema and (B) sample ketogenic diet
nutritionally complete KetoCal©. Ketosis is confirmed by laboratory measurement prior
hypertriglyceridemia, decreased growth (decreased levels of in-
sulin-like growth factor–1) and progressive bone mineral content
loss. In addition, the most serious adverse effects of ketogenic
diets can be prevented or corrected with appropriate measures
such as vitamin supplements, assessment of bone function, and
use of oral potassium citrate to decrease the risk of kidney stones
[76,77].

In contrast, studies of ketogenic diets in adults show fewer and
more minor adverse effects. In a 6-month study of adults on low-
carbohydrate ketogenic diets, the only adverse effects noted were
an increase in low-density lipoprotein (LDL) cholesterol levels,
shakiness, and uneasiness [78]. In another trial, only 3 out of 72
adult patients on ketogenic diets for 1 year had adverse effects,
with two showing elevated LDL cholesterol and one developing a
kidney stone [79]. Another expected change associated with
ketogenic diets is elevated blood ketones. This raises some concern
in diabetic patients who are at an increased risk of developing
ketoacidosis, a potentially life-threatening condition. However, the
level of blood ketones as a result of ketogenic diet use in most
adult patients is modest and is not accompanied with high blood
glucose and therefore presents a low risk for ketoacidosis.

Clinical trials using the ketogenic diet for cancer control

There are currently 62 trials assessing low carbohydrate diets
as a potential therapy for a variety of diseases of which 11 trials are
assessing ketogenic diets as an adjuvant cancer therapy. In the
University of Würzburg, Germany, patients having failed tradi-
tional cancer therapy and with no other salvage options have been
enrolled in trials involving the ketogenic diet. Preliminary reports
indicate that patients who were able to continue the ketogenic
diet therapy for over 3 months showed improvement with a stable
physical condition, tumor shrinkage, or slowed growth [44].

At the University Hospital in Tübingen, Germany a Phase
1 ERGO study designed to determine whether a mild ketogenic
diet can influence quality of life and survival of patients with
glutamino recurrent glioblastoma was conducted by Dr. Johannes
meal with a similar 4:1 ratio of fat to carbohydrateþprotein as provided in the
to beginning radiation therapy.
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Rieger and Dr. J. Steinbachand. No severe adverse events were
reported (http://ClinicalTrials.gov/show/NCT00575146).

At the University of Iowa, three phase I trials assessing the
tolerability of a ketogenic diet in combination with chemotherapy
and radiation therapy are on-going in locally advanced pancreas,
lung cancer as well as head and neck cancer (http://ClinicalTrials.
gov). The typical schema is shown in Fig. 4a. While receiving
standard of care radiation and chemotherapy, patients are con-
suming a ketogenic diet for 5 weeks; serum glucose and ketone
levels are assessed daily in combination with weekly oxidative
stress markers. A sample ketogenic diet is demonstrated in Fig. 4b.
Conclusions

Despite recent advances in chemo-radiation, the prognosis for
many cancer patients remains poor, and most current treatments
are limited by severe adverse events. Therefore, there is a great
need for complimentary approaches that have limited patient
toxicity while selectively enhancing therapy responses in cancer
versus normal tissues. Ketogenic diets could represent a potential
dietary manipulation that could be rapidly implemented for the
purpose of exploiting inherent oxidative metabolic differences
between cancer cells and normal cells to improve standard
therapeutic outcomes by selectively enhancing metabolic oxida-
tive stress in cancer cells.

Although the mechanism by which ketogenic diets demon-
strate anticancer effects when combined with standard radio-
chemo-therapies has not been fully elucidated, preclinical results
have demonstrated the safety and potential efficacy of using
ketogenic diets in combination with radio-chemo-therapy to
improve responses in murine cancer models. These preclinical
studies have provided the impetus for extending the use of
ketogenic diets into phase I clinical trials that are currently
ongoing.
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