Exercises QFT II — 2018/2019

Problem Sheet 5

Problem 9: On-shell renormalization prescription

Consider the renormalized 4pt function for the scalar field theory with quartic potential in the (modified) minimal subtraction scheme (\overline{MS}) :

$$i\tilde{\Gamma}_{r}^{(4)}(s,t,u) = -i\lambda_{r} - i\frac{\lambda_{r}^{2}}{32\pi^{2}} \int_{0}^{1} dx \left[\ln\left(\frac{m^{2} - x(1-x)s}{4\pi\mu^{2}}\right) + \ln\left(\frac{m^{2} - x(1-x)u}{4\pi\mu^{2}}\right) + \ln\left(\frac{m^{2} - x(1-x)u}{4\pi\mu^{2}}\right) \right] + \mathcal{O}(\lambda_{r}^{3})$$
(1)

The Mandelstam variables must satisfy the following condition on-shell: $s + t + u = 4m_{\rm ph}^2$, where $m_{\rm ph}$ is the physical mass.

1. Explain why we can substitute m with $m_{\rm ph}$ at this order in perturbation theory.

Define the physical coupling constant to be

$$\lambda_{\rm ph} \equiv -\tilde{\Gamma}^{(4)}(s = 4\bar{E}^2, t = u = 2m^2 - 2\bar{E}^2), \qquad (2)$$

where \overline{E} is some reference energy scale (at which $\lambda_{\rm ph}$ is measured).

- 2. Compute $\lambda_{\rm ph}$.
- 3. Express λ_r in terms of $\lambda_{\rm ph}$.
- 4. Express $\tilde{\Gamma}_r^{(4)}$ in terms of $\lambda_{\rm ph}$ (substitute the expression of λ_r found in the previous point). The dependence on the arbitrary scale μ should disappear.
- 5. By studying the kinematics of the $2 \rightarrow 2$ scattering process, interpret \overline{E} as the energy of the colliding particle in the Center of Mass system.

Problem 10: $\lambda \phi^3$ theory in 6 dimensions

Consider the interacting scalar theory with Lagrangian

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} \phi \, \partial^{\mu} \phi - \frac{m^2}{2} \phi^2 - \frac{\lambda}{6} \phi^3 \,. \tag{3}$$

- 1. Show that when the number of spacetime dimensions is 6, the coupling constant λ is dimensionless.
- 2. Derive the Feynman rules.
- 3. Draw the tree-level and one-loop graphs for the two-point function.
- 4. Applying the Feynman rules, show that

$$\tilde{\Gamma}^{(2)} = p^2 - m^2 + \Pi \tag{4}$$

where, in 6 dimensions,

$$\Pi = i\alpha\lambda^2 \int \frac{d^6q}{(2\pi)^6} \frac{i}{q^2 - m^2 + i\epsilon} \frac{i}{(p-q)^2 - m^2 + i\epsilon}$$
(5)

and the constant α should be determined.

- 5. Is the integral above convergent?
- 6. Use dimensional regularization and compute Π isolating the divergent term in 6 dimensions. You should get a result of the form

$$\frac{1}{3-\omega}(A\,m^2 + B\,p^2) \tag{6}$$

- 7. Find the expression for the physical mass $m_{\rm ph}$ (neglecting the terms that vanish when $\omega \to 3$).
- 8. How can we reabsorb the divergent term proportional to p^2 ? Notice that we still have the possibility of scaling the field ϕ by an arbitrary constant $Z_{\phi}^{1/2}$ that can depend on ω , i.e.

$$\phi = Z_{\phi}^{1/2} \phi_r \,. \tag{7}$$

Find the constant Z_{ϕ} such that

$$\tilde{\Gamma}_r^{(2)} = p^2 - m_{\rm ph}^2 + \mathcal{O}(\lambda) , \qquad (8)$$

where $\Gamma_r^{(2)} \sim \langle \phi_r \phi_r \rangle^{-1}$ is the two-point function computed by using the renormalized field ϕ_r instead of ϕ .