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1.1.1 The continuum hypothesis and the concept of material
element

(subsec-1)

What is a continuum?

Fluid mechanics is concerned with the behaviour of matter on a macroscopic scale
which is large with respect to the distance between molecules whose structure does
not need to be taken into account explicitly. The behaviour of fluids is assumed to be
the same as they were perfectly continuous in structure and the physical properties
of the matter contained within a given small volume are regarded as being spread
uniformly over that volume. This is the so called continuum hypothesis, which is
supposed to be hereafter valid without exceptions. From the observational view-
point, the reason why the particle structure of the fluid is irrelevant is that the sensi-
tive volume of a certain instrument embedded in the fluid itself is small enough for
the measurement to be a local one relative to the macroscopic scale even if it is large
enough for the fluctuations arising from the molecular motion to have no effect on
the observed average. If the volume of fluid to which the instrument responds were
comparable with the volume in which variations due to molecular fluctuations take
place, observations would fluctuate from one observation to another and the results
would vary in an irregular way with the size of the sensitive volume of the instru-
ment. On the opposite, if the volume of fluid to which the instrument responds were
too large relatively to the variations associated to spatial distribution of physical
quantities, the instrument would not be able to detect even macroscopic features of
the fluid. Therefore, the fluid is regarded as a continuum when the measured fluid
property is constant for sensitive volumes small on the macroscopic scale, but large
on the microscopic (molecular) scale. This concept is illustrated in Fig. 1.1. In any
case, there is observational evidence that the common real fluids, both gases and
liquids, move as they are continuous both under normal conditions and also for con-
siderable departures from them.

The concept of material element

(Sec1.1) Physical laws apply directly to a fixed collection of matter and for this
reason the equations governing fluid mechanics and thermodynamics are developed
most intuitively in a framework where the dynamical or physical quantities refer to
identifiable pieces of matter (Lagrangian description) rather than to fields (Eule-
rian description). The former description relies on the concept of material volume
of fluid (or parcel) which, by definition, consists always of the same fluid portion
and move with them, as Fig. 1.2 shows. In this perspective, the flow quantities are
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defined as functions of time and of the choice of a material element of fluid and
describe the history of this selected fluid element.

Material elements of fluid change their shape as they move, so each selected
element should be selected in such a way that its linear extension is not involved;
therefore the element is specified by the position of its centre of mass at some initial
instant, on the understanding that its initial linear dimensions are so small as to
guarantee smallness at all subsequent instants in spite of distortions and extensions
of the element. The Eulerian description is related to the Lagrangian description by
the following kinematic constraint: the field property at a given location and time
must equal the property possessed by the material element occupying that position
at that instant.
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Fig.1.1 

The plot illustrates qualitatively the effect of size of sensitive volume of an instrument on the density 

measurement. 

Fig. 1.1 The plot illustrates qualitatively the effect of size of sensitive volume of an instrument on
the density measurement.

(Fig-1-1)
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Fig. 1.2 

Time evolution of a material volume  of fluid. Assume that, at a certain time  , point 1 lies 

outside , point 2  lies inside  while point 3  belongs to the surface enclosing . Then, at 

each subsequent time , point 1 will be situated outside 

V it

! #itV ! #itV ! #itV

t ! #tV , point  will be situated inside 2 ! #tV  and  

point 3  will belong to the surface enclosing ! #tV . 

 

Fig. 1.2 Time evolution of a material volume V of fluid. Assume that, at a certain time ti, point
“1” lies outside V (ti), point “2” lies inside V (ti), while point “3” belongs to the surface enclosing
V (ti). Then, at each subsequent time t, point “1” will be situated outside V (ti), point “2” will be
situated inside V (ti) and point “3” will belong to the surface enclosing V (ti).

(Fig-1-2)
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1.1.2 Kinematics of material elements

(subsec-2)

The Lagrangian derivative

A material element of fluid is identified by the “initial” position of its centre of mass,
say x0 = (x0, y0, z0) in a Cartesian coordinate frame, and by the trajectory x(t) =
(x(t), y(t), z(t)) traced out in the course of its motion with velocity u(t) = (u, v, w),
where

(2.1) u =
dx
dt

, v =
dy
dt

, w =
dz
dt

. (1.1)

The vector dx = (dx, dy, dz) is the incremental displacement of the given material
element during the time interval dt. By the kinematic constraint reported at the end
of Section 1.1.1, velocity (1.1) is equal to the field value u(x(t)) located at the
material element’s position x(t) at time t. The time growth rate of a scalar, say
θ , representing a physical quantity of a certain material element of fluid in motion
depends both on the change of the position of the same fluid element in the course of
time and on the explicit change in time of the scalar itself. The situation is playfully
described in Fig. 1.3.

Therefore, if δ t is a small time interval, the total variation of θ during this interval
is

(2.2) θ(x+uδ t, t +δ t)−θ(x, t) (1.2)

As δ t→ 0, Taylor’s expansion of (1.2) yields

(2.3) θ(x+uδ t, t +δ t)−θ(x, t) (1.3)

=
∂θ

∂x
uδ t +

∂θ

∂y
vδ t +

∂θ

∂ z
wδ t +

∂θ

∂ t
δ t +O

(
(δ t)2) (1.4)

= δ t
(

∂

∂ t
+u ·∇

)
θ +O

(
(δ t)2) (1.5)

where the components of u are given by (1.1). For δ t → 0, the time growth rate of
θ(x, t) is

(2.4)
θ(x+uδ t, t +δ t)−θ(x, t)

δ t
=

(
∂

∂ t
+u ·∇

)
θ(x, t)+O(δ t) (1.6)

and converges to the so-called Lagrangian derivative of θ . In other words,

(2.5) lim
δ t→0

θ(x+uδ t, t +δ t)−θ(x, t)
δ t

=
D
Dt

θ(x, t) (1.7)

where, by definition,
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D
Dt

:=
∂

∂ t
+u ·∇

Thus, the Lagrangian derivative of θ , i.e.

(2.6)
Dθ

Dt
:=

∂θ

∂ t
+u ·∇θ (1.8)

includes two contributions:

• the first, ∂θ/∂ t, is introduced by temporal changes at the position x where the
material volume is instantaneously located at time t. It is called the Eulerian (or
local) derivative;

• the second, u ·∇θ , is due to the motion of the material volume to positions with
different values of θ . It is the so called advective term.
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Fig. 2.1 

 Mr. Lagrange is situated inside the small material volume , in motion with velocity  in the scalar 

field 

V u!

! t,x #!$ . He measures $  and finds the value 2$  when the material volume that carries him crosses the 

isoline . Then, after the time , the same volume displaces itself of the amount , thus crossing 

the isoline . Mr. Lagrange repeats the measurement and now he finds the value …Finally, he 

states equation (2.6). 

2$"$ t% tu %!

3$"$ 3$

Fig. 1.3 Mr. Lagrange is situated inside the small material volume V , in motion with velocity u
in a portion of space where the scalar field θ(x, t) is defined. He measures θ and finds the value
θ2 when the material volume that carries him crosses the isoline θ = θ2. Then, after a time δ t, the
same volume displaces itself of the amount uδ t, thus crossing the isoline θ = θ3. Mr. Lagrange
repeats the measurement and now he finds the value θ3. . . . Finally, he states equation (1.8).

(Fig-2-1)
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