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Original Article

A handbook of parametric survival models for actuarial use
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Richards Consulting, 4 Caledonian Place, Edinburgh EH11 2AS, UK

(Accepted 20 June 2010)

Traditional actuarial techniques for mortality analysis are being supplanted by statistical models.

Chief amongst these are survival models, which model mortality continuously at the level of the

individual. An assumption of a mathematical form for the hazard function or, equivalently, the

assumption of a continuous distribution for an individual’s lifetime, leads automatically to smooth

fitted mortality rates. This note gives an overview of the survival models commonly found

in statistical packages and compares their suitability for actuarial work with the mortality ‘laws’

proposed by actuaries over the past two centuries. We find that the actuarial laws provide

substantially better fits at post-retirement ages. We also give a common structure of parameterisa-

tion which gives consistent behaviour and interpretation of risk factors across all 16 survival models

listed here. Finally, we consider the benefits of working directly with the log-likelihood function,

including making allowance for the left truncation which is common for the data with which

actuaries work.

Keywords: Survival models; Mortality laws; Left truncation

1. Introduction

Richards (2008) compared of the effectiveness of six actuarial mortality ‘laws’ in

explaining patterns of mortality in a pensioner data set. However, these laws are not all

widely used outside the actuarial community as standard software often cannot handle

them. Instead, such software often makes available other survival models which were not

shown in Richards (2008). This paper provides a comparison of 16 different survival

models and shows why actuaries use their mortality laws in preference to the models often

used by other practitioners. The target audience is actuaries who want to know more

about survival models outside the life-insurance world, and other practitioners who want

to know why actuaries build survival models the way they do.

In this paper a survival model will be regarded as synonymous with a model

for the continuous-time hazard function for an individual. The hazard function is

known to actuaries as the force of mortality, and the hazard rate at age x, mx, is

defined as:
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mx� lim
h00�

1

h
Pr(death before age x�h½alive at age x)

� lim
h00�

h
qx

h
(1)

where hqx denotes the probability of a life currently aged x dying in the small interval of

time h. Using mx contrasts with the historical actuarial habit of using discrete-time

mortality rates, denoted qx, which typically apply over a single year (i.e. 1qx). In the pre-

computer era, qx was preferred for reasons of expediency in calculation.

The models presented here deal with mortality at the level of the individual. However, it

should be noted that a Poisson model for the number of deaths in a group is also a model

for the hazard function, and could hence be viewed as a survival model. Similarly, a model

for qx can be used to approximate the survival curve. Both the Poisson and qx models are

concerned with the count of the number of events taking place, whereas the individual

hazard models used in this paper deal with the time until an event occurs.

One immediate advantage of modelling the hazard rate is that it allows each and every

piece of data to contribute to the model. In contrast, modelling the annualised mortality

rate, qx, involves throwing away data where the policyholder could not have completed a

full year of exposure. While it is possible to make certain assumptions to enable qx models

to handle fractional years of exposure, these assumptions introduce unnecessary

complications.

To illustrate this loss of information in qx models, consider the following example from

Richards (2008). Two groups each consist of four lives alive at the start of the year. During

the course of the year one life dies in each group, making the estimated mortality rate,

q̂A� q̂B�
1
4

in both cases. If the death in Group A occurs at the end of January, the

estimated force of mortality is m̂A�
1

3 1
12

�0:324: If the death in Group B occurs at the start

of December the estimated force of mortality is m̂B�
1

311
12

�0:255: As this simple example

shows, working with the force of mortality means we can use all the information available,

and will usually result in a better model. In contrast, working with q-type rates throws

away the information on time of death and is therefore less sophisticated.

Another reason for using mx is that it can be used to exactly derive qx using Eq. (2):

qx�1�exp

�
�g

t

0

mx�sds

�
(2)

Models for mx also lend themselves to multiple-decrement analysis or competing-risk

problems without further adjustment. In contrast, a model for qx cannot normally be used

to derive mx without further assumptions or approximations. Furthermore, qx models

require more assumptions for each additional decrement simply to fit the model. It is for

these reasons that actuaries are switching to survival models, 16 of which are surveyed in

this paper for use in studying pensioner mortality.

2 S. J. Richards
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2. Data, methodology and terminology

Survival models are widely used in the analysis of medical trials (Collett (2003)). A life-

insurance portfolio or a pension scheme is similar in many ways to a medical trial with

continuous recruitment as new lives join the existing portfolio. However, there are some

important differences, the first of which is scale; a small medical trial might have only a

few tens of observations, whereas a small annuity portfolio could have tens of thousands

of policies. The largest portfolios of annuitant data in the UK can exceed a million

records.

Medical trials are primarily interested in detecting differences between groups or

treatments, but are less concerned with estimating the precise shape of the hazard

function. Actuaries are also interested in differences between groups, but they are also

crucially interested in the shape of the hazard function (and thus survivor function) for

pricing liabilities. The time value of money makes actuaries more keenly interested in the

precise shape of the hazard function than other researchers.

As with medical-trials data, when an extract of mortality data is taken from an

administration system not all lives will be dead at the extract date. Such data are called

right-censored, since all that can be said of the mortality process is that it will occur after

the observation time. Right censorship is standard in survival models, and all software

implementations can handle this easily enough. The upper example in Figure 1 shows a

right-censored observation as the extract has taken place at age xi�ti before death has

occurred (marked with a cross).

A particular feature of life-insurance contracts or pension benefits is that they

commence when people are well into adult life. The lifetimes observed are called left-

truncated, since observation starts at age xi and we have no data on deaths and exposure

prior this age. This poses a problem for many implementations of survival models which

rely on dealing with age-varying mortality through a variable transformation. These

survival models are often fitted using existing algorithms for Generalised Linear Models

(GLMs) � see Aitken et al. (1989), who demonstrate how to fit Weibull and other survival

models using a Poisson GLM. However, such an approach demands that the lives be

xi xi + ti

di = 0

X

X

xi xi + ti

di = 1

Figure 1. Diagram of survival-model setup. The time observed, ti, is shown in grey, while deaths are marked with

a cross, �. Since people do not usually enter into life-insurance contracts at birth, observations are left-truncated,

i.e. lives start being observed at age xi�0. The upper example is right-censored as death happens after the end of

the observation period.

3Parametric survival models for actuarial use
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observed from outset, i.e. from birth if chronological age is to be used directly. Thus,

actuaries working with typical life-insurance data cannot rely on standard implementa-

tions of survival models due to left truncation. Instead, they work directly with the log-

likelihood in Eq. (6). This is computationally more intensive, but it frees the actuary to use

a much wider choice of hazard functions. As we will see, this wider choice leads to some

substantial improvements in model fit.

A feature of some medical trials is interval censoring, namely where death is known to

have occurred between two dates, but the precise date of death is not known. This can

happen where a patient was last examined on a given date (and was hence known to be

alive), but who does not turn up for a later check and the researcher learns that the patient

has died. The date of death is not known, but the interval in which death occurred is

known. In actuarial work, however, the involvement of financial payments and legal

processes means that a precise date of death typically is known, so interval censoring is

rarely required in life-office data.

To fit a survival model we will need to specify the log-likelihood function. For each life

i of n lives we have: (1) an entry age, xi; (2) a time observed, ti; and (3) an indicator

variable, di, for the state of the life at age xi�ti. The variable di takes the value 0 on

survival and 1 on the event of interest. This event can be death (as in this paper) or any

other decrement of interest, such as critical-illness claim, lapse or surrender. The

likelihood function, L, is therefore given by:

L8
Yn

i�1

ti
pxi

mdi

xi�ti
(3)

where tpx is the probability of surviving from age x to age x�t and is given by:

tpx�e�Hx(t) (4)

where Hx(t) is the integrated hazard function:

Hx(t)�g
t

0

mx�sds (5)

We can therefore substitute Eq. (4) into Eq. (3) and take natural logarithms to get the log-

likelihood function, l:

l�
Xn

i�1

�Hxi
(ti)�

Xn

i�1

dilogmxi�ti
(6)

Thus, when applying survival models to individual data, it simply suffices to specify the

structure of the hazard rate, mx, and subsequently derive Hx(t). When fitting any model,

we choose the parameter values to maximise the log-likelihood function in Eq. (6).

Another major difference between medical trials and actuarial work is that life-

assurance data are of policies, not people; administration systems are normally set up to

process policies, these being the legal liability of the insurer. Life-assurance work therefore

requires an additional data-preparation stage not normally required elsewhere; dedupli-

cation, i.e. the identification of multiple annuities held by the same person. Failure to

process policy data into lives would violate the independence assumption, since the
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number of policies per person is correlated with some of the very risk factors actuaries

need to investigate � see Figure 2. In the past actuaries have had to make corrections for

over-dispersion in the absence of proper deduplication � see Daw (1951). However,

actuaries nowadays use proper deduplication algorithms such as those described by

Richards (2008).

To illustrate the practical points in this paper we will use a deduplicated data set of over

300,000 life-office pension annuities with over 40,000 deaths. Figure 3 shows the observed
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Figure 2. Average number of policies per person in each of equal-sized membership bands ordered by total

annual annuity income. Band 1 is the 5% of lives with smallest annual pensions, through to band 20 which is the

5% of lives with the largest annual pensions. Figure reproduced from Richards and Currie (2009).
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Figure 3. Force of mortality for pensioners between ages 30 and 110: observed crude force of mortality

(�)together with fitted values from P-spline regression. There is evidence of data-quality problems above age 95,

which is common for life-office data sets. Source: Richards (2008).
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force of mortality by age on a logarithmic scale. Between ages 60 and 90 mortality

increases in a roughly linear way, i.e. exponentially increasing mortality on the natural

scale. Below age 60 this linearity breaks down as the non-age-related component of

mortality makes itself felt. Above age 95 there is evidence of data-quality problems, which

is common for life-office data sets such as this.

3. Mortality laws and distributions for future lifetime

A major advantage of fitting a formula for the force of mortality is that smoothness is

built-in and there is no need to separately graduate (smooth) the resulting fitted rates. In

this paper we will look at some actuarial mortality laws listed in Table 1. The

parameterisations in Table 1 are often different from those used by the original authors,

such as Gompertz (1825) who gave his law as mx�Bcx, with B�0 and c�0. The more

modern exponential parameterisations mean we can dispense with any constraints on the

range of parameters, allowing them to vary over the entire real line. This has practical

advantages in optimising log-likelihood functions using computers.

The naming convention in Table 1 follows Richards (2008) and is different from what

might be seen elsewhere. For example, the model labelled as Makeham�Beard was

proposed by Perks (1932). We have opted: (1) to use the term Makeham wherever the

constant eo appears; (2) to name the logistic form
ea

1 � ea
after Perks; and (3) to use the

term Beard wherever the logistic form has a so-called heterogeneity parameter, r.

Some of the models in Table 1 are related to the proportional hazards model of Cox

(1972). For example, the Gompertz model can be expressed as a proportion of a baseline

hazard, albeit as a time- or age-varying proportion. The Makeham model, however,

cannot be expressed in terms of a baseline hazard due to the non-multiplicative eo term.

The models in Table 1 are mainly non-linear in their nature, although this does not cause

Table 1. Some actuarial mortality laws and their corresponding integrated hazard functions, Hx(t).

Mortality law mx Hx(t)

Gompertz (1825) ea�bx
(ebt � 1)

b
ea�bx

Makeham (1859) eo�ea�bx teo�
(ebt � 1)

b
ea�bx

Perks (1932)
ea�bx

1 � ea�bx

1

b
log

1 � ea�b(x�t)

1 � ea�bx

 !

Beard (1959)
ea�bx

1 � ea�r�bx

e�r

b
log

1 � ea�r�b(x�t)

1 � ea�r�bx

 !

Makeham�Perks (1932)
eo � ea�bx

1 � ea�bx
teo�

(1 � eo)

b
log

1 � ea�b(x�t)

1 � ea�bx

 !

Makeham�Beard (1932)
eo � ea�bx

1 � ea�r�bx
teo�

(e�r � eo)

b
log

1 � ea�r�b(x�t)

1 � ea�r�bx

 !
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any real difficulties in fitting them. Here we have used derivatives-based methods for

optimising the log-likelihood, where possible, with an explicit formulaic calculation of the

information matrix for inversion to calculate the covariance matrix. Numerical

approximations are used to verify the derivative calculations, or to substitute for

derivatives when they could not be computed in a closed form. For converting into

mortality rates, qx, for use in older actuarial systems we use Eq. (2).

We orientate our descriptions of parameters around the best-known actuarial mortality

law, that of Gompertz (1825). Since the hazard function is a straight line on a logarithmic

scale, we will refer to the value of a as the Intercept, and deviations from this will

be the main effect of a risk factor. The parameter b is the coefficient for age, and

deviations from this for a categorical risk factor will be the interaction of that risk factor

with age. The parameter, o, will be denoted the Makeham parameter, while r will be

denoted the Beard parameter. Both the Makeham and Beard parameters may interact

with main effects, but not with age.

The survival models used outside actuarial work are typically different from those listed

in Table 1. For example, R is a free statistical modelling package and survival models are

available in the survival library. The distributions available in R include: Extreme

value (Gompertz), Logistic, Normal (Gaussian), Weibull, Exponential, Rayleigh,

Lognormal, Log-Logistic and t. The Rayleigh distribution is a special case of the Weibull

distribution, so it need not be considered separately. By way of comparison, SAS is a

proprietary statistical modelling package and survival models are available in the

LIFEREG procedure. The distributions available in SAS include: Exponential, Logistic,

Normal (Gaussian), Weibull, Lognormal, Log-Logistic and Generalised Gamma. We list

the hazard and integrated hazard functions in Table 2.

The parameterisations in Table 2 are often different from what can be found elsewhere.

We use four broad unifying principles in the parameterisations in this paper. First, where

a parameter, u say, must be positive, we use eu instead to allow u to vary across the entire

real line. This makes computation easier as one does not need extra programming to

enforce the sign of the parameter. Second, we adopt a parameterisation such that an

increase in a parameter’s value means an increase in the mortality hazard. Third, for a

given hazard function we adopt the simplest parameterisation possible. Fourth, for

models which are a generalisation of one or more others, we adopt a parameterisation

such that the general form simplifies into the more specific form when a parameter is set

to zero or one, or tends to infinity.

As an example of the first principle, consider the hazard function, h(t), for the

Exponential distribution given by Collett (2003):

h(t)�l (7)

where t �[0,�) and l�0. In keeping with the first principle we therefore use the following

equivalent alternative to Eq. (7):

h(t)�ea (8)

which leaves a free to vary over the real line, thus saving the specification of a constraint.

7Parametric survival models for actuarial use
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As an example of the second principle, consider the definitions of the Lognormal and

Inverse Gaussian distributions in Table 2, which both use �a where Lindgren (1976) and

Collett (2003) use the more typical �m. The definitions in Table 2 mean that a higher

value of a means an increase in risk.

To illustrate a combination of the first and third principles, consider the hazard

function for the Weibull distribution given by Collett (2003):

Table 2. Some truncated distributions for future lifetime and their corresponding hazard and integrated hazard

functions, Hx(t), where x�0.

Distribution mx Hx(t)

Exponential ea tea

Extreme value See Gompertz hazard in Table 1

Pareto
ea

x
ealog

x � t

x

 !

Weibull eaxs�1

ealog
x � t

x

 !
; s�0;

ea

s
[(x�t)s�xs]; otherwise:

8>>><
>>>:

Logistic
1

es 1 � exp �
x � a

es

 ! ! log

�
1 � exp

x � t � a
es

 !

1 � exp
x � a

es

 !

�
Log-Logistic

ea�sxes�1

1 � eaxes
log

1 � ea(x � t)es

1 � eaxes

 !

Normal

1

es
ffiffiffiffiffiffi
2p

p exp �
(x � a)2

2e2s

 !

1 � F
x � a

es

 ! log

1 � F
x � a

es

 !

1 � F
x � t � a

es

 !
0
BBBB@

1
CCCCA

Lognormal

1

xes
ffiffiffiffiffiffi
2p

p exp �
(logx � a)2

2e2s

 !

1 � F
logx � a

es

 ! log

�
1 � F

logx � a
es

 !

1 � F
log(x � t) � a

es

 !

�
Inverse Gaussian

es

2px3

 !1

2

exp �
es(x � e�a)2

2e�2ax

 !

IGS(x)
log

IGS(x)

IGS(x � t)

 !

Gamma
eaxel�1exp(�xeae�l

)

G(el) � g(el;xeae�l
)

log
G(el) � g(el; xeae�l

)

G(el) � g(el; (x � t)eae�l
)

 !

Generalised Gamma

eaxels�1exp �xs ea

s

 !e�l0
@

1
A

G(el) � g el; xs ea

s

 !e�l0
@

1
A

log

�
G(el) � g el; xs ea

s

 !e�l0
@

1
A

G(el) � g el; (x � t)s
ea

s

 !e�l0
@

1
A

�
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h(t)�lgtg�1 (9)

where l�0 and g�0. Collett (2003) refers to l as the scale parameter, and g as the shape

parameter, two terms we will return to in Section 4. We can merge the first two parameters

in Eq. (9) into a single replacement parameter. If we make this new parameter

exponentiated, we can also drop the first positivity constraint. Doing this also eliminates

the need for the positivity constraint on the second parameter, so we can simplify the

Weibull hazard thus:

h(t)�eats�1 (10)

where both a and s are free to vary along the real line. Equation 10 is also an example of

the fourth principle: when s�1, this definition of the Weibull model becomes the same as

Eq. (8), since the Exponential distribution is a special case of the Weibull distribution.

In Table 2, IGS() is the survivor function for the Inverse Gaussian lifetime and is

defined as follows:

IGS(x)�F (1�xea)

ffiffiffiffiffi
es

x

s !
�exp(2es�a)F �(1�xea)

ffiffiffiffiffi
es

x

s !
(11)

where F() denotes the cumulative distribution function for a N(0,1) variable. g() denotes

the incomplete gamma function, defined as:

g(el; x)�g
x

0

e�ssel�1ds (12)

for any real-valued parameter l with x�0, and G(el)�l(el, �). This is not the usual

definition of the incomplete gamma function, but Eq. (2) is consistent with the desire to

avoid constraints on l.

Note that the extreme-value distribution is the Gompertz model and the Logistic

distribution is a special case of the Beard model. Richards (2008) gives worked

equivalences for these.

4. Parameter naming convention

A scale parameter, s, is normally defined as one which satisfies the following:

F (t;s; u)�F (t=s; 1; u) (13)

where F is the cumulative distribution function for the probability distribution and where

u denotes one or more other parameters. Since the survivor function, tpx�1�Fx(t), from

Eq. (4) this is the same thing as saying:

Hx(t;s; u)�Hx(t=s; 1; u) (14)

However, this definition is not adhered to universally. For example, Collett (2003) refers to

l in Eq. (9) as a scale parameter, but it does not have the property of s in Eqs. 13 or 14.

Similarly, the documentation for the survreg function in the survival library in

9Parametric survival models for actuarial use
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R Development Core Team (2004) shows that the terms intercept, scale and shape

parameter are used very loosely within the same software system:

There are mulitiple ways to parametrize a Weibull distribution. The survreg function inbeds (sic) it in

a general location-scale family, which is a different parameterization than the rweibull function, and

often leads to confusion.

survreg’s scale�1/(rweibull shape)

survreg’s intercept�log(rweibull scale)

R documentation, v2.10.0

With this inconsistency elsewhere, it is forgivable that we restructure the parameterisa-

tions in Table 2 according to the four principles in Section 3, and that we refer to

occurrences of s in Table 2 as being the scale parameter and occurrences of l as the shape

parameter. Our naming convention is therefore defined in Table 3.

There are other ways to parameterise these models. For example, Vanfleteren et al.

(1998) use a different parameterisation for the Log-Logistic and Beard models because, as

biologists, they are interested in a real-world biological interpretation for the parameters.

Indeed, biologists use models for the hazard function because lifetimes are often

measured in hours or days: in describing their experiments on Caenorhabditis elegans,

Vanfleteren et al. (1998) called it a ‘small worm [ . . .] with a life span of 2�4 weeks,

depending on culture conditions’. Using one-year mortality rates like qx is too

anthropocentric for many biological models. This point does still have some relevance

to actuaries, even though they are usually only concerned with human lives. Some classes

of business have such short life expectancies as to question whether one-year qx models

are sensible � for example, care annuities typically only have an average duration of 2 or 3

years.

5. Actuarial mortality laws

Four of the actuarial mortality laws from Table 1 are plotted in Figure 4. The Gompertz

(1825) law is the simplest mortality law allowing for age-related increases in mortality. It

specifies an exponentially increasing hazard with age, i.e. a straight line on a logarithmic

scale. The Gompertz law works well in the age range 60�90, but at higher ages it usually

overstates mortality rates, while at lower ages it typically under-states mortality. The

Table 3. Naming convention for parameters used in Tables 1 and 2.

Parameter Name

a Intercept
b Age
o Makeham
r Beard
s Scale
l Shape

10 S. J. Richards
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Makeham (1859) law is similar, but with a constant, non-age-related element to mortality.

This typically finds application below age 60 or so where the exponential pattern of the

Gompertz law usually fails to hold. The Perks (1932) law has the same number of

parameters as the Gompertz law, but the logistic form of the hazard curve allows for a

slower-than-exponential increase in mortality at advanced ages. The Beard (1959) law is

similar to the Perks law, but the extra r parameter allows for greater variation in the rate

of change at advanced ages.

When fitted to actual mortality data, these laws will typically fail to fit well outside the

range 60�90 for one reason or another. Above age 90 we normally see a slowdown in the

rate of increase, called late-life mortality deceleration (Gavrilov & Gavrilova (2001)), which

militates against the Gompertz and Makeham laws. Equally, pensioner mortality below

age 60 typically does not decrease exponentially with reducing age either, thus invalidating

the Gompertz, Perks and Beard laws. When working with a wide age range, say 50�110,

we need a law which encompasses the behaviour of the Makeham law below age 60 and

logistic behaviour above age 90. It is for this reason that the Makeham�Perks and

Makeham�Beard laws typically work best of all the mortality laws.

Note that an alternative to the Makeham�Perks definition in Table 1 would be to use

the following:

mx�eo�
ea�bx

1 � ea�bx
(15)

In practice, we find that the fits for the definition in Eq. (15) are identical to those using

the definition in Table 1. However, since the definition in Eq. (15) usually takes more

iterations to converge, we prefer the definition in Table 1. A similar comment applies to

the definition of the Makeham�Beard law in Table 1, with the added benefit that this

definition can arise both through heterogeneity arguments for the Makeham law

Age
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Figure 4. Hazard functions for Gompertz, Makeham, Perks and Beard mortality laws in Table 1 with a��13,

b�0.12, r�1 and o��5. Natural scale (left) and Logarithmic scale (right).
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(Horiuchi & Coale (1990)) and also from viewing mortality as a cascade process

(Richards (2008)).

6. Comparison of models

In this section we consider two measures of how well a mortality law fits compared to

others. The first measure is the Akaike’s Information Criterion (AIC) (Akaike (1987)),

which balances the value of the log-likelihood function with the number of parameters

used in the model. A lower AIC value is typically a better model. However, this is not

quite the same thing as goodness of fit, so we make use of a result from Cox & Miller

(1987), namely that the number of deaths observed in a group has a Poisson distribution

with the Poisson parameter set to the sum of the integrated hazard functions. We

therefore consider the goodness of fit for the most important risk factor, age, by

comparing the total number of deaths at each integer age x with the sum of the integrated

hazard functions over the range [x, x�1). We can either use this data to calculate a

Poisson deviance residual for visual inspection, or (as here) we can calculate a x2 test

statistic. Note that a formal test will fail all of these models because they do not use all the

risk factors available. However, we will use the x2 test statistic as a means of broadly

comparing how well (or otherwise) the model fits the pattern of mortality by age.

Due to their fundamentally different structures, it is not possible to fit the same model

for each mortality law or lifetime distribution. For example, the Exponential and Pareto

distributions do not have flexibility in how mortality changes by age. Similarly, the

accelerated failure-time distributions have a scale parameter, s, in place of the coefficient

of ageing, b, in the actuarial mortality laws. In Table 4 we therefore fit models which are as

similar as can be: a single parameter for age-related variation (where possible) and a single

constant parameter for gender differentials. In practical actuarial work, of course, we

would use many more risk factors, as described in Richards (2008).

As shown in Table 4, the Makeham�Beard model fits best, regardless of whether this is

measured by the AIC or the x2 statistic. Using the same data set with further risk factors

for pension size and postcode-driven lifestyle group, and with age interactions, Richards

(2008) also found the Makeham�Beard law to fit best. The laws with logistic-shaped

hazards (Perks, Beard, Makeham�Perks and Makeham�Beard) are all materially better

fits than the simpler Gompertz and Makeham laws.

The Exponential model with constant hazard fits very badly, as would be expected,

while the Pareto model fits even worse due to the reducing hazard. Of the accelerated

failure-time models, only the Weibull and Generalised Gamma models can be viewed as

being useful, with a slightly better fit than the Gompertz and Makeham laws.

The Normal, Lognormal and Inverse Gaussian models are poor fits, in part due to the

inconsistencies in hazard functions by age shown in Figures 12�14.

We have not shown any residual plots or tests for Table 4 as every model will fail due to

patterns in the residuals. This is a result of the data set being large and powerful and there

12 S. J. Richards
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being several significant risk factors which have not been included in the model. Interested

readers should see Richards (2008) for handling of risk factors such as lifestyle, pension

size and select period.

7. Variation by age

In Section 2 we discussed how left truncation was a problem for many implementations of

the survival models in Table 2 and how actuaries got around this by working directly with

the log-likelihood function in Eq. (6). Another feature of the scale-transformed survival

models in Table 2 is that the scale parameter, s, may need to vary by sub-group. The same

applies to the age parameter, b, in Table 1. For example, Table 4 features models where the

same value of b or s applies equally to all lives in the portfolio, including both males and

females. Picking the Gompertz Age�Gender model as an example, this assumes that

the gender difference is constant on a logarithmic scale, i.e. that the ratio of male to female

mortality rates is constant. However, Figure 5 shows how the ratio between male and female

mortality in an annuity portfolio is not constant, i.e. the same value of s (or b) cannot apply

Table 4. Comparison of fits for a basic model of mortality between 2000 and 2006 for annuitants aged 60�95.

Model specification and mortality law Parameters AIC Improvement (worsening) over Gompertz x2

Age�Gender:

Gompertz 3 385,530 n/a 115

Perks 3 385,414 116 60

Age�Gender�Makeham:

Makeham 4 385,532 (2) 115

Makeham�Perks 4 385,416 114 60

Age�Gender�Beard:

Beard 4 385,375 155 72

Age�Gender�Makeham�Beard:

Makeham�Beard 5 385,372 158 57

Gender:

Exponential 2 427,492 (41,962) 40,421

Pareto 2 437,040 (51,510) 49,957

Scale�Gender:

Weibull 3 385,525 5 108

Logistic 3 386,163 (633) 964

Normal 3 386,475 (945) 1,257

Log-Logistic 3 387,129 (1,599) 1,906

Lognormal 3 387,971 (2,441) 2,714

Inverse Gaussian 3 387,986 (2,456) 2,729

Shape�Gender:

Gamma 3 387,384 (1,854) 2,143

Scale�Shape�Gender:

Generalised Gamma 4 385,527 3 102

Note: For the accelerated failure-time models with a scale parameter, it is the age variable which has been

transformed rather than duration since retirement. For each model the Intercept is implied and is not listed

in the model specification.
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to both males and females. This is a common feature of most risk factors in actuarial work,

so any model forcing the same value of b or s across different groups will be sub-optimal.

Nevertheless, many software implementations of the survival models in Table 2 do

indeed force the same scale parameter across all lives. One solution to this is to fit separate

models for the various sub-groups in a portfolio. A better solution is to work directly with

the log-likelihood in Eq. (6), which permits different values of b or s for different sub-

groups in the same unitary model. Working directly with the log-likelihood achieves three

major advantages for actuaries: first, it greatly expands the range of survival models

which can be fitted; second, it handles the left truncation which is a feature of all insured

data; and third, it permits age-varying risk factors. The latter point is of great importance

to actuaries because of the time value of money.

Table 5 shows the parameter estimates and standard errors for a Weibull model for the

databehind Figure 5. It shows statistically significant excess male mortality in the positive value

of the Gender.M parameter (females are the baseline). It also shows a statistically significant

difference in the scale parameter for males in the Gender.M:Scale parameter: in effect, the value

of s for males is 1.39285 lower than the value for the female baseline of s�10.7298.

Table 6 shows the parameter estimates for an equivalent Perks model. The Perks model

allows for variation by age in a different way to the Weibull model, i.e. through varying

the age coefficient, b, by sub-group instead of varying the scale parameter, s. The Perks

model fits better, with an AIC 77 units lower than for the Weibull model in Table 5, and a

x2 statistic which is 69 units lowers.

The model in Table 5 contains all interactions, so the same result could have been

reached by splitting the portfolio into males and females and fitting a separate model to

2.42.4

2.22.2

2.02.0

1.81.8

1.61.6

1.41.4

1.21.2

1.01.0

6060 6565 7070 7575 8080 8585 9090 9595

AgeR
at

io
 o

f c
ru

de
 m

al
e 

m
or

ta
lit

y 
to

 c
ru

de
 fe

m
al

e 
m

or
ta

lit
y

Figure 5. Ratio of crude mortality hazard for males to crude hazard for females in a large annuity portfolio. The

excess of male mortality clearly diminishes with increasing age, i.e. the rates converge with age and an assumption

of a constant proportion is invalid. Any survival model must therefore permit interactions, either with the b
parameters in Table 1 or with the s parameters in Table 2.
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each. However, actuarial models are often richer than this and contain many more risk

factors, such as pension size, lifestyle, birth cohort and select period. Often the best-fitting

model is not one containing all the interactions, so it is preferable to fit models without

sub-dividing the data set.

One irony in Tables 5 and 6 is that while the Gender.M:Age interaction is a

significant parameter, and while the AIC has improved materially compared to the

equivalent models in Table 4, the x2 statistics have actually worsened. This is not a major

source of concern for such a simple model, as adding further risk factors to the models

will reduce both the AIC and the x2 statistics compared to Table 4.

8. Simulation

Modern portfolio management demands simulation of future assets and liabilities.

Another advantage of survival models over q-type models is that it is often easy to

simulate the future lifetime of an individual, thus making whole-portfolio simulations

very fast. For example, by inverting Eq. (4) it is often possible to find a closed-form

expression for the simulated future lifetime, t, of a life currently aged x. Table 7 lists

closed-form expressions according to some of the mortality laws in Table 1 or

distributions in Table 2.

For the Makeham, Makeham�Perks and Makeham�Beard laws it is possible to solve

Eq. (2) in a few iterations using a Newton�Raphson algorithm. A useful choice of starting

value is the formula in Table 7 for the equivalent law lacking the o term; thus, the

Gompertz formula in Table 7 provides a good initial value for iterating the Makeham law.

One other benefit of implementing such simulations lies in checking the model-fitting

algorithms. Simulated data can be used to ensure that the simulation code and the model-

fitting code are at least consistent.

Table 5. Parameters for Weibull model with Scale*Gender, AIC�385,335 and x2�157.

Parameter Estimate Standard error Z-value p-value

Intercept �45.8629 0.3717 �123.38 0

Scale 10.7298 0.08519 125.95 0

Gender.M 6.491 0.4403 14.74 0

Gender.M:Scale �1.3928 0.1010 �13.80 0

Table 6. Parameters for Perks model with Age*Gender, AIC�385,258 and x2�88.

Parameter Estimate Standard Error Z-value p-value

Intercept �13.7851 0.09147 �150.71 0

Age 0.1320 0.001165 113.38 0

Gender.M 1.8162 0.1088 16.70 0

Gender.M:Age �0.01736 0.001388 �12.51 0
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9. Non-parametric survival analysis

All the survival models fitted in this paper are parametric, which yields automatically

smooth curves and obviates the need for a separate stage of graduation (smoothing). An

alternative is non-parametric survival analysis, which can be used as a check on the

reasonableness of the fitted parametric curves. An example of this was introduced by

Kaplan & Meier (1958). One wrinkle for actuaries is that the standard Kaplan�Meier

approach is typically defined with reference to the time since a medical study commenced.

In actuarial work is makes more sense to define the non-parametric survival curve with

respect to age attained rather than duration observed. The following definition will work

for any portfolio whether it is closed or open to new business:

Table 7. Formulae for simulating future lifetime, t, given current age x.

Law or distribution Formula

Gompertz log 1 �
b

ea�bx
logU

 !

b

Perks
log(exp(�blogU � log(1 � ea�bx)) � 1) � a

b
�x

Beard
log(exp(�berlogU � log(1 � ea�r�bx)) � 1) � a� r

b
�x

Exponential
logU

ea

Pareto

exp
�logU

ea

 !
; x�0;

xexp
�logU

ea

 !
�x; otherwise

8>>>><
>>>>:

Weibull exp

�
log xs �

s
ea

logU

 !

s

�
�x

Logistic es log 1�exp
x � a

es

 !
�U

 !
�logU

 !
�x�a

Normal esF�1 1�U(1�F
x � a

es

 !
)

 !
�x�a

Log-Logistic exp

�
log

1 � eaxes

U
� 1

 !
� a

es

�
�x

Lognormal

exp(esF�1(U)�a); x�0;

exp esF�1 1�U 1�F
logx � a

es

 ! ! !
�a

 !
; otherwise:

8><
>:

Note: U is a random number distributed evenly over (0, 1).
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tjpx� P
j5n

i�1

�
1�

dx�ti

lx�t�
i

�
(16)

where x is the outset age for the survival curve, {x�ti} is the set of n distinct ages at death,

lx�t�
i

is the number of lives alive immediately before age x�ti and dx�ti
is the number of

deaths dying at age x�ti. An example of this is given in Figure 6.

Note that the Kaplan�Meier curve definitely falls within the framework of a survival

model, but conceptually it straddles the concepts of qx and mx. The definition in Eq. 16 is

clearly based around qx, but the discretisation is decided by the data a posteriori, rather

than by the analyst a priori. As the number of events in life-office portfolios is typically

large, the discretisation steps can be quite small and the results quickly look like mx due to

the relationship in Eq. (1). For example, the median age gap between deaths for the male

lives in Figure 6 is one day, which is the smallest interval possible when using dates to

measure survival times (the largest gap is 11 days). For this reason a purist might argue

that the models fitted in this paper are actually for qx with a daily interval, i.e. 1
365

qx; rather

than for mx.

10. Conclusions

There is a wide choice of survival models available for modelling pensioner mortality.

A particular feature which actuaries require is the ability to handle left-truncated data,

since holders of life-assurance contracts typically enter observation well into adult life.

Most models commonly available in standard software packages do not cater for

left-truncated data, so actuaries tend to work directly with the log-likelihood function to
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Figure 6. Kaplan�Meier survival curves for annuitants in a large UK portfolio, as per Eq. (16).
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fit their models. A further benefit of this is the ability to have parameters for age-varying

risk to be set seperately for each sub-group. However, even after restructuring the fitting

algorithms for left truncation and age-varying scale parameters, the commonly available

survival models still fit less well than the mortality ‘laws’ documented by actuaries and

demographers over 50 years ago. Survival models also make run-off simulations of

portfolios both straightforward and fast.
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Appendix A. Relationships between mortality laws and lifetime distributions

To demonstrate that the Logistic model is a special case of the Beard law, consider first

the Beard hazard function in Table 1:

mx�
ea�bx

1 � ea�r�bx
(17)

If we set a?�
a� r

b
; b�e�r and s�r, then Eq. (17) can be rewritten as:

mx�
1

es
�

1 � exp

�
�

x � a?
es

�� (18)

which we recognise as the Logistic hazard from Table 2. The Beard model appears in a

different guise as the ‘three-parameter logistic model’ used by Vanfleteren

et al. (1998), which gives the hazard function at age x (in days) as:

mx�
ab

a � (b � a)e�kx
(19)

where a and b are positive and k is real-valued. Rearranging Eq. (19) we get:

mx�

exp

�
log

�
ab

b � a

�
� kx

�

1 � exp

�
log

�
a

b � a

�
� kx

� (20)

and setting a� log ab
b�a

� �
; b�k and r��log b we get the Beard law again. The

relationships between the 16 models in this paper are depicted in Figure 7.

The Exponential distribution involves a constant hazard, which is only useful for

relatively short age ranges in actuarial work. Since mortality rates vary widely by age, we

will not consider the Exponential distribution in great detail, other than to note that it is

the Weibull distribution with s�1.

The Pareto distribution is the Weibull distribution with s�1. It involves a decreasing

hazard, however, as shown in Figure 8. This is unlikely to be suitable for most types of

mortality work, as shown by the increasing hazard in Figure 3, although it may find

limited application in specialist business areas. One example might be annuities written on

impaired lives, where one might expect very high initial rates of mortality decreasing after

the contract commences. In such instances, the variable used in the hazard function would

not be x, the increasing annuitant age, but r, the increasing duration from contract outset.

Figure 8 therefore has a horizontal axis labelled with both age and time since outset,

depending on how the Pareto distribution is defined. This choice of using age or duration

is an option with other distributions.
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The Exponential and Pareto distributions are included here for completeness, but we

expect them to perform very badly in comparison with models which allow for increasing

mortality with age.

The Weibull distribution arises as a power transformation of the Exponential

distribution. Along with the Lognormal, Log-Logistic, Gamma and Inverse Gaussian

models it is known as an accelerated failure-time distribution (Collett (2003)). These

Makeham Makeham−Perks

Gompertz

ε→−∞

Exponential

β=0

Gamma

λ=0

Weibull

σ=1

Generalised Gamma

λ=0 σ=1

Pareto

σ=0

Lognormal

λ→∞

Perks Logistic

Beard

ρ=0 β=e−ρε→−∞

Makeham−Beard

ρ=0 ε→−∞

Plus:
Inverse Gaussian 

Log-Logistic
Normal

B

A

Key: Model A is a special
case of Model B under

the stated condition

Figure 7. Relationships between the models defined in Tables 1 and 2. Models on the same horizontal level have

the same number of basic parameters.
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Figure 8. Hazard functions for a Pareto distribution defined in Table 2 with a��3, �0.5 and 0.5.

20 S. J. Richards

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
r
i
e
s
t
e
]
 
A
t
:
 
1
6
:
0
9
 
1
1
 
F
e
b
r
u
a
r
y
 
2
0
1
1



distributions handle age-related changes in mortality in a different way from the actuarial

mortality laws. Accelerated failure-time distributions have a scale parameter, s, which

does a similar job to the b parameter in the actuarial laws: both allow mortality rates to

change with age.

If s�0 in the Weibull model then we have the special case of the Pareto model, while if

s�1 in the Weibull model then we have the special case of the Exponential model. Figure 9

shows that the hazard function can replicate the exponentially increasing mortality

typically seen at pensioner ages in Figure 3.
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σ = 10.2

Figure 9. Hazard functions for a Weibull distribution defined in Table 2 with a��42 and s�9.8, 10 and 10.2.

Varying a will simply scale the curves and will not change their basic shape or relationship to each other.
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Figure 10. Hazard functions for a Logistic distribution defined in Table 2 with a��59 and s�2.54, 2.56 and

2.58.
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The Logistic distribution can produce exponentially increasing hazard rates, depending

on the value of s, as shown in Figure 10. Note that the Logistic distribution in Table 2 is a

special case of the Beard law of mortality in Table 1, so the curves for the Beard law in

Figure 4 also apply.

The Log-Logistic distribution yields a wide variety of hazard shapes, as shown in Figure 11.

These shapes tend not to be appropriate for ordinary pensioner mortality, but they might

be suitable for certain types of impaired-life annuities or care annuities.

The ‘two-parameter’ logistic distribution used by Vanfleteren et al. (1998) is the same as

the Log-Logistic distribution. Vanfleteren et al. (1998) give the hazard function at age x in

days, mx, as:
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Figure 11. Hazard functions for a Log-Logistic distribution defined in Table 2 with a constant median and s�
16, 0.7 and �0.7. Styled after a similar graph in Collett (2003).
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Figure 12. Hazard functions for a Normal distribution defined in Table 2 with a��84 and s�1.5, 2 and 2.5.
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mx�
bxb�1

cb � xb
(21)

for c�0 and b real-valued. We can rearrange Eq. (21) as follows:

mx�
exp(logb � blogc)xb�1

1 � exp(�blogc)xb
(22)

If we take Eq. (21) and set a��b log c and es�b, we get the Log-Logistic hazard in

Table 2.
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Figure 13. Hazard functions for a Lognormal distribution defined in Table 2 with a��4.5 and s��1.5, �2

and �2.5.
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Figure 14. Hazard functions for an Inverse Gaussian distribution defined in Table 2 with a��4.5 and s�8, 9

and 10.
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The Normal distribution can yield different rates of increase in risk, depending on the

value of s. However, it does not have the property of consistency that is exhibited by other

models. For example, in Figure 12 the relationship between the three hazard curves at age

70 is completely reversed by age 80.

A Lognormal distribution for the lifetime of an individual, T, arises from the

assumption that logT has a Normal or Gaussian distribution. Although this assumption

is simply explained, the formula for the hazard in Table 2 is not particularly simple.

However, as with the Normal model, the Lognormal also does not have the property of

consistency that is exhibited elsewhere. For example, in Figure 13 the relationship between

the three hazard curves at age 70 is completed reversed by age 90.

The Inverse Gaussian distribution has a number of important properties � see Chhikara

& Folks (1989). In practice, however, it offers similar hazard shapes to the Lognormal

distribution � compare Figure 14 with Figure 13. However, as with the Lognormal model,

it also does not have the property of consistency that is exhibited elsewhere. For example,

in Figure 14 the relationship between the three hazard curves at age 70 is completely

reversed by age 90. In terms of implementation there are few software packages which

offer the Inverse Gaussian model, not least because it has the most complicated hazard

function of all the models in Table 2.

In contrast to most of the other models, neither of the two parameters in the Gamma

distribution obviously sets the general level of mortality. The hazard function in Table 2

contains both the power of x (as per the Weibull model) and the scaled exponent of x (as

per the Logistic model). As Figure 15 shows, varying either of the parameters will have

roughly the same effect on the rate at which the hazard increases with age. The choice of

which parameter is to be labelled a and which l is therefore somewhat arbitrary. However,

here we have chosen a definition such that when l�0 the parameter values for a will be

the same as for the Exponential distribution, which is a special case of the Gamma
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Figure 15. Hazard functions for a Gamma distribution defined in Table 2 with (left) a��23 and l�3.8, 4.0

and 4.2 and (right) a��27, �23 and �19 and l�4.

24 S. J. Richards

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
t
y
 
o
f
 
T
r
i
e
s
t
e
]
 
A
t
:
 
1
6
:
0
9
 
1
1
 
F
e
b
r
u
a
r
y
 
2
0
1
1



distribution. Note that if l�0 the Gamma hazard increases monotonically, while if l is

less than zero the hazard decreases monotonically.

As with the Gamma distribution, there is no simple parameter which sets the overall

level of the hazard function of the Generalised Gamma. Figure 16 shows that varying

s and l can have very similar effects on the rate at which the hazard increases with age.

We note that the Generalised Gamma model is sometimes used as a means of choosing

between alternative distributions, since three of the distributions listed in Table 2 are

special cases of the Generalised Gamma distribution. We therefore choose a parameter-

isation consistent with them.

Using the parameterisation of the Generalised Gamma in Table 2, if l�0 we get the

same definition as the Weibull distribution. Thus, if l is not significantly different from

zero, then a Weibull distribution might be more appropriate. The parameterisation of the

Generalised Gamma in Table 2 has been chosen such that when l�0 the parameterisa-

tion is identical to that of the Weibull distribution.

Similarly, as l0� then the Generalised Gamma distribution becomes the Lognormal

distribution. Thus, if l is large and yet not significant, then a Lognormal distribution

might be more appropriate. Finally, if s�1 the Generalised Gamma simplifies to the

ordinary Gamma distribution. Thus, if s is not significantly different from 1 a Gamma

distribution would be more appropriate.
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Figure 16. Hazard functions for a generalised Gamma distribution defined in Table 2 with a��4.5 and s�8,

9 and 10.
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