MASTER DEGREE COURSE IN MATHEMATICS, A.Y. 2018/19 **ADVANCED GEOMETRY 3 - WORKSHEET 4**

To be returned by May 2nd 2019.

1. Let $\varphi: X \to Y$ be a regular map of quasi-projective varieties, let φ^* be its comorphism.

a) Prove that the kernel of φ^* is the ideal of $\varphi(X)$ in $\mathcal{O}(Y)$.

b) Assume that K is algebraically closed and that X, Y are affine. Deduce that φ is dominant if and only if φ^* is injective.

2. Let X be an affine algebraic variety, closed in \mathbb{A}^n , F a polynomial and f the associated polynomial function on X. Prove that $\mathcal{O}(X_F) \simeq \mathcal{O}(X)_f$ (the ring of fractions corresponding to the multiplicative subset $S = \{1, f, f^2, \dots, f^r, \dots\} \subset$ $\mathcal{O}(X).$

3. Let $v_{1,d}: \mathbb{P}^1 \to \mathbb{P}^d$ be the *d*-tuple Veronese map, such that $v_{1,d}([x_0, x_1]) =$ $[x_0^d, x_0^{d-1}x_1, \dots, x_1^d]).$ a) Check that the image of $v_{1,d}$ is C_d , the projective algebraic set defined by

the 2×2 minors of the matrix

 $A = \left(\begin{array}{cccc} x_0 & x_1 & \dots & x_{d-1} \\ x_1 & x_2 & \dots & x_d \end{array}\right).$

b) Prove that $v_{1,d}: \mathbb{P}^1 \to C_d$ is an isomorphism, by explicitly constructing its inverse morphism.

c) Prove that any d + 1 points on C_d are linearly independent in \mathbb{P}^d (Hint: Vandermonde).