9. Regular and rational maps.

In the following *K* is an algebraically closed field.

a) Regular maps.

Let X, Y be quasi–projective varieties (or more generally locally closed sets). Let $\phi: X \to Y$ be a map.

9.1. Definition. ϕ is a *regular map* or a *morphism* if

- (i) ϕ is continuous;
- (ii) ϕ preserves regular functions, i.e. for all $U \subset Y$ (*U* open and non–empty) and for all $f \in \mathcal{O}(U)$, then $f \circ \phi \in \mathcal{O}(\phi^{-1}(U))$:

$$
\begin{array}{ccc}\nX & \stackrel{\phi}{\longrightarrow} & Y \\
\uparrow & & \uparrow \\
\phi^{-1}(U) & \stackrel{\phi|}{\longrightarrow} & U & \stackrel{f}{\longrightarrow} & K\n\end{array}
$$

Note that:

a) for all *X* the identity map $1_X : X \to X$ is regular;

b) for all *X*, *Y*, *Z* and regular maps $X \stackrel{\phi}{\to} Y$, $Y \stackrel{\psi}{\to} Z$, the composite map $\psi \circ \phi$ is regular.

An *isomorphism* of varieties is a regular map which possesses regular inverse, i.e. a regular $\phi : X \to Y$ such that there exists a regular $\psi : Y \to X$ verifying the conditions $\psi \circ \phi = 1_X$ and $\phi \circ \psi = 1_Y$. In this case X and Y are said to be isomorphic, and we write: $X \simeq Y$.

If $\phi: X \to Y$ is regular, there is a natural *K*-homomorphism $\phi^*: \mathcal{O}(Y) \to$ $\mathcal{O}(X)$, called the *comorphism associated to* ϕ , defined by: $f \to \phi^*(f) := f \circ \phi$.

The construction of the comorphism is functorial, which means that:

a) $1_X^* = 1_{\mathcal{O}(X)}$;

b) $(\psi \circ \phi)^* = \phi^* \circ \psi^*.$

This implies that, if $X \simeq Y$, then $\mathcal{O}(X) \simeq \mathcal{O}(Y)$. In fact, if $\phi : X \to Y$ is an isomorphism and ψ is its inverse, then $\phi \circ \psi = 1_Y$, so $(\phi \circ \psi)^* = \psi^* \circ \phi^* = (1_Y)^* =$ $1_{\mathcal{O}(Y)}$ and similarly $\psi \circ \phi = 1_X$ implies $\phi^* \circ \psi^* = 1_{\mathcal{O}(X)}$.

9.2. Examples.

1) The homeomorphism $\phi_i : U_i \to \mathbb{A}^n$ of Proposition 3.2 is an isomorphism.

2) There exist homeomorphisms which are not isomorphisms. Let $Y = V(x^3$ y^2) \subset A². We have seen (see Exercise 7.2) that $K[X] \not\cong K[A^1]$, hence *Y* is not isomorphic to the affine line. Nevertheless, the following map is regular, bijective and also a homeomorphism (see Exercise 7.1): $\phi: \mathbb{A}^1 \to Y$ such that $t \to (t^2, t^3);$

 $\phi^{-1}: Y \to \mathbb{A}^1$ is defined by $(x, y) \to$ $\int \frac{y}{x}$ if $x \neq 0$ 0 if $(x, y) = (0, 0)$. Note that ϕ^{-1} is not regular at the point $(0, 0)$.

9.3. Proposition. Let $\phi: X \to Y \subset \mathbb{A}^n$ be a map. Then ϕ is regular if and only *if* $\phi_i := t_i \circ \phi$ *is a regular function on X, for all* $i = 1, \ldots, n$ *, where* t_1, \ldots, t_n *are the coordinate functions on Y .*

Proof. If ϕ is regular, then $\phi_i = \phi^*(t_i)$ is regular by definition.

Conversely, assume that ϕ_i is a regular function on *X* for all *i*. Let $Z \subset Y$ be a closed subset and we have to prove that $\phi^{-1}(Z)$ is closed in *X*. Since any closed subset of \mathbb{A}^n is an intersection of hypersurfaces, it is enough to consider $\phi^{-1}(Y \cap V(F))$ with $F \in K[x_1, \ldots, x_n]$:

$$
\phi^{-1}(V(F)\cap Y) = \{P \in X | F(\phi(P)) = F(\phi_1, \dots, \phi_n)(P) = 0\} = V(F(\phi_1, \dots, \phi_n)).
$$

But note that $F(\phi_1,\ldots,\phi_n) \in \mathcal{O}(X)$: it is the composition of *F* with the regular functions ϕ_1, \ldots, ϕ_n . Hence $\phi^{-1}(V(F) \cap Y)$ is closed, so we can conclude that ϕ is continuous. If $U \subset Y$ and $f \in \mathcal{O}(U)$, for any point P of U choose an open neighbourhood U_P such that $f = F_P/G_P$ on U_P .

So $f \circ \phi = F_P(\phi_1, \ldots, \phi_n) / G_P(\phi_1, \ldots, \phi_n)$ on $\phi^{-1}(U_P)$, hence it is regular on each $\phi^{-1}(U_P)$ and by consequence on $\phi^{-1}(U)$.

If $\phi: X \to Y$ is a regular map and $Y \subset \mathbb{A}^n$, by Proposition 9.2. we can represent ϕ in the form $\phi = (\phi_1, \ldots, \phi_n)$, where $\phi_1, \ldots, \phi_n \in \mathcal{O}(X)$ and $\phi_i =$ $\phi^*(t_i)$. ϕ_1, \ldots, ϕ_n are not arbitrary in $\mathcal{O}(X)$ but such that Im $\phi \subset Y$. If Y is closed in \mathbb{A}^n , let us recall that t_1, \ldots, t_n generate $\mathcal{O}(Y)$, hence ϕ_1, \ldots, ϕ_n generate $\phi^*(\mathcal{O}(Y))$ as *K*-algebra. This observation is the key for the following important result.

9.4. Theorem. Let X be a locally closed algebraic set and Y be an affine *algebraic set.* Let $Hom(X, Y)$ denote the set of regular maps from X to Y and *Hom*($\mathcal{O}(Y)$ *,* $\mathcal{O}(X)$ *) denote the set of* K *– homomorphisms from* $\mathcal{O}(Y)$ *to* $\mathcal{O}(X)$ *.*

Then the map $Hom(X, Y) \to Hom(\mathcal{O}(Y), \mathcal{O}(X))$ *, such that* $\phi: X \to Y$ goes *to* $\phi^* : \mathcal{O}(Y) \to \mathcal{O}(X)$ *, is bijective.*

Proof. Let $Y \subset \mathbb{A}^n$ and let t_1, \ldots, t_n be the coordinate functions on Y , so $\mathcal{O}(Y) =$ $K[t_1, \ldots, t_n]$. Let $u : \mathcal{O}(Y) \to \mathcal{O}(X)$ be a *K*-homomorphism: we want to define a morphism $u^{\sharp}: X \to Y$ whose associated comorphism is *u*. By the remark above, if u^{\sharp} exists, its components have to be $u(t_1), \ldots, u(t_n)$. So we define

$$
u^{\sharp}: X \to \mathbb{A}^n
$$

$$
P \to (u(t_1)(P)), \dots, u(t_n)(P)).
$$

 \Box

This is a morphism by Proposition 9.3. We claim that $u^{\sharp}(X) \subset Y$. Let $F \in I(Y)$ and $P \in X$: then

$$
(F(u^{\sharp}(P)) = F(u(t_1)(P),...,u(t_n)(P)) =
$$

= $F(u(t_1),...,u(t_n))(P) =$
= $u(F((t_1,...,t_n))(P)$ because *u* is *K*-homomorphism =
= $u(0)(P) =$
= $0(P) = 0$.

So u^{\sharp} is a regular map from X to Y.

We consider now $(u^{\sharp})^* : \mathcal{O}(Y) \to \mathcal{O}(X)$: it takes a function f to $f \circ u^{\sharp} =$ $f(u(t_1),...,u(t_n)) = u(f)$, so $(u^{\sharp})^* = u$. Conversely, if $\phi: X \to Y$ is regular, then $(\phi^*)^{\sharp}$ takes *P* to $(\phi^*(t_1)(P), \ldots, \phi^*(t_n)(P)) = (\phi_1(P), \ldots, \phi_n(P)),$ so $(\phi^*)^{\sharp} = \phi$. \Box

Note that, by definition, $1_{\mathcal{O}(X)}^{\sharp} = 1_X$, for all affine X; moreover $(v \circ u)^{\sharp} = u^{\sharp} \circ v^{\sharp}$ for all $u : \mathcal{O}(Z) \to \mathcal{O}(Y), v : \mathcal{O}(Y) \to \mathcal{O}(X), K$ -homomorphisms of affine algebraic sets: this means that also this construction is functorial.

The previous results can be rephrased using the language of categories. We introduce a category $\mathcal C$ whose objects are the affine algebraic sets over a fixed algebraically closed field *K* and the morphisms are the regular maps. We consider also a second category \mathcal{C}' with objects the *K*-algebras and morphisms the *K*-homomorphisms. Then there is a contravariant functor that operates on the objects sending X to $\mathcal{O}(X) = K[X]$, and on the morphisms sending ϕ to the associated comorphisms ϕ^* .

If we restrict the class of objects of \mathcal{C}' taking only the finitely generated reduced *K*-algebras (a full subcategory of the previous one), then this functor becomes an equivalence of categories. Indeed the construction of the comorphism establishes a bijection between the Hom sets $\text{Hom}_{\mathcal{C}}(X, Y)$ and $\text{Hom}_{\mathcal{C}'}(\mathcal{O}(Y), \mathcal{O}(X)).$ Moreover, for any finitely generated K -algebra A , there exists an affine algebraic set X such that A is K-isomorphic to $\mathcal{O}(X)$. To see this, we choose a finite set of generators of *A*, such that $A = K[\xi_1, \ldots, \xi_n]$. Then we can consider the surjective *K*-homomorphism Ψ from the polynomial ring $K[x_1, \ldots, x_n]$ to *A* sending x_i to ξ_i for any *i*. In view of the fundamental theorem of homomorphism, it follows that $A \simeq K[x_1,\ldots,x_n]/\text{ker }\Psi$. The assumption that *A* is reduced then implies that $X := V(\ker \Psi) \subset \mathbb{A}^n$ is an affine algebraic set with $I(X) = \ker \Psi$ and $A \simeq \mathcal{O}(X)$.

We note that changing system of generators for *A* changes the homomorphism Ψ , and by consequence also the algebraic set X , up to isomorphism. For instance let *A* be a polynomial ring in one variable *t*: if we choose only *t* as system of generators, we get $X = \mathbb{A}^1$, but if we choose t, t^2, t^3 we get the affine skew cubic in \mathbb{A}^3 .

As a consequence of the previous discussion we have the following:

9.5. Corollary. Let X, Y be affine algebraic sets. Then $X \simeq Y$ if and only if $\mathcal{O}(X) \simeq \mathcal{O}(Y)$.

If X and Y are quasi-projective varieties and $\phi: X \to Y$ is regular, it is not always possible to define a comorphism $K(Y) \to K(X)$. If f is a rational function on *Y* with dom $f = U$, it can happen that $\phi(X) \cap \text{dom } f = \emptyset$, in which case $f \circ \phi$ does not exist. Nevertheless, if we assume that ϕ is dominant, i.e. $\phi(X) = Y$, then certainly $\phi(X) \cap U \neq \emptyset$, hence $\langle \phi^{-1}(U), f \circ \phi \rangle \in K(X)$. We obtain a Khomomorphism, which is necessarily injective, $K(Y) \to K(X)$, also denoted by ϕ^* . Note that in this case, we have: $\dim X \ge \dim Y$. As above, it is possible to check that, if $X \simeq Y$, then $K(X) \simeq K(Y)$, hence dim $X = \dim Y$. Moreover, if $P \in X$ and $Q = \phi(P)$, then ϕ^* induces a map $\mathcal{O}_{Q,Y} \to \mathcal{O}_{P,X}$, such that $\phi^* \mathcal{M}_{Q,Y} \subset \mathcal{M}_{P,X}$. Also in this case, if ϕ is an isomorphism, then $\mathcal{O}_{Q,Y} \simeq \mathcal{O}_{P,X}$.

We will see now how to express in practice a regular map when the target is contained in a projective space. Let $X \subset \mathbb{P}^n$ be a quasi-projective variety and $\phi: X \to \mathbb{P}^m$ be a map.

9.6. Proposition. ϕ is a morphism if and only if, for any $P \in X$, there exist an open neighbourhood U_P of P and $n+1$ homogeneous polynomials F_0, \ldots, F_m *of the same degree, in* $K[x_0, x_1, \ldots, x_n]$ *, such that, if* $Q \in U_P$ *, then* $\phi(Q)$ = $[F_0(Q), \ldots, F_m(Q)]$. In particular, for any $Q \in U_P$, there exists an index *i* such *that* $F_i(Q) \neq 0$ *.*

Proof. " \Rightarrow " Let $P \in X$, $Q = \phi(P)$ and assume that $Q \in U_0$. Then $U := \phi^{-1}(U_0)$ is an open neighbourhood of *P* and we can consider the restriction $\phi|_U : U \to U_0$, which is regular. Possibly after restricting U, using non-homogeneous coordinates on U_0 , we can assume that $\phi|_U = (F_1/G_1,\ldots,F_m/G_m)$, where (F_1,G_1) , \ldots , (F_m, G_m) are pairs of homogeneous polynomials of the same degree such that $V_P(G_i) \cap U = \emptyset$ for all index *i*. We can reduce the fractions F_i/G_i to a common denominator F_0 , so that deg $F_0 = \deg F_1 = \ldots = \deg F_m$ and $\phi|_U =$ $(F_1/F_0, \ldots, F_m/F_0) = [F_0, F_1, \ldots, F_m]$, with $F_0(Q) \neq 0$ for $Q \in U$.

" \Leftarrow " Possibly after restricting U_P , we can assume $F_i(Q) \neq 0$ for all $Q \in U_P$ and suitable *i*. Let $i = 0$: then $\phi|_{U_P} : U_P \to U_0$ operates as follows: $\phi|_{U_P}(Q) =$ $(F_1(Q)/F_0(Q),\ldots,F_m(Q)/F_0(Q))$, so it is a morphism by Proposition 9.3. From this remark, one deduces that also ϕ is a morphism. \Box

9.7. Examples.

1. Let $X \subset \mathbb{P}^2$, $X = V_P(x_1^2 + x_2^2 - x_0^2)$, the projective closure of the unitary circle. We define $\phi: X \to \mathbb{P}^1$ by

$$
[x_0, x_1, x_2] \rightarrow \begin{cases} [x_0 - x_2, x_1] \text{ if } (x_0 - x_2, x_1) \neq (0, 0); \\ [x_1, x_0 + x_2] \text{ if } (x_1, x_0 + x_2) \neq (0, 0). \end{cases}
$$

 ϕ is well-defined because on *X* $x_1^2 = (x_0 - x_2)(x_0 + x_2)$. Moreover

$$
(x_1, x_0 - x_2) \neq (0, 0) \Leftrightarrow [x_0, x_1, x_2] \in X \setminus \{[1, 0, 1]\},
$$

$$
(x_0 + x_2, x_1) \neq (0, 0) \Leftrightarrow [x_0, x_1, x_2] \in X \setminus \{[1, 0, -1]\}.
$$

The map ϕ is the natural extension of the rational function $f : X \setminus \{[1, 0, 1]\} \rightarrow$ *K* such that $[x_0, x_1, x_2] \to x_1/(x_0 - x_2)$ (Example 8.9, 2). Now the point $P[1, 0, 1]$, the centre of the stereographic projection, goes to the point at infinity of the line $V_P(x_2)$.

By geometric reasons ϕ is invertible and $\phi^{-1} : \mathbb{P}^1 \to X$ takes $[\lambda, \mu]$ to $[\lambda^2 +$ μ^2 , $2\lambda\mu$, $\lambda^2 - \mu^2$ (note the connection with the Pitagorean triples!).

Indeed: the line through *P* and $[\lambda, \mu, 0]$ has equation: $\mu x_0 - \lambda x_1 - \mu x_2 = 0$. Its intersections with *X* are represented by the system:

$$
\begin{cases}\n\mu x_0 - \lambda x_1 - \mu x_2 = 0 \\
x_1^2 + x_2^2 - x_0^2 = 0\n\end{cases}
$$

Assuming $\mu \neq 0$ this system is equivalent to the following:

$$
\begin{cases}\n\mu x_0 - \lambda x_1 - \mu x_2 = 0 \\
\mu^2 x_0^2 = \mu^2 (x_1^2 + x_2^2) = (\lambda x_1 + \mu x_2)^2.\n\end{cases}
$$

Therefore, either $x_1 = 0$ and $x_0 = x_2$, or $\begin{cases} (\mu^2 - \lambda^2)x_1 - 2\lambda\mu x_2 = 0, \\ \mu x_0 = \lambda x_1 + \mu x_2 \end{cases}$, which gives the required expression.

2. *Ane transformations.*

Let $A = (a_{ij})$ be a $n \times n$ –matrix with entries in K , let $B = (b_1, \ldots, b_n) \in \mathbb{A}^n$ be a point. The map $\tau_A : \mathbb{A}^n \to \mathbb{A}^n$ defined by $(x_1, \ldots, x_n) \to (y_1, \ldots, y_n)$, such that

$$
\{y_i = \sum_j a_{ij} x_j + b_i, i = 1, ..., n,
$$

is a regular map called an affine transformation of \mathbb{A}^n . In matrix notation τ_A is $Y = AX + B$. If *A* is of rank *n*, then τ_A is said non-degenerate and is an isomorphism: the inverse map τ_A^{-1} is represented by $X = A^{-1}Y - A^{-1}B$. More in general, an affine transformation from \mathbb{A}^n to \mathbb{A}^m is a map represented in matrix form by $Y = AX + B$, where A is a $m \times n$ matrix and $B \in \mathbb{A}^m$. It is injective if and only if $rkA = n$ and surjective if and only if $rkA = m$.

The isomorphisms of an algebraic set *X* in itself are called automorphisms of *X*: they form a group for the usual composition of maps, denoted *Aut X*. If $X = \mathbb{A}^n$, the non-degenerate affine transformations form a subgroup of *Aut* \mathbb{A}^n .

If $n = 1$ and the characteristic of *K* is 0, then *Aut* \mathbb{A}^1 coincides with this subgroup. In fact, let $\phi : \mathbb{A}^1 \to \mathbb{A}^1$ be an automorphism: it is represented by a polynomial $F(x)$ such that there exists $G(x)$ satisfying the condition $G(F(t)) = t$

for all $t \in \mathbb{A}^1$, i.e. $G(F(x)) = x$ in the polynomial ring $K[x]$. Then, taking derivatives, we get $G'(F(x))F'(x) = 1$, which implies $F'(t) \neq 0$ for all $t \in K$, so $F'(x)$ is a non–zero constant. Hence, *F* is linear and *G* is linear too.

If $n \geq 2$, then *Aut* \mathbb{A}^n is not completely described. There exist non-linear automorphisms of degree *d*, for all *d*. For example, for $n = 2$: let $\phi : \mathbb{A}^2 \to \mathbb{A}^2$ be given by $(x, y) \rightarrow (x, y + P(x))$, where *P* is any polynomial of *K*[*x*]. Then $\phi^{-1} : (x', y') \to (x', y' - P(x'))$. A very important open problem is the Jacobian conjecture, stating that, in characteristic zero, a regular map $\phi : \mathbb{A}^n \to \mathbb{A}^n$ is an automorphism if and only if the Jacobian determinant $| J(\phi) |$ is a non-zero constant.

3. *Projective transformations.*

Let *A* be a $(n+1) \times (n+1)$ –matrix with entries in *K*. Let $P[x_0, \ldots, x_n] \in \mathbb{P}^n$: then $[a_{00}x_0 + \ldots + a_{0n}x_n, \ldots, a_{n0}x_0 + \ldots + a_{nn}x_n]$ is a point of \mathbb{P}^n if and only if it is different from $[0,\ldots,0]$. So A defines a regular map $\tau : \mathbb{P}^n \to \mathbb{P}^n$ if and only if $rkA = n+1$. If $rkA = r < n+1$, then A defines a regular map whose domain is the quasi–projective variety $\mathbb{P}^n \setminus \mathbb{P}(ker A)$. If $rkA = n + 1$, then τ is an isomorphism, called a projective transformation. Note that the matrices λA , $\lambda \in K^*$, all define the same projective transformation. So $PGL(n+1, K) := GL(n+1, K)/K^*$ acts on \mathbb{P}^n as the group of projective transformations.

If $X, Y \subset \mathbb{P}^n$, they are called projectively equivalent if there exists a projective transformation $\tau : \mathbb{P}^n \to \mathbb{P}^n$ such that $\tau(X) = Y$.

9.8. Theorem. *Fundamental theorem on projective transformations.*

Let two $(n+2)$ –tuples of points of \mathbb{P}^n in general position be fixed: P_0, \ldots, P_{n+1} and Q_0, \ldots, Q_{n+1} . Then there exists one isomorphic projective transformation τ of \mathbb{P}^n *in itself, such that* $\tau(P_i) = Q_i$ *for all index i.*

Proof. Put $P_i = [v_i], Q_i = [w_i], i = 0, ..., n + 1$. So $\{v_0, ..., v_n\}$ and $\{w_0, ..., w_n\}$ are two bases of K^{n+1} , hence there exist scalars $\lambda_0, \ldots, \lambda_n, \mu_0, \ldots, \mu_n$ such that

$$
v_{n+1} = \lambda_0 v_0 + \ldots + \lambda_n v_n, \quad w_{n+1} = \mu_0 w_0 + \ldots + \mu_n w_n,
$$

where the coefficients are all different from 0 , because of the general position assumption. We replace v_i with $\lambda_i v_i$ and w_i with $\mu_i w_i$ and get two new bases, so there exists a unique automorphism of K^{n+1} transforming the first basis in the second one and, by consequence, also v_{n+1} in w_{n+1} . This automorphism induces the required projective transformation on \mathbb{P}^n .

An immediate consequence of the above theorem is that projective subspaces of the same dimension are projectively equivalent. Also two subsets of \mathbb{P}^n formed both by *k* points in general position are projectively equivalent if $k \leq n+2$. If $k > n + 2$, this is no longer true, already in the case of four points on a projective line. The problem of describing the classes of projective equivalence of *k*–tuples of points of \mathbb{P}^n , for $k > n+2$, is one the first problems of the classical invariant theory. The solution in the case $k = 4$, $n = 1$ is given by the notion of *cross–ratio*.

4. Let $X \subset \mathbb{A}^n$ be an affine variety, then $X_F = X \setminus V(F)$ is isomorphic to a closed subset of \mathbb{A}^{n+1} , i.e. to $Y = V(x_{n+1}F - 1, G_1, \ldots, G_r)$, where $I(X) =$ $\langle G_1, \ldots, G_r \rangle$. Indeed, the following regular maps are inverse each other:

 $\phi: X_F \to Y$ such that $(x_1, ..., x_n) \to (x_1, ..., x_n, 1/F(x_1, ..., x_n)),$

 $\psi: Y \to X_F$ such that $(x_1, ..., x_n, x_{n+1}) \to (x_1, ..., x_n).$

Hence, X_F is a quasi-projective variety contained in \mathbb{A}^n , not closed in \mathbb{A}^n , but isomorphic to a closed subset of another affine space.

From now on, the term *affine variety* will denote a quasi-projective variety isomorphic to some affine closed set.

If *X* is an affine variety and precisely $X \simeq Y$, with $Y \subset \mathbb{A}^n$ closed, then $\mathcal{O}(X) \simeq \mathcal{O}(Y) = K[t_1,\ldots,t_n]$ is a finitely generated *K*–algebra. In particular, if K is algebraically closed and α is an ideal strictly contained in $\mathcal{O}(X)$, then $V(\alpha) \subset X$ is non–empty, by the relative form of the Nullstellensatz. From this observation, we can deduce that the quasi–projective variety of next example is not affine.

5. $\mathbb{A}^2 \setminus \{(0,0)\}\$ is not affine.

Set $X = \mathbb{A}^2 \setminus \{(0,0)\}$: first of all we will prove that $\mathcal{O}(X) \simeq K[x, y] = \mathcal{O}(\mathbb{A}^2)$, i.e. any regular function on *X* can be extended to a regular function on the whole plane.

Indeed: let $f \in \mathcal{O}(X)$: if $P \neq Q$ are points of X, then there exist polynomials F, G, F', G' such that $f = F/G$ on a neighbourhood U_P of P and $f = F'/G'$ on a neighbourhood U_Q of Q . So $F'G = FG'$ on $U_P \cap U_Q \neq \emptyset$, which is open also in \mathbb{A}^2 , hence dense. Therefore $F'G = FG'$ in $K[x, y]$. We can clearly assume that *F* and *G* are coprime and similarly for *F*^{\prime} and *G*^{\prime}. So by the unique factorization property, it follows that $F' = F$ and $G' = G$. In particular f admits a unique representation as F/G on *X* and $G(P) \neq 0$ for all $P \in X$. Hence *G* has no zeroes on \mathbb{A}^2 , so $G = c \in K^*$ and $f \in \mathcal{O}(X)$.

Now, the ideal $\langle x, y \rangle$ has no zeroes in X and is proper: this proves that X is not affine.

We have exploited the fact that a polynomial in more than one variables has infinitely many zeroes, a fact that allows to generalise the previous observation.

On the other hand, the following property holds:

9.9. Proposition. Let $X \subset \mathbb{P}^n$ be quasi-projective. Then X admits an open *covering by affine varieties.*

Proof. Let $X = X_0 \cup \ldots \cup X_n$ be the open covering of X where $X_i = U_i \cap X$ $= \{ P \in X | P[a_0, \ldots, a_n], a_i \neq 0 \}.$ So, fixed *P*, there exists an index *i* such that

 $P \in X_i$. We can assume that $P \in X_0$: X_0 is open in some affine variety Y of \mathbb{A}^n (identified with U_0); set $X_0 = Y \setminus Y'$, where *Y*, *Y'* are both closed. Since $P \notin Y'$, there exists *F* such that $F(P) \neq 0$ and $V(F) \supset Y'$. So $P \in Y \setminus V(F) \subset Y \setminus Y'$ and *Y* $\setminus V(F)$ is an affine open neighbourhood of *P* in *Y* $\setminus Y' = X_0 \subset X$.

 \Box

6. *The Veronese maps.*

Let *n, d* be positive integers; put $N(n,d) = \binom{n+d}{d} - 1$. Note that $\binom{n+d}{d}$ is equal to the number of (monic) monomials of degree *d* in the variables x_0, \ldots, x_n , that is equal to the number of $n+1$ -tuples (i_0, \ldots, i_n) such that $i_0 + \ldots + i_n = d$, $i_j \geq 0$. Then in $\mathbb{P}^{N(n,d)}$ we can use coordinates $\{v_{i_0...i_n}\}$, where $i_0, \ldots, i_n \geq 0$ and $i_0 + \ldots + i_n = d$. For example: if $n = 2$, $d = 2$, then $N(2, 2) = {4 \choose 2} - 1 = 5$. In \mathbb{P}^5 we can use coordinates $v_{200}, v_{110}, v_{101}, v_{020}, v_{011}, v_{002}$.

For all *n, d* we define the map $v_{n,d}: \mathbb{P}^n \to \mathbb{P}^{N(n,d)}$ such that $[x_0,\ldots,x_n] \to$ $[v_{d00...0}, v_{d-1,10...0}, \ldots, v_{0...00d}]$ where $v_{i_0...i_n} = x_0^{i_0} x_1^{i_1} \ldots x_n^{i_n}$: $v_{n,d}$ is clearly a morphism, its image is denoted $V_{n,d}$ and called *the Veronese variety* of type (n, d) . It is in fact the projective variety of equations:

$$
(*)\{v_{i_0...i_n}v_{j_0...j_n}-v_{h_0...h_n}v_{k_0...k_n},\forall i_0+j_0=h_0+k_0,i_1+j_1=h_1+k_1,\ldots
$$

We prove this statement in the particular case $n = d = 2$; the general case is similar.

First of all, it is clear that the points of $v_{n,d}(\mathbb{P}^n)$ satisfy the system $(*)$. Conversely, assume that $P[v_{200}, v_{110}, \ldots] \in \mathbb{P}^5$ satisfies the equations (*), which become:

$$
\begin{cases}\nv_{200}v_{020} = v_{110}^2 \\
v_{200}v_{002} = v_{101}^2 \\
v_{002}v_{020} = v_{011}^2 \\
v_{200}v_{011} = v_{110}v_{101} \\
v_{020}v_{101} = v_{110}v_{011} \\
v_{110}v_{002} = v_{011}v_{101}\n\end{cases}
$$

Then, at least one of the coordinates $v_{200}, v_{020}, v_{002}$ is different from 0.

Therefore, if $v_{200} \neq 0$, then $P = v_{2,2}([v_{200}, v_{110}, v_{101}])$; if $v_{020} \neq 0$, then $P = v_{2,2}([v_{110}, v_{020}, v_{011}]);$ if $v_{002} \neq 0$, then $P = v_{2,2}([v_{101}, v_{011}, v_{002}]).$ Note that, if two of these three coordinates are different from 0, then the points of \mathbb{P}^2 found in this way have proportional coordinates, so they coincide.

We have also proved in this way that $v_{2,2}$ is an isomorphism between \mathbb{P}^2 and $V_{2,2}$, called the Veronese surface of \mathbb{P}^5 . The same happens in the general case.

If $n = 1, v_{1,d} : \mathbb{P}^1 \to \mathbb{P}^d$ takes $[x_0, x_1]$ to $[x_0^d, x_0^{d-1}x_1, \ldots, x_1^d]$: the image is called the *rational normal curve* of degree *d*, it is isomorphic to \mathbb{P}^1 . If $d = 3$, we find the skew cubic.

Let now $X \subset \mathbb{P}^n$ be a hypersurface of degree *d*: $X = V_P(F)$, with

$$
F = \sum_{i_0 + ... + i_n = d} a_{i_0 ... i_n} x_0^{i_0} ... x_n^{i_n}.
$$

Then $v_{n,d}(X) \simeq X$: it is the set of points

$$
\{v_{i_0...i_n} \in \mathbb{P}^{N(n,d)} | \sum_{i_0+...+i_n=d} a_{i_0...i_n} v_{i_0...i_n} = 0 \text{ and } [v_{i_0...i_n}] \in V_{n,d}\}.
$$

It coincides with $V_{n,d} \cap H$, where *H* is a hyperplane of $\mathbb{P}^{N(n,d)}$: a hyperplane section of the Veronese variety. This is called the linearisation process, allowing to " transform" a hypersurface in a hyperplane, modulo the Veronese isomorphism.

The Veronese surface *V* of \mathbb{P}^5 enjoys a lot of interesting properties. Most of them follow from its property of being covered by a 2-dimensional family of conics, which are precisely the images via $v_{2,2}$ of the lines of the plane.

To see this, we'll use as coordinates in \mathbb{P}^5 w_{00} , w_{01} , w_{02} , w_{11} , w_{12} , w_{22} , so that $v_{2,2}$ sends $[x_0, x_1, x_2]$ to the point of coordinates $w_{ij} = x_i x_j$. With this choice of coordinates, the equations of *V* are obtained by annihilating the 2×2 minors of the symmetric matrix:

$$
M = \begin{pmatrix} w_{00} & w_{01} & w_{02} \\ w_{01} & w_{11} & w_{12} \\ w_{02} & w_{12} & w_{22} \end{pmatrix}
$$

Let ℓ be a line of \mathbb{P}^2 of equation $b_0x_0 + b_1x_1 + b_2x_2 = 0$. Its image is the set of points of \mathbb{P}^5 with coordinates $w_{ij} = x_i x_j$, such that there exists a non-zero triple $[x_0, x_1, x_2]$ with $b_0x_0 + b_1x_1 + b_2x_2 = 0$. But this last equation is equivalent to the system:

$$
\begin{cases}\nb_0x_0^2 + b_1x_0x_1 + b_2x_0x_2 = 0 \\
b_0x_0x_1 + b_1x_1^2 + b_2x_1x_2 = 0 \\
b_0x_0x_2 + b_1x_1x_2 + b_2x_2^2 = 0\n\end{cases}
$$

It represents the intersection of *V* with the plane

$$
(*)\begin{cases}b_0w_{00} + b_1w_{01} + b_2w_{02} = 0\\b_0w_{01} + b_1w_{11} + b_2w_{12} = 0\\b_0w_{02} + b_1w_{12} + b_2w_{22} = 0\end{cases},
$$

so $v_{2,2}(\ell)$ is a plane curve. Its degree is the number of points in its intersection with a general hyperplane in \mathbb{P}^5 : this corresponds to the intersection in \mathbb{P}^2 of ℓ with a conic (a hypersurface of degree 2). Therefore $v_{2,2}(\ell)$ is a conic.

So the isomorphism $v_{2,2}$ transforms the geometry of the lines in the plane in the geometry of the conics on the Veronese surface. In particular, given two distinct points on *V* , there is exactly one conic contained in *V* and passing through them.

From this observation it is easy to deduce that the *secant lines* of *V* , i.e. the lines meeting *V* at two points, are precisely the lines of the planes generated by the conics contained in V , so that the (closure of the) union of these secant lines coincides with the union of the planes of the conics of *V*. This union results to be the cubic hypersurface defined by the equation

$$
\det M = \det \begin{pmatrix} w_{00} & w_{01} & w_{02} \\ w_{01} & w_{11} & w_{12} \\ w_{02} & w_{12} & w_{22} \end{pmatrix} = 0.
$$

Indeed a point of \mathbb{P}^5 , of coordinates $[w_{ij}]$ belongs to the plane of a conic contained in *V* if and only if there exists a non-zero triple $[b_0, b_1, b_2]$ which is solution of the homogeneous system (*).

b) Rational maps

Let *X*, *Y* be quasi-projective varieties.

9.10. Definition. The *rational maps* from *X* to *Y* are the germs of regular maps from open subsets of *X* to *Y*, i.e. equivalence classes of pairs (U, ϕ) , where $U \neq \emptyset$ is open in X and $\phi: U \to Y$ is regular, with respect to the relation: $(U, \phi) \sim (V, \psi)$ if and only if $\phi|_{U\cap V} = \psi|_{U\cap V}$. The following Lemma guarantees that the above defined relation satisfies the transitive property.

9.11. Lemma. Let $\phi, \psi : X \to Y \subset \mathbb{P}^n$ be regular maps between quasi-projective *varieties.* If $\phi|_U = \psi|_U$ for $U \subset X$ open and non–empty, then $\phi = \psi$.

Proof. Let $P \in X$ and consider $\phi(P), \psi(P) \in Y$. There exists a hyperplane *H* such that $\phi(P) \notin H$ and $\psi(P) \notin H$ (otherwise the dual projective space \mathbb{P}^n would be the union of its two hyperplanes consisting of hyperplanes of \mathbb{P}^n passing through $\phi(P)$ and $\psi(P)$). Up to a projective transformation, we can assume that $H = V_P(x_0)$, so $\phi(P), \psi(P) \in U_0$. Set $V = \phi^{-1}(U_0) \cap \psi^{-1}(U_0)$: an open neighbourhood of *P*. Consider the restrictions of ϕ and ψ from *V* to $Y \cap U_0$: they are regular maps which coincide on $V \cap U$, hence their coordinates ϕ_i , ψ_i , $i = 1, ..., n$, coincide on $V \cap U$, hence on V . So $\phi_i|_V = \psi_i|_V$. In particular $\phi(P) = \psi(P)$. $V \cap U$, hence on *V*. So $\phi_i|_V = \psi_i|_V$. In particular $\phi(P) = \psi(P)$.

A rational map from *X* to *Y* will be denoted $\phi: X \dashrightarrow Y$. As for rational functions, the domain of definition of ϕ , dom ϕ , is the maximum open subset of X such that ϕ is regular at the points of dom ϕ .

The following proposition follows from the characterization of rational functions on affine varieties.

9.12. Proposition. Let X, Y be affine algebraic sets, with Y closed in \mathbb{A}^n . Then $\phi: X \dashrightarrow Y$ *is a rational map if and only if* $\phi = (\phi_1, \ldots, \phi_n)$ *, where* $\phi_1, \ldots, \phi_n \in K(X)$. $K(X)$.

If $X \subset \mathbb{P}^n$, $Y \subset \mathbb{P}^m$, then a rational map $X \dashrightarrow Y$ is assigned by giving $m+1$

homogeneous polynomials of $K[x_0, x_1, \ldots, x_n]$ of the same degree, F_0, \ldots, F_m , such that *at least one* of them is not identically zero on *X*.

A rational map $\phi: X \dashrightarrow Y$ is called *dominant* if the image of X via ϕ is dense in X, i.e. if $\overline{\phi(U)} = X$, where $U = \text{dom }\phi$. If $\phi : X \dashrightarrow Y$ is dominant and $\psi : Y \dashrightarrow Z$ is any rational map, then dom $\psi \cap \text{Im}\phi \neq \emptyset$, so we can define $\psi \circ \phi : X \dashrightarrow Z$: it is the germ of the map $\psi \circ \phi$, regular on $\phi^{-1}(\text{dom } \psi \cap \text{Im} \phi)$.

9.13. Definition. A *birational map* from *X* to *Y* is a rational map $\phi: X \rightarrow Y$ such that ϕ is dominant and there exists $\psi : Y \dashrightarrow X$, a dominant rational map, such that $\psi \circ \phi = 1_X$ and $\phi \circ \psi = 1_Y$ as rational maps. In this case, X and Y are called *birationally equivalent* or simply *birational*.

If $\phi: X \dashrightarrow Y$ is a dominant rational map, then we can define the comorphism $\phi^*: K(Y) \to K(X)$ in the usual way: it is an injective *K*-homomorphism.

9.14. Proposition. Let X, Y be quasi-projective varieties, $u : K(Y) \to K(X)$ *be a K*-homomorphism. Then there exists a rational map $\phi: X \longrightarrow Y$ *such that* $\phi^* = u.$

Proof. Y is covered by open affine varieties Y_α , $\alpha \in I$ (by Proposition 9.9): for all index α , $K(Y) \simeq K(Y_\alpha)$ (Prop. 8.8) and $K(Y_\alpha) \simeq K(t_1,\ldots,t_n)$, where t_1,\ldots,t_n can be interpreted as coordinate functions on Y_α . Then $u(t_1), \ldots, u(t_n) \in K(X)$ and there exists $U \subset X$, non–empty open subset such that $u(t_1), \ldots, u(t_n)$ are all regular on *U*. So $u(K[t_1, \ldots, t_n]) \subset \mathcal{O}(U)$ and we can consider the regular map $u^{\sharp}: U \to Y_{\alpha} \hookrightarrow Y$. The germ of u^{\sharp} gives a rational map $X \dashrightarrow Y$. It is possible to check that this rational map does not depend on the choice of Y_{α} and U . \square to check that this rational map does not depend on the choice of Y_α and U .

9.15. Theorem. *Let X, Y be quasi–projective varieties. The following are equivalent:*

(i) X *is birational to* Y ;

 (iii) $K(X) \simeq K(Y);$

(iii) there exist non–empty open subsets $U \subset X$ *and* $V \subset Y$ *such that* $U \simeq V$.

Proof.

(i) \Leftrightarrow (ii) via the construction of the comorphism ϕ^* associated to ϕ and of u^{\sharp} , associated to $u: K(Y) \to K(X)$. One checks that both constructions are functorial.

(i) \Rightarrow (iii) Let $\phi : X \dashrightarrow Y$, $\psi : Y \dashrightarrow X$ be inverse each other. Put $U' = \text{dom} \phi \text{ and } V' = \text{dom} \psi.$ By assumption, $\psi \circ \phi$ is defined on $\phi^{-1}(V')$ and coincides with 1_X there. Similarly, $\psi \circ \phi$ is defined on $\psi^{-1}(U')$ and equal to 1_Y . Then ϕ and ψ establish an isomorphism between the corresponding sets $U := \phi^{-1}(\psi^{-1}(U'))$ and $V := \psi^{-1}(\phi^{-1}(V')).$

(iii) \Rightarrow (ii) $U \simeq V$ implies $K(U) \simeq K(V)$; but $K(U) \simeq K(X)$ and $K(V) \simeq$
(Prop.8.8), so $K(X) \simeq K(Y)$ by transitivity. $K(Y)$ (Prop.8.8), so $K(X) \simeq K(Y)$ by transitivity.

52 MEZZETTI

9.16. Corollary. *If X is birational to Y*, *then* dim $X = \dim Y$.

9.17. Examples.

a) The cuspidal cubic $Y = V(x^3 - y^2) \subset \mathbb{A}^2$.

We have seen that *Y* is not isomorphic to \mathbb{A}^1 , but in fact *Y* and \mathbb{A}^1 are birational. Indeed, the regular map $\phi : \mathbb{A}^1 \to Y$, $t \to (t^2, t^3)$, admits a rational inverse $\psi: Y \dashrightarrow \mathbb{A}^1$, $(x, y) \to \frac{y}{x}$. ψ is regular on $Y \setminus \{(0, 0)\}, \psi$ is dominant and $\psi \circ \phi = 1_{\mathbb{A}^1}$, $\phi \circ \psi = 1_Y$ as rational maps. In particular, $\phi^* : K(Y) \to K(X)$ is a field isomorphism. Recall that $K[Y] = K[t_1, t_2]$, with $t_1^2 = t_2^3$, so $K(Y) = K(t_1, t_2) =$ $K(t_2/t_1)$, because $t_1 = (t_2/t_1)^2 = t_2^2/t_1^2 = t_1^3/t_1^2$ and $t_2 = (t_2/t_1)^3 = t_2^3/t_1^3 = t_2^3/t_2^2$, so $K(Y)$ is generated by a unique transcendental element. Notice that ϕ and ψ establish isomorphisms between $\mathbb{A}^1 \setminus \{0\}$ and $Y \setminus \{(0,0)\}.$

b)*Rational maps from* \mathbb{P}^1 *to* \mathbb{P}^n *.*

Let $\phi : \mathbb{P}^1 \dashrightarrow \mathbb{P}^n$ be rational: on some open $U \subset \mathbb{P}^1$,

$$
\phi([x_0,x_1])=[F_0(x_0,x_1),\ldots,F_n(x_0,x_1)],
$$

with F_0, \ldots, F_n homogeneous of the same degree, without non-trivial common factors. Assume that $F_i(P) = 0$ for a certain index *i*, with $P = [a_0, a_1]$. Then $F_i \in I_h(P) = \langle a_1x_0 - a_0x_1 \rangle$, i.e. $a_1x_0 - a_0x_1$ is a factor of F_i . This remark implies that $\forall Q \in \mathbb{P}^1$ there exists $i \in \{0, ..., n\}$ such that $F_i(Q) \neq 0$, because otherwise F_0, \ldots, F_n would have a common factor of degree 1. Hence we conclude that ϕ is regular.

We have obtained that any rational map from \mathbb{P}^1 is in fact regular.

c) *Projections.*

Let ϕ : \mathbb{P}^n --> \mathbb{P}^m be given in matrix form by $Y = AX$, where *A* is a $(m+1) \times (n+1)$ -matrix, with entries in *K*. Then ϕ is a rational map, regular on $\mathbb{P}^n \setminus \mathbb{P}(\text{Ker}A)$. Put $\Lambda := \mathbb{P}(\text{Ker}A)$. If $A = (a_{ij})$, this means that Λ has cartesian equations

$$
\begin{cases} a_{00}x_0 + \dots + a_{0n}x_n = 0 \\ a_{10}x_0 + \dots + a_{1n}x_n = 0 \\ \dots \\ a_{m0}x_0 + \dots + a_{mn}x_n = 0 \end{cases}
$$

The map ϕ has a geometric interpretation: it can be seen as the *projection of centre* Λ to a complementar linear space. First of all, we can assume that rk $A = m + 1$, otherwise we replace \mathbb{P}^m with $\mathbb{P}(\text{Im }A)$; hence dim $\Lambda = n - (m + 1)$.

Consider first the case $\Lambda : x_0 = \ldots = x_m = 0$; we identify \mathbb{P}^m with the subspace of \mathbb{P}^n of equations $x_{m+1} = \ldots = x_n = 0$, so Λ and \mathbb{P}^m are complementar subspaces, i.e. $\Lambda \cap \mathbb{P}^m = \emptyset$ and the linear span of Λ and \mathbb{P}^m is \mathbb{P}^n . Then, for $Q \in \mathbb{P}^n \setminus \Lambda$, $\phi(Q) = [x_0, \ldots, x_m, 0, \ldots, 0]$: it is the intersection of \mathbb{P}^m with the linear span of Λ and *Q*. In fact, if $Q[a_0, \ldots, a_n]$ then $\overline{\Lambda Q}$ has equations

$$
\{a_i x_j - a_j x_i = 0, i, j = 0, ..., m \text{ (check!)}
$$

so $\overline{\Lambda Q} \cap \mathbb{P}^m$ has coordinates $[a_0, \ldots, a_m, 0, \ldots, 0].$

In the general case, if $\Lambda = V_P(L_0, \ldots, L_m)$, with L_0, \ldots, L_m linearly independent forms, we can identify \mathbb{P}^m with $V_P(L_{m+1},\ldots,L_n)$, where L_0,\ldots,L_m , L_{m+1}, \ldots, L_n is a basis of $(K^{n+1})^*$. Then L_0, \ldots, L_m can be interpreted as coordinate functions on P*^m*.

If $m = n - 1$, then Λ is a point P and ϕ , often denoted π_P , is the projection from *P* to a hyperplane not containing *P*.

d)*Rational and unirational varieties.*

A quasi–projective variety *X* is called *rational* if it is birational to a projective space \mathbb{P}^n , or equivalently to \mathbb{A}^n . Indeed, in view of Thereom 9.15 *(iii)*, \mathbb{P}^n and \mathbb{A}^n are birationally equivalent.

By Theorem 9.15, *X* is rational if and only if $K(X) \simeq K(\mathbb{P}^n) = K(x_1, \ldots, x_n)$ for some *n*, i.e. $K(X)$ is an extension of K generated by a transcendence basis (a purely transcendental extension of *K*). In an equivalent way, *X* is rational if there exists a rational map $\phi : \mathbb{P}^n \dashrightarrow X$ which is dominant and is an isomorphism if restricted to a suitable open subset $U \subset \mathbb{P}^n$. Hence X admits a *birational parametrization* by polynomials in *n* parameters.

A weaker notion is that of *unirational* variety: *X* is unirational if there exists a dominant rational map $\mathbb{P}^n \dashrightarrow X$ i.e. if $K(X)$ is contained in the quotient field of a polynomial ring. Hence *X* can be parametrised by polynomials, but not necessarily generically one–to–one.

It is clear that, if *X* is rational, then it is unirational. The converse implication has been an important open problem, up to 1971, when it has been solved in the negative, for varieties of dimension > 3 (Clemens–Griffiths and Iskovskih–Manin). Nevertheless rationality and unirationality are equivalent for curves (Theorem of Lüroth, 1880) and for surfaces if $char K = 0$ (Theorem of Castelnuovo, 1894).

As an example of rational variety with an explicit rational parametrization constructed geometrically, let us consider the following quadric of maximal rank in \mathbb{P}^3 : $X = V_P(x_0x_3 - x_1x_2)$, an irreducible hypersurface of degree 2. Let π_P : $\mathbb{P}^3 \dashrightarrow \mathbb{P}^2$ be the projection of centre $P[1, 0, 0, 0]$, such that $\pi_P([y_0, y_1, y_2, y_3])$ [y_1, y_2, y_3]. The restriction of π_P to *X* is a rational map $\tilde{\pi}_P : X \dashrightarrow \mathbb{P}^2$, regular on $X \setminus \{P\}$. $\tilde{\pi}_P$ has a rational inverse: indeed consider the rational map $\psi : \mathbb{P}^2 \dashrightarrow X$, $[y_1, y_2, y_3] \rightarrow [y_1y_2, y_1y_3, y_2y_3, y_3^2]$. The equation of *X* is satisfied by the points of $\psi(\mathbb{P}^2)$: $(y_1y_2)y_3^2 = (y_1y_3)(y_2y_3)$. ψ is regular on $\mathbb{P}^2 \setminus V_P(y_1y_2, y_3)$. Let us compose ψ and $\tilde{\pi}_P$:

$$
[y_0, \ldots, y_3] \in X \stackrel{\pi_P}{\to} [y_1, y_2, y_3] \stackrel{\psi}{\to} [y_1y_2, y_1y_3, y_2y_3, y_3^2];
$$

 $y_1y_2 = y_0y_3$ implies $\psi \circ \pi_P = 1_X$. In the opposite order:

 $[y_1, y_2, y_3] \stackrel{\psi}{\rightarrow} [y_1y_2, y_1y_3, y_2y_3, y_3^2] \stackrel{\pi_P}{\rightarrow} [y_1y_3, y_2y_3, y_3^2] = [y_1, y_2, y_3].$

So X is birational to \mathbb{P}^2 hence it is a rational surface.

Note that if we consider a projection π_P whose centre P is not on the quadric, we get a regular 2 : 1 map to the plane, certainly not birational.

e) *A* birational non–regular map from \mathbb{P}^2 to \mathbb{P}^2 .

The following rational map is called the *standard quadratic map*:

 $Q: \mathbb{P}^2 \dashrightarrow \mathbb{P}^2$, $[x_0, x_1, x_2] \to [x_1x_2, x_0x_2, x_0x_1]$.

Q is regular on $U := \mathbb{P}^2 \setminus \{A, B, C\}$, where $A[1, 0, 0]$, $B[0, 1, 0]$, $C[0, 0, 1]$ are the fundamental points (see Fig. 2)

Let *a* be the line through *B* and *C*: $a = V_P(x_0)$, and similarly $b = V_P(x_1)$, $c = V_P(x_2)$. Then $Q(a) = A$, $Q(b) = B$, $Q(c) = C$. Outside these three lines *Q* is an isomorphism. Precisely, put $U' = \mathbb{P}^2 \setminus \{a \cup b \cup c\}$; then $Q: U' \to \mathbb{P}^2$ is regular, the image is U' and $Q^{-1}: U' \to U'$ coincides with *Q*. Indeed,

$$
[x_0, x_1, x_2] \stackrel{Q}{\to} [x_1 x_2, x_0 x_2, x_0 x_1] \stackrel{Q}{\to} [x_0^2 x_1 x_2, x_0, x_1^2 x_2, x_0 x_1 x_2^2].
$$

So $Q \circ Q = 1_{\mathbb{P}^2}$ as rational map, hence Q is birational and $Q = Q^{-1}$.

$-$ Fig. 2 $-$

The set of the birational maps $\mathbb{P}^2 \dashrightarrow \mathbb{P}^2$ is a group, called the *Cremona group*. At the end of XIX century, Max Noether proved that the Cremona group is generated by $PGL(3, K)$ and by the single standard quadratic map above. The analogous groups for \mathbb{P}^n , $n > 3$, are much more complicated and a complete description is still unknown.

We conclude this section with a theorem illustrating an application of the linearisation procedure. We shall use the following notation: given a homogeneous polynomial $F \in K[x_0, x_1, \ldots, x_n], D(F) := \mathbb{P}^n \setminus V_P(F).$

9.16. Theorem. Let $W \subset \mathbb{P}^n$ be a closed projective variety. Let F be a homo*geneous polynomial of degree d in* $K[x_0, x_1, \ldots, x_n]$ *such that* $W \not\subset V_P(F)$ *. Then* $W \cap D(F)$ *is an affine variety.*

Proof. The assumption $W \nsubseteq V_P(F)$ is equivalent to $W \cap D(F) \neq \emptyset$. Let us consider the *d*-tuple Veronese embedding $v_{n,d}: \mathbb{P}^n \to \mathbb{P}^{N(n,d)}$, with $N(n,d) = \binom{n+d}{d} - 1$, that gives the isomorphism $\mathbb{P}^n \simeq V_{n,d}$. In this isomorphism the hypersurface $V_P(F)$ corresponds to a hyperplane section $V_{n,d} \cap H$, for a suitable hyperplane *H* in $\mathbb{P}^{N(n,d)}$. Therefore we have $W \cap D(F) \simeq v_{n,d}(W \cap D(F)) = v_{n,d}(W) \setminus H =$ $v_{n,d}(W) \cap (\mathbb{P}^{N(n,d)} \setminus H)$. There exists a projective isomorphism $\tau : \mathbb{P}^{N(n,d)} \to$ $\mathbb{P}^{N(n,d)}$ such that $\tau(H) = H_0$, the fundamental hyperplane of equation $x_0 = 0$. Therefore, denoting $X := v_{n,d}(W)$, we get $X \cap (\mathbb{P}^{\tilde{N}(n,d)} \setminus H) \simeq \tau(X) \cap (\mathbb{P}^{N(n,d)} \setminus H_0) = \tau(X) \cap U_0$, which proves the theorem. H_0) = $\tau(X) \cap U_0$, which proves the theorem.

As a consequence of Theorem 9.16, we get that the open subsets of the form $W \cap D(F)$ form a topology basis of affine varieties for *W*.

Exercises to *§*9.

1. Let $\phi : \mathbb{A}^1 \to \mathbb{A}^n$ be the map defined by $t \to (t, t^2, \ldots, t^n)$.

- a) Prove that ϕ is regular and describe $\phi(\mathbb{A}^1)$;
- b) prove that $\phi : \mathbb{A}^1 \to \phi(\mathbb{A}^1)$ is an isomorphism;
- c) give a description of ϕ^* and ϕ^{-1^*} .
- 2. Let $f: \mathbb{A}^2 \to \mathbb{A}^2$ be defined by: $(x, y) \to (x, xy)$.
- a) Describe $f(\mathbb{A}^2)$ and prove that it is not locally closed in \mathbb{A}^2 .

b) Prove that $f(\mathbb{A}^2)$ is a constructible set in the Zariski topology of \mathbb{A}^2 (i.e. a finite union of locally closed sets).

3. Prove that the Veronese variety $V_{n,d}$ is not contained in any hyperplane of $\mathbb{P}^{N(n,d)}$.

4. Let $GL_n(K)$ be the set of invertible $n \times n$ matrices with entries in K. Prove that $GL_n(K)$ can be given the structure of an affine variety.

5. Show the unicity of the projective transformation τ of Theorem 9.8.

6. Let $\phi: X \to Y$ be a regular map and ϕ^* its comorphism. Prove that the kernel of ϕ^* is the ideal of $\phi(X)$ in $\mathcal{O}(Y)$. In the affine case, deduce that ϕ is dominant if and only if ϕ^* is injective.

7. Prove that $\mathcal{O}(X_F)$ is isomorphic to $\mathcal{O}(X)_f$, where X is an affine algebraic variety, *F* a polynomial and *f* the function on *X* defined by *F*.