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9. Regular and rational maps.

In the following K is an algebraically closed field.

a) Regular maps.

Let X,Y be quasi–projective varieties (or more generally locally closed sets). Let
� : X ! Y be a map.

9.1. Definition. � is a regular map or a morphism if
(i) � is continuous;
(ii) � preserves regular functions, i.e. for all U ⇢ Y (U open and non–empty) and

for all f 2 O(U), then f � � 2 O(��1(U)):

X
��! Y

" "
��1(U)

�|�! U
f! K

Note that:
a) for all X the identity map 1X : X ! X is regular;

b) for all X, Y , Z and regular maps X
�! Y , Y

 ! Z, the composite map  � � is
regular.

An isomorphism of varieties is a regular map which possesses regular inverse,
i.e. a regular � : X ! Y such that there exists a regular  : Y ! X verifying
the conditions  � � = 1X and � �  = 1Y . In this case X and Y are said to be
isomorphic, and we write: X ' Y .

If � : X ! Y is regular, there is a natural K–homomorphism �⇤ : O(Y ) !
O(X), called the comorphism associated to �, defined by: f ! �⇤(f) := f � �.

The construction of the comorphism is functorial, which means that:
a) 1⇤X = 1O(X);
b) ( � �)⇤ = �⇤ �  ⇤.

This implies that, if X ' Y , then O(X) ' O(Y ). In fact, if � : X ! Y is an
isomorphism and  is its inverse, then �� = 1Y , so (�� )⇤ =  ⇤ ��⇤ = (1Y )⇤ =
1O(Y ) and similarly  � � = 1X implies �⇤ �  ⇤ = 1O(X).

9.2. Examples.
1) The homeomorphism �i : Ui ! An of Proposition 3.2 is an isomorphism.

2) There exist homeomorphisms which are not isomorphisms. Let Y = V (x3�
y2) ⇢ A2. We have seen (see Exercise 7.2) that K[X] 6' K[A1], hence Y is not
isomorphic to the a�ne line. Nevertheless, the following map is regular, bijective
and also a homeomorphism (see Exercise 7.1):
� : A1 ! Y such that t ! (t2, t3);
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��1 : Y ! A1 is defined by (x, y) !
⇢

y
x if x 6= 0
0 if (x, y) = (0, 0).

Note that ��1 is not regular at the point (0, 0).

9.3. Proposition. Let � : X ! Y ⇢ An
be a map. Then � is regular if and only

if �i := ti � � is a regular function on X, for all i = 1, . . . , n, where t1, . . . , tn are

the coordinate functions on Y .

Proof. If � is regular, then �i = �⇤(ti) is regular by definition.
Conversely, assume that �i is a regular function on X for all i. Let Z ⇢ Y

be a closed subset and we have to prove that ��1(Z) is closed in X. Since any
closed subset of An is an intersection of hypersurfaces, it is enough to consider
��1(Y \ V (F ) with F 2 K[x1, . . . , xn]:

��1(V (F )\Y ) = {P 2 X|F (�(P )) = F (�1, . . . ,�n)(P ) = 0} = V (F (�1, . . . ,�n)).

But note that F (�1, . . . ,�n) 2 O(X): it is the composition of F with the regular
functions �1, . . . ,�n. Hence ��1(V (F ) \ Y ) is closed, so we can conclude that �
is continuous. If U ⇢ Y and f 2 O(U), for any point P of U choose an open
neighbourhood UP such that f = FP /GP on UP .

So f �� = FP (�1, . . . ,�n)/GP (�1, . . . ,�n) on ��1(UP ), hence it is regular on
each ��1(UP ) and by consequence on ��1(U).

⇤
If � : X ! Y is a regular map and Y ⇢ An, by Proposition 9.2. we can

represent � in the form � = (�1, . . . ,�n), where �1, . . . ,�n 2 O(X) and �i =
�⇤(ti). �1, . . . ,�n are not arbitrary in O(X) but such that Im � ⇢ Y . If Y is
closed in An, let us recall that t1, . . . , tn generate O(Y ), hence �1, . . . ,�n generate
�⇤(O(Y )) as K-algebra. This observation is the key for the following important
result.

9.4. Theorem. Let X be a locally closed algebraic set and Y be an a�ne

algebraic set. Let Hom(X,Y ) denote the set of regular maps from X to Y and

Hom(O(Y ),O(X)) denote the set of K– homomorphisms from O(Y ) to O(X).
Then the map Hom(X,Y ) ! Hom(O(Y ),O(X)), such that � : X ! Y goes

to �⇤ : O(Y ) ! O(X), is bijective.

Proof. Let Y ⇢ An and let t1, . . . , tn be the coordinate functions on Y , so O(Y ) =
K[t1, . . . , tn]. Let u : O(Y ) ! O(X) be a K–homomorphism: we want to define a
morphism u] : X ! Y whose associated comorphism is u. By the remark above,
if u] exists, its components have to be u(t1), . . . , u(tn). So we define

u] : X ! An

P ! (u(t1)(P )), . . . , u(tn)(P )).
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This is a morphism by Proposition 9.3. We claim that u](X) ⇢ Y . Let F 2 I(Y )
and P 2 X: then

(F (u](P )) = F (u(t1)(P ), . . . , u(tn)(P )) =

= F (u(t1), . . . , u(tn))(P ) =

= u(F ((t1, . . . , tn))(P ) because u is K-homomorphism =

= u(0)(P ) =

= 0(P ) = 0.

So u] is a regular map from X to Y .
We consider now (u])⇤ : O(Y ) ! O(X): it takes a function f to f � u] =

f(u(t1), . . . , u(tn)) = u(f), so (u])⇤ = u. Conversely, if � : X ! Y is regular, then
(�⇤)] takes P to (�⇤(t1)(P ), . . . ,�⇤(tn)(P )) = (�1(P ), . . . ,�n(P )), so (�⇤)] = �.

⇤

Note that, by definition, 1]O(X) = 1X , for all a�neX; moreover (v�u)] = u]�v]
for all u : O(Z) ! O(Y ), v : O(Y ) ! O(X),K–homomorphisms of a�ne algebraic
sets: this means that also this construction is functorial.

The previous results can be rephrased using the language of categories. We
introduce a category C whose objects are the a�ne algebraic sets over a fixed
algebraically closed field K and the morphisms are the regular maps. We con-
sider also a second category C0 with objects the K-algebras and morphisms the
K-homomorphisms. Then there is a contravariant functor that operates on the
objects sending X to O(X) = K[X], and on the morphisms sending � to the
associated comorphisms �⇤.

If we restrict the class of objects of C0 taking only the finitely generated
reduced K-algebras (a full subcategory of the previous one), then this functor be-
comes an equivalence of categories. Indeed the construction of the comorphism es-
tablishes a bijection between the Hom sets HomC(X,Y ) and HomC0(O(Y ),O(X)).
Moreover, for any finitely generated K-algebra A, there exists an a�ne algebraic
set X such that A is K-isomorphic to O(X). To see this, we choose a finite set of
generators of A, such that A = K[⇠1, . . . , ⇠n]. Then we can consider the surjective
K-homomorphism  from the polynomial ring K[x1, . . . , xn] to A sending xi to ⇠i
for any i. In view of the fundamental theorem of homomorphism, it follows that
A ' K[x1, . . . , xn]/ ker . The assumption that A is reduced then implies that
X := V (ker ) ⇢ An is an a�ne algebraic set with I(X) = ker and A ' O(X).

We note that changing system of generators for A changes the homomorphism
 , and by consequence also the algebraic set X, up to isomorphism. For instance
let A be a polynomial ring in one variable t: if we choose only t as system of
generators, we get X = A1, but if we choose t, t2, t3 we get the a�ne skew cubic
in A3.

As a consequence of the previous discussion we have the following:
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9.5. Corollary. Let X, Y be a�ne algebraic sets. Then X ' Y if and only if

O(X) ' O(Y ). ⇤

If X and Y are quasi–projective varieties and � : X ! Y is regular, it is not
always possible to define a comorphism K(Y ) ! K(X). If f is a rational function
on Y with domf = U , it can happen that �(X) \ domf = ;, in which case f � �
does not exist. Nevertheless, if we assume that � is dominant, i.e. �(X) = Y ,
then certainly �(X) \ U 6= ;, hence h��1(U), f � �i 2 K(X). We obtain a K–
homomorphism, which is necessarily injective, K(Y ) ! K(X), also denoted by �⇤.
Note that in this case, we have: dimX � dimY . As above, it is possible to check
that, if X ' Y , then K(X) ' K(Y ), hence dimX = dimY . Moreover, if P 2 X
andQ = �(P ), then �⇤ induces a mapOQ,Y ! OP,X , such that �⇤MQ,Y ⇢ MP,X .
Also in this case, if � is an isomorphism, then OQ,Y ' OP,X .

We will see now how to express in practice a regular map when the target is
contained in a projective space. Let X ⇢ Pn be a quasi–projective variety and
� : X ! Pm be a map.

9.6. Proposition. � is a morphism if and only if, for any P 2 X, there exist

an open neighbourhood UP of P and n + 1 homogeneous polynomials F0, . . . , Fm

of the same degree, in K[x0, x1, . . . , xn], such that, if Q 2 UP , then �(Q) =
[F0(Q), . . . , Fm(Q)]. In particular, for any Q 2 UP , there exists an index i such
that Fi(Q) 6= 0.

Proof. “)” Let P 2 X, Q = �(P ) and assume that Q 2 U0. Then U := ��1(U0)
is an open neighbourhood of P and we can consider the restriction �|U : U ! U0,
which is regular. Possibly after restricting U , using non–homogeneous coordi-
nates on U0, we can assume that �|U = (F1/G1, . . . , Fm/Gm), where (F1, G1),
. . ., (Fm, Gm) are pairs of homogeneous polynomials of the same degree such
that VP (Gi) \ U = ; for all index i. We can reduce the fractions Fi/Gi to a
common denominator F0, so that degF0 = degF1 = . . . = degFm and �|U =
(F1/F0, . . . , Fm/F0) = [F0, F1, . . . , Fm], with F0(Q) 6= 0 for Q 2 U .

“(” Possibly after restricting UP , we can assume Fi(Q) 6= 0 for all Q 2 UP

and suitable i. Let i = 0: then �|UP : UP ! U0 operates as follows: �|UP (Q) =
(F1(Q)/F0(Q), . . . , Fm(Q)/F0(Q)), so it is a morphism by Proposition 9.3. From
this remark, one deduces that also � is a morphism. ⇤

9.7. Examples.
1. Let X ⇢ P2, X = VP (x2

1 + x2
2 � x2

0), the projective closure of the unitary
circle. We define � : X ! P1 by

[x0, x1, x2] !
⇢
[x0 � x2, x1] if (x0 � x2, x1) 6= (0, 0);
[x1, x0 + x2] if (x1, x0 + x2) 6= (0, 0).
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� is well–defined because on X x2
1 = (x0 � x2)(x0 + x2). Moreover

(x1, x0 � x2) 6= (0, 0) , [x0, x1, x2] 2 X \ {[1, 0, 1]},

(x0 + x2, x1) 6= (0, 0) , [x0, x1, x2] 2 X \ {[1, 0,�1]}.
The map � is the natural extension of the rational function f : X\{[1, 0, 1]} !

K such that [x0, x1, x2] ! x1/(x0�x2) (Example 8.9, 2). Now the point P [1, 0, 1],
the centre of the stereographic projection, goes to the point at infinity of the line
VP (x2).

By geometric reasons � is invertible and ��1 : P1 ! X takes [�, µ] to [�2 +
µ2, 2�µ,�2 � µ2] (note the connection with the Pitagorean triples!).

Indeed: the line through P and [�, µ, 0] has equation: µx0 � �x1 � µx2 = 0.
Its intersections with X are represented by the system:

⇢
µx0 � �x1 � µx2 = 0
x2
1 + x2

2 � x2
0 = 0

Assuming µ 6= 0 this system is equivalent to the following:

⇢
µx0 � �x1 � µx2 = 0
µ2x2

0 = µ2(x2
1 + x2

2) = (�x1 + µx2)2.

Therefore, either x1 = 0 and x0 = x2, or

⇢
(µ2 � �2)x1 � 2�µx2 = 0
µx0 = �x1 + µx2

, which gives

the required expression.

2. A�ne transformations.

Let A = (aij) be a n⇥ n–matrix with entries in K, let B = (b1, . . . , bn) 2 An

be a point. The map ⌧A : An ! An defined by (x1, . . . , xn) ! (y1, . . . , yn), such
that

{yi =
X

j

aijxj + bi, i = 1, . . . , n,

is a regular map called an a�ne transformation of An. In matrix notation ⌧A
is Y = AX + B. If A is of rank n, then ⌧A is said non–degenerate and is an
isomorphism: the inverse map ⌧�1

A is represented by X = A�1Y �A�1B. More in
general, an a�ne transformation from An to Am is a map represented in matrix
form by Y = AX + B, where A is a m ⇥ n matrix and B 2 Am. It is injective if
and only if rkA = n and surjective if and only if rkA = m.

The isomorphisms of an algebraic set X in itself are called automorphisms
of X: they form a group for the usual composition of maps, denoted Aut X. If
X = An, the non–degenerate a�ne transformations form a subgroup of Aut An.

If n = 1 and the characteristic of K is 0, then Aut A1 coincides with this
subgroup. In fact, let � : A1 ! A1 be an automorphism: it is represented by a
polynomial F (x) such that there exists G(x) satisfying the condition G(F (t)) = t
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for all t 2 A1, i.e. G(F (x)) = x in the polynomial ring K[x]. Then, taking
derivatives, we get G0(F (x))F 0(x) = 1, which implies F 0(t) 6= 0 for all t 2 K, so
F 0(x) is a non–zero constant. Hence, F is linear and G is linear too.

If n � 2, then Aut An is not completely described. There exist non–linear
automorphisms of degree d, for all d. For example, for n = 2: let � : A2 ! A2

be given by (x, y) ! (x, y + P (x), where P is any polynomial of K[x]. Then
��1 : (x0, y0) ! (x0, y0 � P (x0)). A very important open problem is the Jacobian
conjecture, stating that, in characteristic zero, a regular map � : An ! An is
an automorphism if and only if the Jacobian determinant | J(�) | is a non-zero
constant.

3. Projective transformations.

Let A be a (n+1)⇥ (n+1)–matrix with entries in K. Let P [x0, . . . , xn] 2 Pn:
then [a00x0+ . . .+a0nxn, . . . , an0x0+ . . .+annxn] is a point of Pn if and only if it
is di↵erent from [0, . . . , 0]. So A defines a regular map ⌧ : Pn ! Pn if and only if
rkA = n+1. If rkA = r < n+1, then A defines a regular map whose domain is the
quasi–projective variety Pn \ P(kerA). If rkA = n+ 1, then ⌧ is an isomorphism,
called a projective transformation. Note that the matrices �A, � 2 K⇤, all define
the same projective transformation. So PGL(n+ 1,K) := GL(n+ 1,K)/K⇤ acts
on Pn as the group of projective transformations.

IfX,Y ⇢ Pn, they are called projectively equivalent if there exists a projective
transformation ⌧ : Pn ! Pn such that ⌧(X) = Y .

9.8. Theorem. Fundamental theorem on projective transformations.

Let two (n+2)–tuples of points of Pn
in general position be fixed: P0, . . . , Pn+1

and Q0, . . . , Qn+1. Then there exists one isomorphic projective transformation ⌧
of Pn

in itself, such that ⌧(Pi) = Qi for all index i.

Proof. Put Pi = [vi], Qi = [wi], i = 0, . . . , n+1. So {v0, . . . , vn} and {w0, . . . , wn}
are two bases of Kn+1, hence there exist scalars �0, . . . ,�n, µ0, . . . , µn such that

vn+1 = �0v0 + . . .+ �nvn, wn+1 = µ0w0 + . . .+ µnwn,

where the coe�cients are all di↵erent from 0, because of the general position
assumption. We replace vi with �ivi and wi with µiwi and get two new bases, so
there exists a unique automorphism of Kn+1 transforming the first basis in the
second one and, by consequence, also vn+1 in wn+1. This automorphism induces
the required projective transformation on Pn. ⇤

An immediate consequence of the above theorem is that projective subspaces
of the same dimension are projectively equivalent. Also two subsets of Pn formed
both by k points in general position are projectively equivalent if k  n + 2. If
k > n+ 2, this is no longer true, already in the case of four points on a projective
line. The problem of describing the classes of projective equivalence of k–tuples
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of points of Pn, for k > n + 2, is one the first problems of the classical invariant
theory. The solution in the case k = 4, n = 1 is given by the notion of cross–ratio.

4. Let X ⇢ An be an a�ne variety, then XF = X \ V (F ) is isomorphic to
a closed subset of An+1, i.e. to Y = V (xn+1F � 1, G1, . . . , Gr), where I(X) =
hG1, . . . , Gri. Indeed, the following regular maps are inverse each other:

� : XF ! Y such that (x1, . . . , xn) ! (x1, . . . , xn, 1/F (x1, . . . , xn)),
 : Y ! XF such that (x1, . . . , xn, xn+1) ! (x1, . . . , xn).

Hence, XF is a quasi–projective variety contained in An, not closed in An, but
isomorphic to a closed subset of another a�ne space.

From now on, the term a�ne variety will denote a quasi–projective variety
isomorphic to some a�ne closed set.

If X is an a�ne variety and precisely X ' Y , with Y ⇢ An closed, then
O(X) ' O(Y ) = K[t1, . . . , tn] is a finitely generated K–algebra. In particular,
if K is algebraically closed and ↵ is an ideal strictly contained in O(X), then
V (↵) ⇢ X is non–empty, by the relative form of the Nullstellensatz. From this
observation, we can deduce that the quasi–projective variety of next example is
not a�ne.

5. A2 \ {(0, 0)} is not a�ne.
Set X = A2 \{(0, 0)}: first of all we will prove that O(X) ' K[x, y] = O(A2),

i.e. any regular function on X can be extended to a regular function on the whole
plane.

Indeed: let f 2 O(X): if P 6= Q are points of X, then there exist polynomials
F,G, F 0, G0 such that f = F/G on a neighbourhood UP of P and f = F 0/G0 on
a neighbourhood UQ of Q. So F 0G = FG0 on UP \ UQ 6= ;, which is open also
in A2, hence dense. Therefore F 0G = FG0 in K[x, y]. We can clearly assume that
F and G are coprime and similarly for F 0 and G0. So by the unique factorization
property, it follows that F 0 = F and G0 = G. In particular f admits a unique
representation as F/G on X and G(P ) 6= 0 for all P 2 X. Hence G has no zeroes
on A2, so G = c 2 K⇤ and f 2 O(X).

Now, the ideal hx, yi has no zeroes in X and is proper: this proves that X is
not a�ne.

We have exploited the fact that a polynomial in more than one variables has
infinitely many zeroes, a fact that allows to generalise the previous observation.

On the other hand, the following property holds:
9.9. Proposition. Let X ⇢ Pn

be quasi–projective. Then X admits an open

covering by a�ne varieties.

Proof. Let X = X0 [ . . . [ Xn be the open covering of X where Xi = Ui \ X
= {P 2 X|P [a0, . . . , an], ai 6= 0}. So, fixed P , there exists an index i such that
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P 2 Xi. We can assume that P 2 X0: X0 is open in some a�ne variety Y of An

(identified with U0); set X0 = Y \ Y 0, where Y , Y 0 are both closed. Since P 62 Y 0,
there exists F such that F (P ) 6= 0 and V (F ) � Y 0. So P 2 Y \ V (F ) ⇢ Y \ Y 0

and Y \ V (F ) is an a�ne open neighbourhood of P in Y \ Y 0 = X0 ⇢ X.
⇤

6. The Veronese maps.

Let n, d be positive integers; put N(n, d) =
�
n+d
d

� � 1. Note that
�
n+d
d

�
is

equal to the number of (monic) monomials of degree d in the variables x0, . . . , xn,
that is equal to the number of n+1–tuples (i0, . . . , in) such that i0 + . . .+ in = d,
ij � 0. Then in PN(n,d) we can use coordinates {vi0...in}, where i0, . . . , in � 0 and
i0 + . . .+ in = d. For example: if n = 2, d = 2, then N(2, 2) =

�4
2

�� 1 = 5. In P5

we can use coordinates v200, v110, v101, v020, v011, v002.
For all n, d we define the map vn,d : Pn ! PN(n,d) such that [x0, . . . , xn] !

[vd00...0, vd�1,10...0, . . . , v0...00d] where vi0...in = xi0
0 xi1

1 . . . xin
n : vn,d is clearly a mor-

phism, its image is denoted Vn,d and called the Veronese variety of type (n, d). It
is in fact the projective variety of equations:

(⇤){vi0...invj0...jn � vh0...hnvk0...kn , 8i0 + j0 = h0 + k0, i1 + j1 = h1 + k1, . . .

We prove this statement in the particular case n = d = 2; the general case is
similar.

First of all, it is clear that the points of vn,d(Pn) satisfy the system (⇤).
Conversely, assume that P [v200, v110, . . .] 2 P5 satisfies the equations (⇤), which
become: 8

>>>>><

>>>>>:

v200v020 = v2110
v200v002 = v2101
v002v020 = v2011
v200v011 = v110v101
v020v101 = v110v011
v110v002 = v011v101

Then, at least one of the coordinates v200, v020, v002 is di↵erent from 0.
Therefore, if v200 6= 0, then P = v2,2([v200, v110, v101]); if v020 6= 0, then

P = v2,2([v110, v020, v011]); if v002 6= 0, then P = v2,2([v101, v011, v002]). Note that,
if two of these three coordinates are di↵erent from 0, then the points of P2 found
in this way have proportional coordinates, so they coincide.

We have also proved in this way that v2,2 is an isomorphism between P2 and
V2,2, called the Veronese surface of P5. The same happens in the general case.

If n = 1, v1,d : P1 ! Pd takes [x0, x1] to [xd
0, x

d�1
0 x1, . . . , xd

1]: the image is
called the rational normal curve of degree d, it is isomorphic to P1. If d = 3, we
find the skew cubic.

Let now X ⇢ Pn be a hypersurface of degree d: X = VP (F ), with

F =
X

i0+...+in=d

ai0...inx
i0
0 . . . xin

n .
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Then vn,d(X) ' X: it is the set of points

{vi0...in 2 PN(n,d)|
X

i0+...+in=d

ai0...invi0...in = 0 and [vi0...in ] 2 Vn,d}.

It coincides with Vn,d \ H, where H is a hyperplane of PN(n,d): a hyperplane
section of the Veronese variety. This is called the linearisation process, allowing to
“ transform” a hypersurface in a hyperplane, modulo the Veronese isomorphism.

The Veronese surface V of P5 enjoys a lot of interesting properties. Most of
them follow from its property of being covered by a 2-dimensional family of conics,
which are precisely the images via v2,2 of the lines of the plane.

To see this, we’ll use as coordinates in P5 w00, w01, w02, w11, w12, w22, so that
v2,2 sends [x0, x1, x2] to the point of coordinates wij = xixj . With this choice of
coordinates, the equations of V are obtained by annihilating the 2 ⇥ 2 minors of
the symmetric matrix:

M =

0

@
w00 w01 w02

w01 w11 w12

w02 w12 w22

1

A

Let ` be a line of P2 of equation b0x0 + b1x1 + b2x2 = 0. Its image is the set of
points of P5 with coordinates wij = xixj , such that there exists a non-zero triple
[x0, x1, x2] with b0x0+ b1x1+ b2x2 = 0. But this last equation is equivalent to the
system: 8

<

:

b0x2
0 + b1x0x1 + b2x0x2 = 0

b0x0x1 + b1x2
1 + b2x1x2 = 0

b0x0x2 + b1x1x2 + b2x2
2 = 0

It represents the intersection of V with the plane

(⇤)
(
b0w00 + b1w01 + b2w02 = 0
b0w01 + b1w11 + b2w12 = 0
b0w02 + b1w12 + b2w22 = 0

,

so v2,2(`) is a plane curve. Its degree is the number of points in its intersection
with a general hyperplane in P5: this corresponds to the intersection in P2 of `
with a conic (a hypersurface of degree 2). Therefore v2,2(`) is a conic.

So the isomorphism v2,2 transforms the geometry of the lines in the plane
in the geometry of the conics on the Veronese surface. In particular, given two
distinct points on V , there is exactly one conic contained in V and passing through
them.

From this observation it is easy to deduce that the secant lines of V , i.e. the
lines meeting V at two points, are precisely the lines of the planes generated by
the conics contained in V , so that the (closure of the) union of these secant lines
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coincides with the union of the planes of the conics of V . This union results to be
the cubic hypersurface defined by the equation

detM = det

0

@
w00 w01 w02

w01 w11 w12

w02 w12 w22

1

A = 0.

Indeed a point of P5, of coordinates [wij ] belongs to the plane of a conic contained
in V if and only if there exists a non-zero triple [b0, b1, b2] which is solution of the
homogeneous system (*).

b) Rational maps

Let X,Y be quasi–projective varieties.

9.10. Definition. The rational maps from X to Y are the germs of regular maps
from open subsets of X to Y , i.e. equivalence classes of pairs (U,�), where U 6= ;
is open in X and � : U ! Y is regular, with respect to the relation: (U,�) ⇠ (V, )
if and only if �|U\V =  |U\V . The following Lemma guarantees that the above
defined relation satisfies the transitive property.

9.11. Lemma. Let �, : X ! Y ⇢ Pn
be regular maps between quasi-projective

varieties. If �|U =  |U for U ⇢ X open and non–empty, then � =  .

Proof. Let P 2 X and consider �(P ),  (P ) 2 Y . There exists a hyperplane H such
that �(P ) 62 H and  (P ) 62 H (otherwise the dual projective space P̌n would be the
union of its two hyperplanes consisting of hyperplanes of Pn passing through �(P )
and  (P )). Up to a projective transformation, we can assume that H = VP (x0),
so �(P ), (P ) 2 U0. Set V = ��1(U0) \  �1(U0): an open neighbourhood of P .
Consider the restrictions of � and  from V to Y \ U0: they are regular maps
which coincide on V \ U , hence their coordinates �i,  i, i = 1, . . . , n, coincide on
V \ U , hence on V . So �i|V =  i|V . In particular �(P ) =  (P ). ⇤

A rational map from X to Y will be denoted � : X 99K Y . As for rational
functions, the domain of definition of �, dom �, is the maximum open subset of
X such that � is regular at the points of dom �.

The following proposition follows from the characterization of rational func-
tions on a�ne varieties.

9.12. Proposition. Let X,Y be a�ne algebraic sets, with Y closed in An
. Then

� : X 99K Y is a rational map if and only if � = (�1, . . . ,�n), where �1, . . . ,�n 2
K(X). ⇤

If X ⇢ Pn, Y ⇢ Pm, then a rational map X 99K Y is assigned by giving m+1
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homogeneous polynomials ofK[x0, x1, . . . , xn] of the same degree, F0, . . . , Fm, such
that at least one of them is not identically zero on X.

A rational map � : X 99K Y is called dominant if the image of X via � is
dense in X, i.e. if �(U) = X, where U = dom �. If � : X 99K Y is dominant
and  : Y 99K Z is any rational map, then dom  \ Im� 6= ;, so we can define
 � � : X 99K Z: it is the germ of the map  � �, regular on ��1(dom  \ Im�).

9.13. Definition. A birational map from X to Y is a rational map � : X 99K Y
such that � is dominant and there exists  : Y 99K X, a dominant rational map,
such that  � � = 1X and � �  = 1Y as rational maps. In this case, X and Y are
called birationally equivalent or simply birational.

If � : X 99K Y is a dominant rational map, then we can define the comorphism
�⇤ : K(Y ) ! K(X) in the usual way: it is an injective K–homomorphism.

9.14. Proposition. Let X, Y be quasi–projective varieties, u : K(Y ) ! K(X)
be a K–homomorphism. Then there exists a rational map � : X 99K Y such that

�⇤ = u.

Proof. Y is covered by open a�ne varieties Y↵, ↵ 2 I (by Proposition 9.9): for all
index ↵, K(Y ) ' K(Y↵) (Prop. 8.8) and K(Y↵) ' K(t1, . . . , tn), where t1, . . . , tn
can be interpreted as coordinate functions on Y↵. Then u(t1), . . . , u(tn) 2 K(X)
and there exists U ⇢ X, non–empty open subset such that u(t1), . . . , u(tn) are all
regular on U . So u(K[t1, . . . , tn]) ⇢ O(U) and we can consider the regular map
u] : U ! Y↵ ,! Y . The germ of u] gives a rational map X 99K Y . It is possible
to check that this rational map does not depend on the choice of Y↵ and U . ⇤

9.15. Theorem. Let X, Y be quasi–projective varieties. The following are equiv-

alent:

(i) X is birational to Y ;

(ii) K(X) ' K(Y );
(iii) there exist non–empty open subsets U ⇢ X and V ⇢ Y such that U ' V .

Proof.

(i) , (ii) via the construction of the comorphism �⇤ associated to � and of
u], associated to u : K(Y ) ! K(X). One checks that both constructions are
functorial.

(i) ) (iii) Let � : X 99K Y ,  : Y 99K X be inverse each other. Put
U 0 = dom � and V 0 = dom  . By assumption,  � � is defined on ��1(V 0)
and coincides with 1X there. Similarly,  � � is defined on  �1(U 0) and equal
to 1Y . Then � and  establish an isomorphism between the corresponding sets
U := ��1( �1(U 0)) and V :=  �1(��1(V 0)).

(iii) ) (ii) U ' V implies K(U) ' K(V ); but K(U) ' K(X) and K(V ) '
K(Y ) (Prop.8.8), so K(X) ' K(Y ) by transitivity. ⇤
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9.16. Corollary. If X is birational to Y , then dimX = dimY . ⇤

9.17. Examples.
a) The cuspidal cubic Y = V (x3 � y2) ⇢ A2.
We have seen that Y is not isomorphic to A1, but in fact Y and A1 are

birational. Indeed, the regular map � : A1 ! Y , t ! (t2, t3), admits a rational
inverse  : Y 99K A1, (x, y) ! y

x .  is regular on Y \ {(0, 0)},  is dominant and
 �� = 1A1 , �� = 1Y as rational maps. In particular, �⇤ : K(Y ) ! K(X) is a field
isomorphism. Recall that K[Y ] = K[t1, t2], with t21 = t32, so K(Y ) = K(t1, t2) =
K(t2/t1), because t1 = (t2/t1)2 = t22/t

2
1 = t31/t

2
1 and t2 = (t2/t1)3 = t32/t

3
1 = t32/t

2
2,

so K(Y ) is generated by a unique transcendental element. Notice that � and  
establish isomorphisms between A1 \ {0} and Y \ {(0, 0)}.

b)Rational maps from P1
to Pn

.

Let � : P1 99K Pn be rational: on some open U ⇢ P1,

�([x0, x1]) = [F0(x0, x1), . . . , Fn(x0, x1)],

with F0, . . . , Fn homogeneous of the same degree, without non–trivial common
factors. Assume that Fi(P ) = 0 for a certain index i, with P = [a0, a1]. Then
Fi 2 Ih(P ) = ha1x0�a0x1i, i.e. a1x0�a0x1 is a factor of Fi. This remark implies
that 8 Q 2 P1 there exists i 2 {0, . . . , n} such that Fi(Q) 6= 0, because otherwise
F0, . . . , Fn would have a common factor of degree 1. Hence we conclude that � is
regular.

We have obtained that any rational map from P1 is in fact regular.

c) Projections.
Let � : Pn 99K Pm be given in matrix form by Y = AX, where A is a

(m+ 1)⇥ (n+ 1)-matrix, with entries in K. Then � is a rational map, regular on
Pn \ P(KerA). Put ⇤ := P(KerA). If A = (aij), this means that ⇤ has cartesian
equations 8

><

>:

a00x0 + . . .+ a0nxn = 0
a10x0 + . . .+ a1nxn = 0
. . .
am0x0 + . . .+ amnxn = 0

The map � has a geometric interpretation: it can be seen as the projection

of centre ⇤ to a complementar linear space. First of all, we can assume that rk
A = m+ 1, otherwise we replace Pm with P(Im A); hence dim⇤ = n� (m+ 1).

Consider first the case ⇤ : x0 = . . . = xm = 0; we identify Pm with the
subspace of Pn of equations xm+1 = . . . = xn = 0, so ⇤ and Pm are complementar
subspaces, i.e. ⇤ \ Pm = ; and the linear span of ⇤ and Pm is Pn. Then, for
Q 2 Pn \ ⇤, �(Q) = [x0, . . . , xm, 0, . . . , 0]: it is the intersection of Pm with the
linear span of ⇤ and Q. In fact, if Q[a0, . . . , an] then ⇤Q has equations

{aixj � ajxi = 0, i, j = 0, . . . ,m (check!)
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so ⇤Q \ Pm has coordinates [a0, . . . , am, 0, . . . , 0].
In the general case, if ⇤ = VP (L0, . . . , Lm), with L0, . . . , Lm linearly inde-

pendent forms, we can identify Pm with VP (Lm+1, . . . , Ln), where L0, . . . , Lm,
Lm+1, . . . , Ln is a basis of (Kn+1)⇤. Then L0, . . . , Lm can be interpreted as coor-
dinate functions on Pm.

If m = n� 1, then ⇤ is a point P and �, often denoted ⇡P , is the projection
from P to a hyperplane not containing P .

d)Rational and unirational varieties.

A quasi–projective variety X is called rational if it is birational to a projective
space Pn, or equivalently to An. Indeed, in view of Thereom 9.15 (iii), Pn and An

are birationally equivalent.
By Theorem 9.15, X is rational if and only if K(X) ' K(Pn) = K(x1, . . . , xn)

for some n, i.e. K(X) is an extension of K generated by a transcendence basis
(a purely transcendental extension of K). In an equivalent way, X is rational if
there exists a rational map � : Pn 99K X which is dominant and is an isomorphism
if restricted to a suitable open subset U ⇢ Pn. Hence X admits a birational

parametrization by polynomials in n parameters.
A weaker notion is that of unirational variety: X is unirational if there exists

a dominant rational map Pn 99K X i.e. if K(X) is contained in the quotient
field of a polynomial ring. Hence X can be parametrised by polynomials, but not
necessarily generically one–to–one.

It is clear that, ifX is rational, then it is unirational. The converse implication
has been an important open problem, up to 1971, when it has been solved in the
negative, for varieties of dimension � 3 (Clemens–Gri�ths and Iskovskih–Manin).
Nevertheless rationality and unirationality are equivalent for curves (Theorem of
Lüroth, 1880) and for surfaces if charK = 0 (Theorem of Castelnuovo, 1894).

As an example of rational variety with an explicit rational parametrization
constructed geometrically, let us consider the following quadric of maximal rank
in P3: X = VP (x0x3 � x1x2), an irreducible hypersurface of degree 2. Let ⇡P :
P3 99K P2 be the projection of centre P [1, 0, 0, 0], such that ⇡P ([y0, y1, y2, y3]) =
[y1, y2, y3]. The restriction of ⇡P to X is a rational map ⇡̃P : X 99K P2, regular on
X \{P}. ⇡̃P has a rational inverse: indeed consider the rational map  : P2 99K X,
[y1, y2, y3] ! [y1y2, y1y3, y2y3, y23 ]. The equation of X is satisfied by the points of
 (P2): (y1y2)y23 = (y1y3)(y2y3).  is regular on P2 \VP (y1y2, y3). Let us compose
 and ⇡̃P :

[y0, . . . , y3] 2 X
⇡P! [y1, y2, y3]

 ! [y1y2, y1y3, y2y3, y
2
3 ];

y1y2 = y0y3 implies  � ⇡P = 1X . In the opposite order:

[y1, y2, y3]
 ! [y1y2, y1y3, y2y3, y

2
3 ]
⇡P! [y1y3, y2y3, y

2
3 ] = [y1, y2, y3].

So X is birational to P2 hence it is a rational surface.
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Note that if we consider a projection ⇡P whose centre P is not on the quadric,
we get a regular 2 : 1 map to the plane, certainly not birational.

e) A birational non–regular map from P2
to P2

.

The following rational map is called the standard quadratic map:

Q : P2 99K P2, [x0, x1, x2] ! [x1x2, x0x2, x0x1].

Q is regular on U := P2 \ {A,B,C}, where A[1, 0, 0], B[0, 1, 0], C[0, 0, 1] are the
fundamental points (see Fig. 2)

Let a be the line through B and C: a = VP (x0), and similarly b = VP (x1),
c = VP (x2). Then Q(a) = A, Q(b) = B, Q(c) = C. Outside these three lines Q is
an isomorphism. Precisely, put U 0 = P2 \ {a [ b [ c}; then Q : U 0 ! P2 is regular,
the image is U 0 and Q�1 : U 0 ! U 0 coincides with Q. Indeed,

[x0, x1, x2]
Q! [x1x2, x0x2, x0x1]

Q! [x2
0x1x2, x0, x

2
1x2, x0x1x

2
2].

So Q �Q = 1P2 as rational map, hence Q is birational and Q = Q�1.

– Fig. 2 –

The set of the birational maps P2 99K P2 is a group, called the Cremona

group. At the end of XIX century, Max Noether proved that the Cremona group
is generated by PGL(3,K) and by the single standard quadratic map above. The
analogous groups for Pn, n � 3, are much more complicated and a complete
description is still unknown.

We conclude this section with a theorem illustrating an application of the
linearisation procedure. We shall use the following notation: given a homogeneous
polynomial F 2 K[x0, x1, . . . , xn], D(F ) := Pn \ VP (F ).
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9.16. Theorem. Let W ⇢ Pn
be a closed projective variety. Let F be a homo-

geneous polynomial of degree d in K[x0, x1, . . . , xn] such that W * VP (F ). Then

W \D(F ) is an a�ne variety.

Proof. The assumption W * VP (F ) is equivalent to W\D(F ) 6= ;. Let us consider
the d-tuple Veronese embedding vn,d : Pn ! PN(n,d), with N(n, d) =

�
n+d
d

� � 1,
that gives the isomorphism Pn ' Vn,d. In this isomorphism the hypersurface
VP (F ) corresponds to a hyperplane section Vn,d \H, for a suitable hyperplane H
in PN(n,d). Therefore we have W \ D(F ) ' vn,d(W \ D(F )) = vn,d(W ) \ H =
vn,d(W ) \ (PN(n,d) \ H). There exists a projective isomorphism ⌧ : PN(n,d) !
PN(n,d) such that ⌧(H) = H0, the fundamental hyperplane of equation x0 = 0.
Therefore, denoting X := vn,d(W ), we get X \ (PN(n,d) \H) ' ⌧(X) \ (PN(n,d) \
H0) = ⌧(X) \ U0, which proves the theorem. ⇤

As a consequence of Theorem 9.16, we get that the open subsets of the form
W \D(F ) form a topology basis of a�ne varieties for W .

Exercises to §9.
1. Let � : A1 ! An be the map defined by t ! (t, t2, . . . , tn).

a) Prove that � is regular and describe �(A1);

b) prove that � : A1 ! �(A1) is an isomorphism;

c) give a description of �⇤ and ��1⇤.

2. Let f : A2 ! A2 be defined by: (x, y) ! (x, xy).

a) Describe f(A2) and prove that it is not locally closed in A2.

b) Prove that f(A2) is a constructible set in the Zariski topology of A2 (i.e.
a finite union of locally closed sets).

3. Prove that the Veronese variety Vn,d is not contained in any hyperplane of
PN(n,d).

4. Let GLn(K) be the set of invertible n ⇥ n matrices with entries in K.
Prove that GLn(K) can be given the structure of an a�ne variety.

5. Show the unicity of the projective transformation ⌧ of Theorem 9.8.

6. Let � : X ! Y be a regular map and �⇤ its comorphism. Prove that the
kernel of �⇤ is the ideal of �(X) in O(Y ). In the a�ne case, deduce that � is
dominant if and only if �⇤ is injective.

7. Prove that O(XF ) is isomorphic to O(X)f , where X is an a�ne algebraic
variety, F a polynomial and f the function on X defined by F .


