## Appendix: An axiomatization for classical ZF

We propose here a first-order axiomatization of the Zermelo-Fraenkel set theory. Our formulation of the axioms (cf. [10]) slightly differs from, but is equivalent to, versions of this theory which can be found in the literature.
(E) $\forall x \forall y \exists d((d \in x \Leftrightarrow d \in y) \Longrightarrow x=y)$
(D) $\forall x \forall y \exists d(y \in d \& \forall v(v=x \Leftrightarrow \exists w \in d v \in w \& \exists \ell \in d v \notin \ell))$
(P) $\forall x \exists p \forall y((\forall v \in y v \in x) \Longrightarrow y \in p)$
(T) $\forall x \exists t(x \in t \& \forall v \in t \forall y \in v y \in t)$
(S) $\forall a \exists b \forall c(c \in b \Leftrightarrow \exists d(\forall x(\varphi[a, x] \Leftrightarrow x=d) \& c \in d \& \psi[a, c]))$
(S') $\forall a^{\prime} \forall a \exists b \forall c\left(\exists e \in a^{\prime} \forall x(\chi[e, a, x] \Leftrightarrow x=c) \Longrightarrow c \in b\right)$
(I) $\forall x \exists i(x \in i \& \forall y \in i \exists u \in i \forall z(z \in u \Leftrightarrow z=y))$
(R) $\forall x \exists m \forall y(y \in x \Longrightarrow m \in x \& y \notin m)$
(C) $\forall x(\forall p \in x \exists!q \in x \exists z \in p \quad z \in q \Longrightarrow \exists c \forall r \in x \exists!k \in c k \in r)$

Roughly cast in words, this is the content of each postulate:
(E) Extensionality: If two sets differ, one has a member not owned by the other.
(D) Elementary sets: An empty set exists; one can adjoin any set $x$ as a new member to any set $y$, thereby getting a set $w$; one can remove from a set $y$ any one of its members, thereby getting a set $\ell$. (Cf. [11].)
(P) Powerset: For any set $x$, there is a set to which all subsets of $x$ belong.
(T) Transitive closure: Any set $x$ belongs to a full set, namely to a set $t$ whose elements are also subsets of $t$.
(S) Subsets: To every set $a$, there corresponds a set $b$ which is null unless there is exactly one $d$ fulfilling $\varphi[a, d]$, and which in the latter case consists of all elements $c$ of $d$ for which $\psi[a, c]$ holds.
( $\mathbf{S}^{\prime}$ ) Replacement: To every pair $a, a^{\prime}$ of sets there corresponds a set comprising the images, under the functional part of $\chi[e, a, d]$, of all pairs $e, a$ with $e$ belonging to $a^{\prime}$.
(I) Infinity: For any set $x$, one can form a set $i$ to which $x$ belongs, owning as a member, along with every $y$ that belongs to it, the singleton set $\{y\}$. (Trivially $i$ is infinite when $x$ is not a singleton). ${ }^{12}$
(R) Regularity: Membership is well-founded.
(C) Choice: Every set $x$ constituted by non-empty pairwise disjoint sets admits a 'choice' set, i.e., a set $c$ whose intersection with any element of $x$ is singleton.

As we have discussed in Sec. 3, it suffices to replace the pair (R), (E) of axioms by (AFA) in order to get a hyperset theory closely analogous (but antithetic) to ZF; on the other hand, when ( $\mathbf{R}$ ) is available one can simplify (I) into

$$
\text { (I') } \exists x \exists i(x \in i \& \forall y \in i \exists u \in i \quad y \in u)
$$

[^0]
# Un assioma di finitezza, antitetico all'assioma dell'infinito presente nella teoria di <br> Zermelo-Fraenkel 

Eugenio Omodeo

29 aprile 2019

In un articolo del 1924 da titolo Sur les ensembles fini, Alfred Tarski propone l'assioma
(F) $\forall k \forall f \in k \exists a \in k \forall b \in k(\overbrace{\forall d \in b d \in a}^{b \subseteq a} \Longrightarrow b=a)$.

Lèggi: "Qualsiasi insieme $k$ abbia almeno un elemento, $f$, ne possiede anche uno, $a$, che in $k$ è minimale rispetto alla relazione $\subseteq$ d'inclusione tra insiemi' .


[^0]:    ${ }^{12}$ The following alternative version of the infinity axiom, which deserves some interest, was proposed in [24]:

    $$
    \begin{aligned}
    & \exists a \exists b(a \neq b \& a \notin b \& b \notin a \& \forall x \in a \forall y \in b(y \in x \vee x \in y) \& \\
    & \quad \forall x \in a \forall y \in x y \in b \& \forall x \in b \forall y \in x y \in a \& \forall x \in a x \notin b)
    \end{aligned}
    $$

