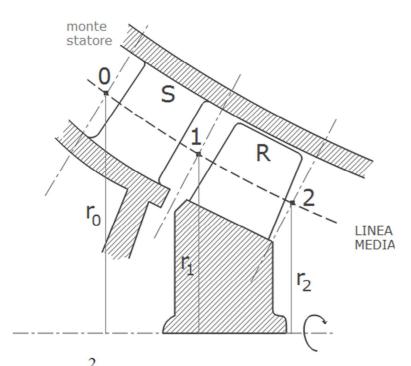
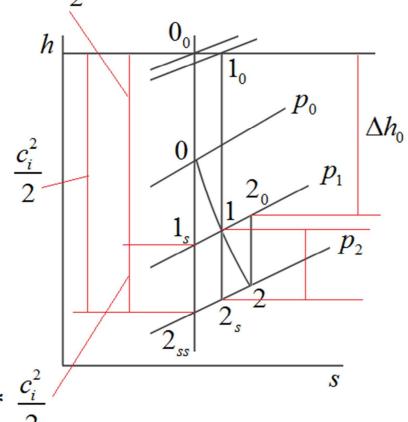
Lezione 19_20

Calcolo delle proprietà termodinamiche nell'attraversamento della turbina



$$(1-R*)\frac{c_i^2}{2}$$

ricordiamo:



$$M_u = \frac{u_1}{a_{0_0}}$$

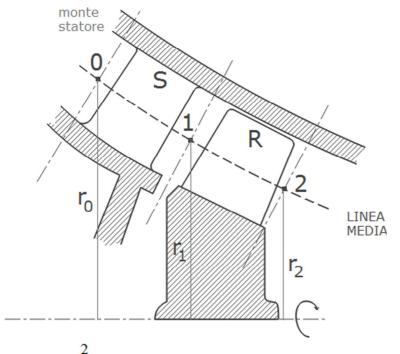
def. Mach periferico

$$a_{0_0} = \sqrt{kRT_{0_0}} = \sqrt{\frac{c_p}{c_v}(c_p - c_v)T_{0_0}} = \sqrt{h_{0_0}(k-1)}$$

$$\psi = \frac{h_{0_0} - h_{2ss}}{\frac{u_1^2}{2}} = \frac{c_i^2}{u_1^2} = \frac{\Delta h_{is_{ts}}}{\frac{u_1^2}{2}}$$

$$\frac{c_i^2}{2} = \psi \frac{u_1^2}{2} \frac{a_{0_0}^2}{a_{0_0}^2} = \frac{\psi}{2} M_u^2 (k-1) h_{0_0}$$

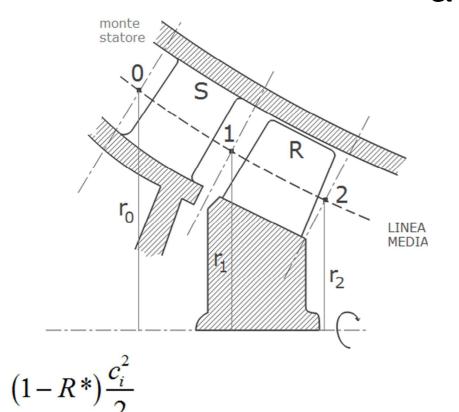
Calcolo delle proprietà termodinamiche nell'attraversamento della turbina



$$h_{1s} = h_{0_0} - (1 - R^*) \frac{c_i^2}{2} = h_{0_0} \left[1 - (1 - R^*) \frac{k - 1}{2} \psi M_u^2 \right]$$

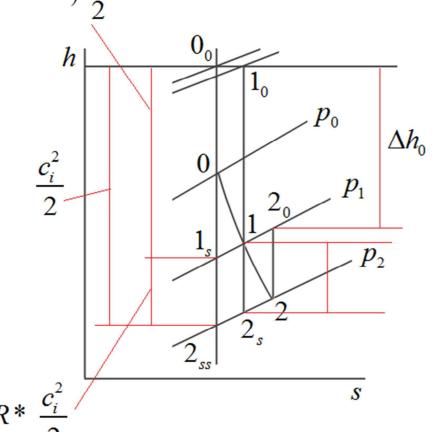
$$h_{2ss} = h_{0_0} - \frac{c_i^2}{2} = h_{0_0} \left[1 - \frac{k-1}{2} \psi M_u^2 \right]$$

Calcolo delle proprietà termodinamiche nell'attraversamento della turbina



$$\frac{c_1^2}{2} = \eta_S \frac{c_i^2}{2} (1 - R^*)$$

$$h_1 = h_{0_0} - \frac{c_1^2}{2} = h_{0_0} \left[1 - (1 - R^*) \frac{k - 1}{2} \eta_S \psi M_u^2 \right]$$

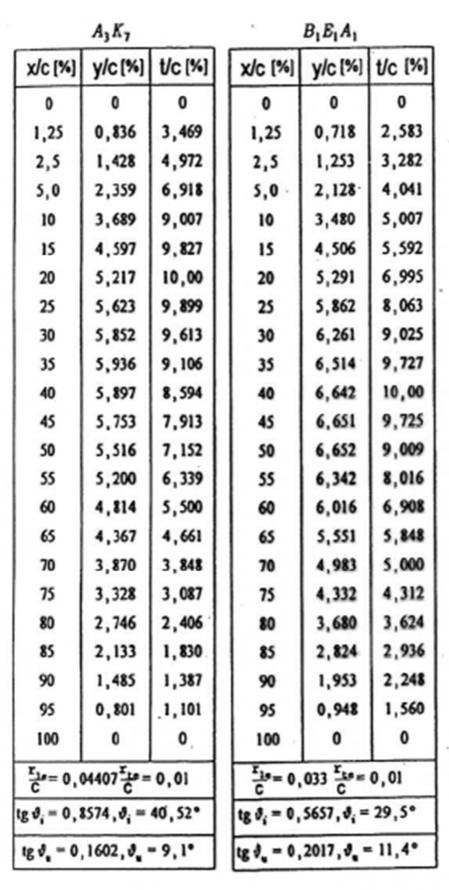


$$h_2 = h_{0_0} - \Delta h_0 - \frac{c_2^2}{2} = h_{0_0} \left[1 - \left(\eta_{T,S} + \frac{C_2^2}{\psi} \right) \frac{k - 1}{2} \psi M_u^2 \right]$$

Schiere di pale per turbine assiali

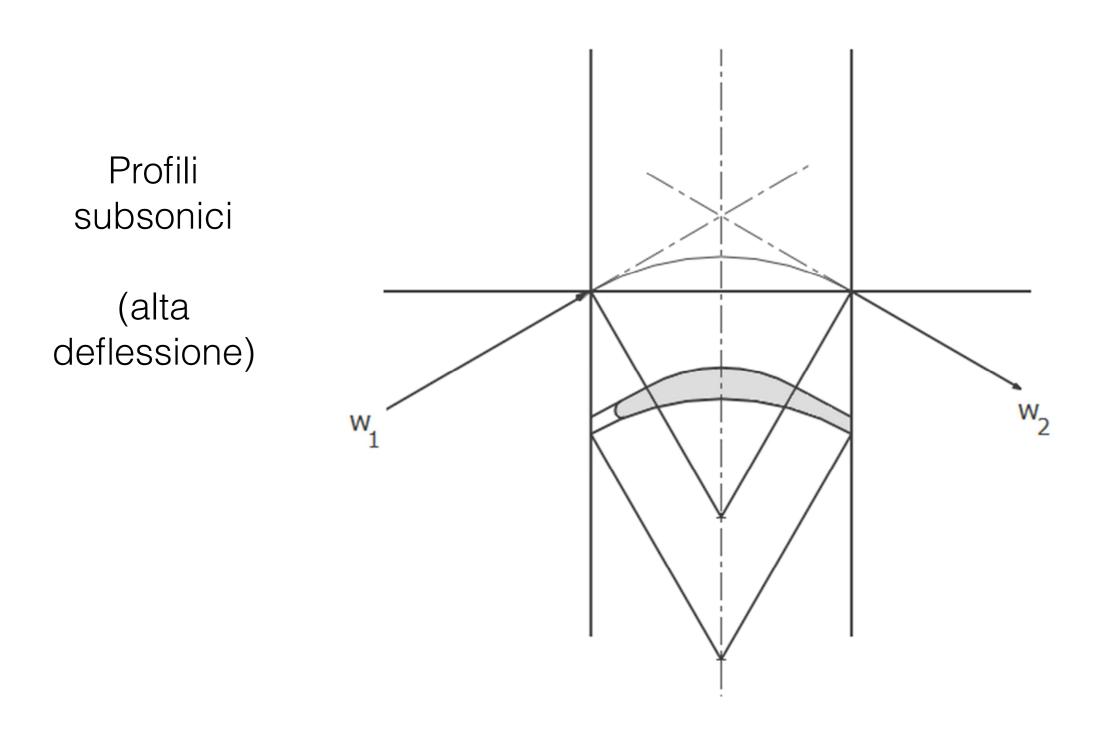
Profili subsonici

(bassa deflessione)

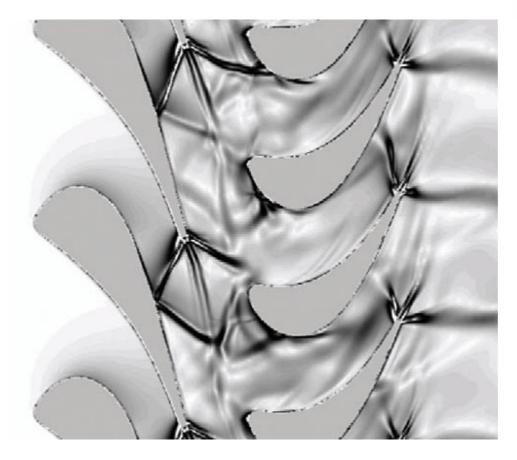


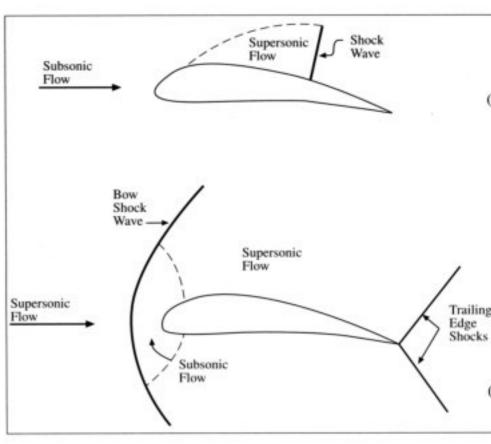


Schiere di pale per turbine assiali



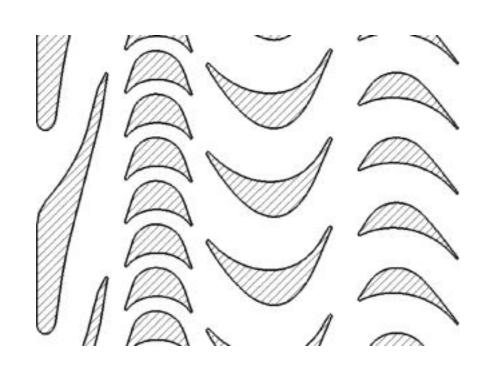
Schiere di pale per turbine assiali

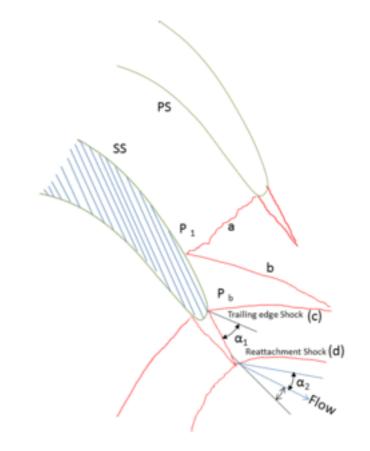




pale supersoniche (spigolo in ingresso)

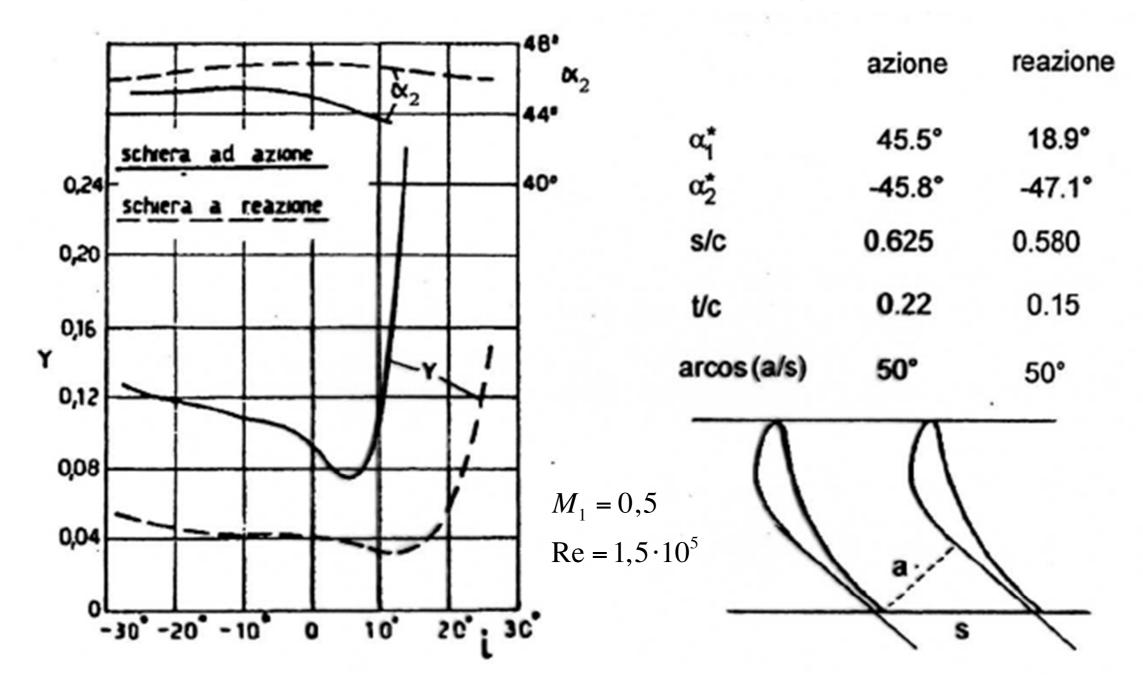
Ugelli supersonici





prestazioni delle schiere di turbina

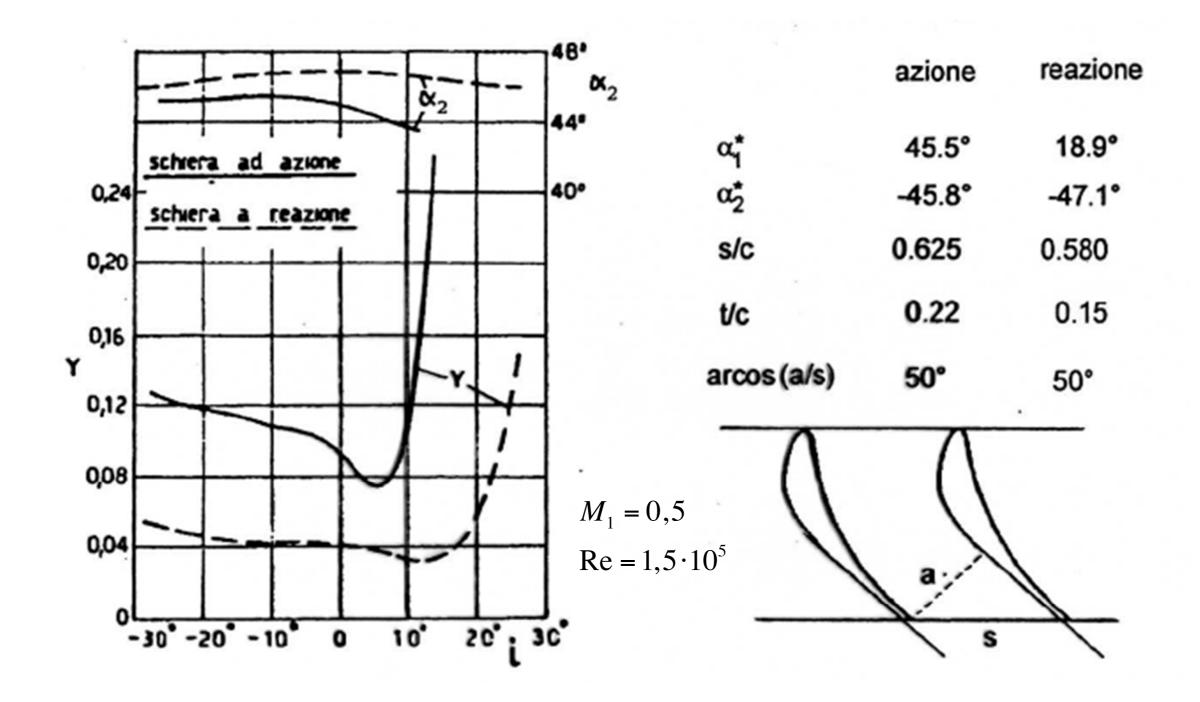
definiti i triangoli di velocità si cerca: $y,\alpha_2 = f(\alpha_1)$ (trascurando influenza di M e Re)



prestazioni delle schiere di turbina

angolo di uscita geometrico: $ar \cos \frac{a}{s}$

- α_2 poco variabile al variare dell'incidenza
- coeff. perdita quasi costante al variare dell'incidenza



prestazioni delle schiere di turbina

- riferiamoci a una schiera statorica (0 1)
- angolo di uscita geometrico $\alpha_1^* = ar \cos \frac{a}{s}$

$$\cos \alpha_1 = \frac{1}{k} \cos \alpha_1^*$$

k puo' essere stimato con diverse correlazioni:

$$k = 1 - 10750 \left(\frac{t}{s}\right)^{3,3} \left(\frac{a}{s}\right)$$
 Vaura

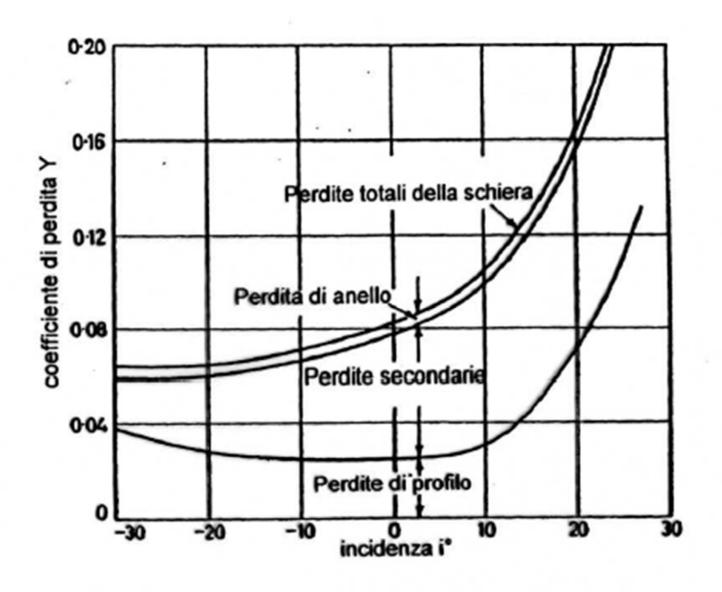


Figura 9.18: Perdite di pressione totale in una schiera di turbina in funzione dell'incidenza.

Correlazione di Soderberg

perdita di energia cinetica a valle della schiera

$$\xi = \xi_1 = \frac{|h_1 - h_{1s}|}{\frac{1}{2}c_1^2}$$
 statore

$$\xi = \xi_2 = \frac{|h_2 - h_{2s}|}{\frac{1}{2}w_2^2}$$
 rotore

Correlazione di Soderberg

Coefficienti funzioni di:

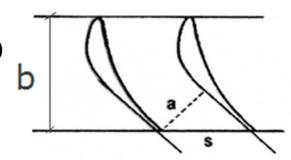
- deflessione cinematica $\Delta \alpha$ (statore) e $\Delta \beta$ (rotore)
- Numero di Re

$$Re = \frac{D_i c_1}{v}$$

- Diametro idraulico

$$D_i = \frac{2hs\cos\alpha_1}{h + s\cos\alpha_1} \quad D_i = \frac{2hs\cos\beta_2}{h + s\cos\beta_2}$$

- h altezza della pala
- allungamento della pala h/b
- t/c



Correlazione di Soderberg

$$\xi = \left(\frac{10^5}{\text{Re}}\right)^{0.25} \left[(1+\xi^*) \left(0.975+0.075\frac{h}{b}\right) - 1 \right]$$
 statore

$$\xi = \left(\frac{10^5}{\text{Re}}\right)^{0.25} \left[(1 + \xi^*) \left(0.993 + 0.021 \frac{h}{b}\right) - 1 \right]$$
 rotore

Correlazione di Soderberg

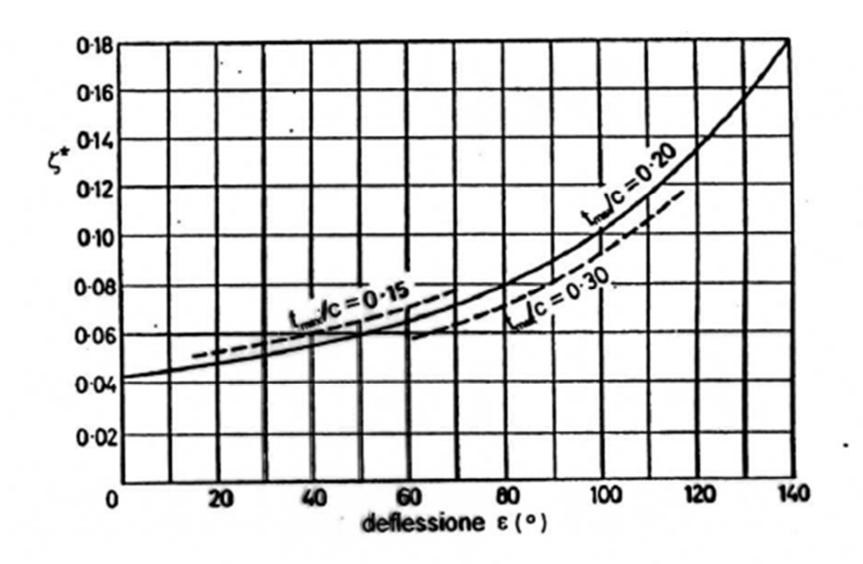


Figura 9.19: Coefficiente di perdita base secondo Soderberg in funzione della deflessione cinematica ($Re = 10^5$, h/b = 3).

Correlazione di Ainley-Mathieson (perdite di profilo)

$$Y_P = \frac{p_{0_0} - p_{1_0}}{p_{1_0} - p_1}$$
 - Re = 2·10⁵ (basato sulla corda)
- $M_1 < 0.6$

- $-t_{\text{max}}/c = 0.2$
- -t/s = 0.02
- Condizioni nominali (angolo di incidenza nullo)

$$Y_{P} = \left[Y_{P}^{*} + m_{\alpha}^{2} \left(Y_{P}^{**} - Y_{P}^{*}\right)\right] \left(\frac{t_{\text{max}}}{c}\right)^{m_{\alpha}} \qquad m_{\alpha} = -\frac{\alpha_{0}}{\alpha_{1}}$$

$$Y_P^* \rightarrow \begin{cases} \alpha_0 = 0 \\ R = 0 \\ m_\alpha = 0 \end{cases}$$

$$Y_P^{**} \rightarrow \begin{cases} \alpha_1 = -\alpha_0 \\ R = 0.5 \\ m_\alpha = 1 \end{cases}$$

$$0.15 \le \frac{t_{\text{max}}}{c} \le 0.25$$

Correlazione di Ainley-Mathieson (perdite di profilo)

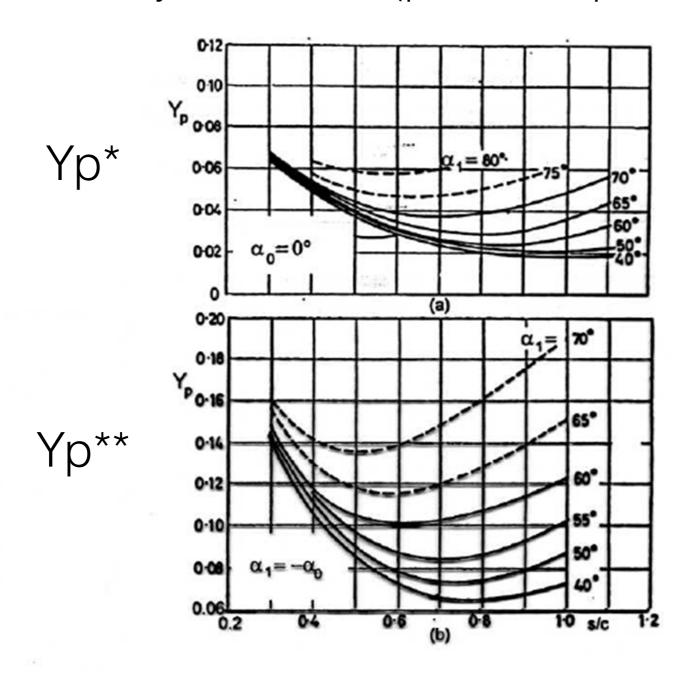


Figura 9.21: Perdite di profilo secondo Ainley e Mathieson per ugelli (a) e pale ad azione (b), in condizioni standard, in funzione di s/c e dell'angolo a valle.

Correlazione di Ainley-Mathieson (perdite di profilo)

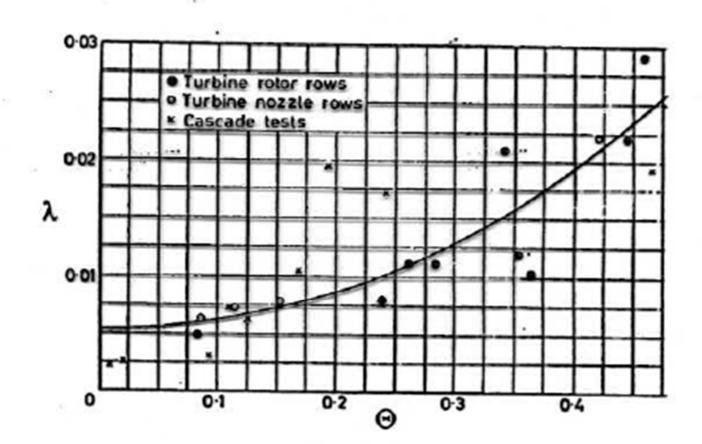
$$Y_P = Y_{P,0.02} \left[1 + 7 \left(\frac{t}{s} - 0.02 \right) \right]$$
 correzione per diverso spessore in uscita

$$Y_P = Y_{P,2 \times 10^5} \left(\frac{2 \times 10^5}{\text{Re}} \right)^{0,2}$$
 correzione per diverso Re

perdite secondarie e giochi

$$Y_S + Y_G = \left(\lambda + B\frac{\delta}{k}\right) \left(\frac{c_L}{\frac{s}{c}}\right)^2 \frac{\cos^2 \alpha_1}{\cos^3 \alpha_\infty}$$

- B = 0.5 pale "libere"
 - B = 0.25 pale "cerchiate"
- h è l'altezza della pala
- δ è il gioco radiale
- λ è un coefficiente sperimentale



$$\theta = \frac{\left(\frac{A_1}{A_0}\right)^2}{\left(1 + \frac{D_i}{D_e}\right)}$$

condizioni fuori progetto

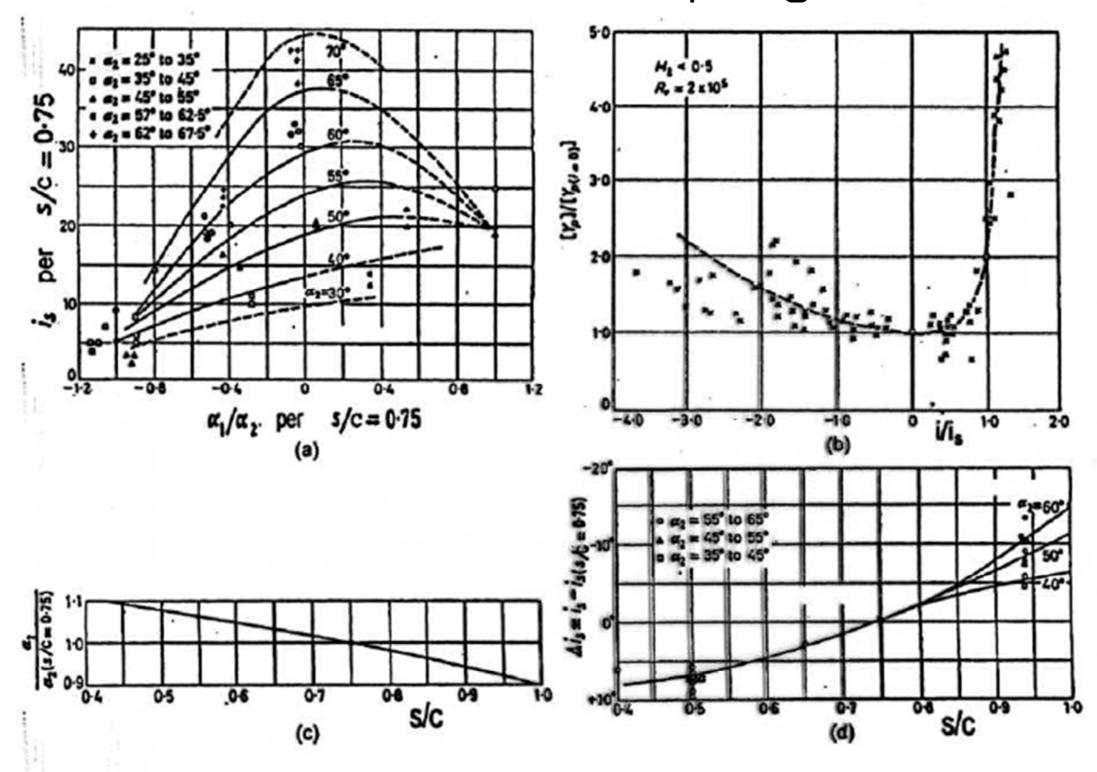


Figura 9.29: Incidenza di stallo e perdite di incidenza per schiere standard (s/c = 0.75) (figure a, b) e correzione sull'angolo a valle e sulla incidenza di stallo da utilizzare nei diagrammi a, b quando $s/c \neq 0.75$ (figure c, d).

criteri di carico

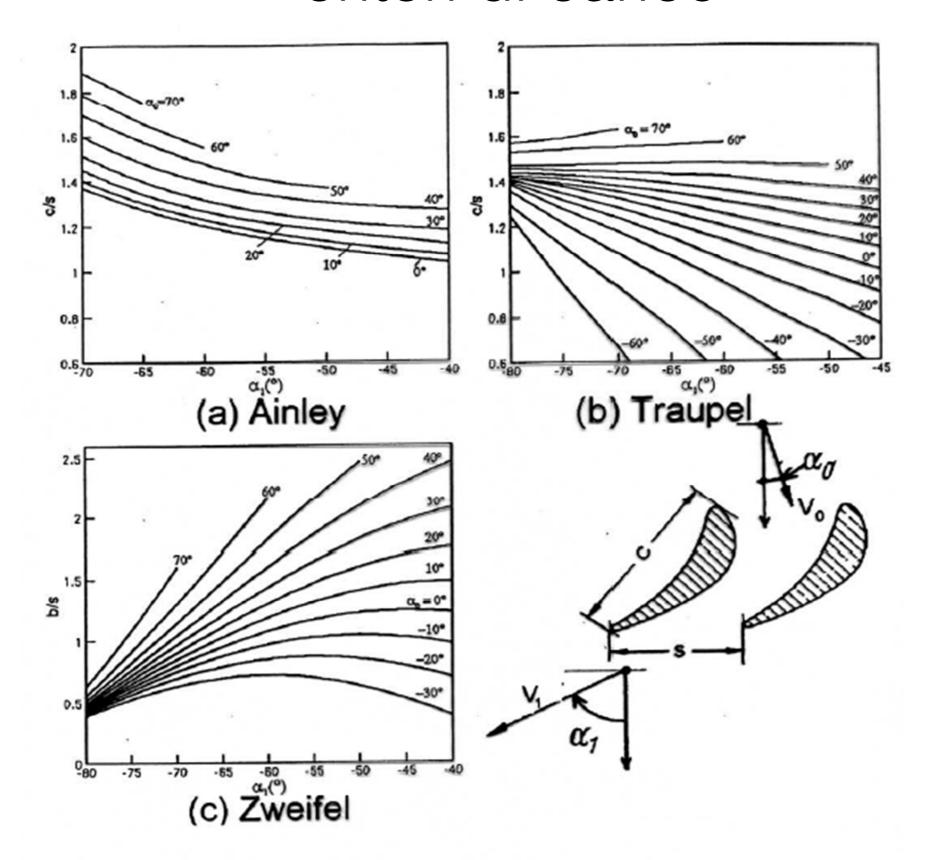


Figura 9.30: Criteri di carico rielaborati da alcuni lavori classici di diversi autori: Ainley e Mathieson (figura a), Traupel (figura b) e Zweifel (figura c).

criteri di carico

Criteri di Zweifel

$$\frac{F_{t}}{F_{t,id}} = \frac{F_{t}}{\frac{1}{2}\rho bc_{1}^{2}} = c_{F_{t}} = 2\cos^{2}\alpha_{1} \left(\frac{c_{m0}}{c_{m1}}tg\alpha_{0} - tg\alpha_{1}\right)\frac{s}{b} = 0.8$$

criteri di carico

 $p_{0_0} = p_{1_0}$ in condizioni ideali

la differenza tra $p_{\scriptscriptstyle 1}$ e $p_{\scriptscriptstyle 1_{\scriptscriptstyle 0}}$ sarà $\frac{1}{2}\rho c_{\scriptscriptstyle 1}^2$

