
Control unit

A.Carini – Microcontrollers



Control unit

• The control unit is composed by all those circuits that ensure the right 
operation of the CPU.

• First of all, these circuits allow to fetch, decode, execute the instructions of a 
program.

• Moreover, they allow to manage the external peripherals, like the memory, the 
I/O data channels, permitting the processor to interact with the external world 
when required.

• The design of a CPU control unit is strictly related to its internal hardware 
organization, and to its architecture, meaning the available set of instructions 
and the data addressing modes to be provided to the programmer.
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Microprocessor organization

• Two main strategies:
• Von Neumann organization 

• simple and cheap, used in general purpose processors (GPPs) and low-cost 
microcontrollers (µCs) (but also in ARM 7).

• Data and instructions share the same physical memory. Thus, only a bus.
• Harvard organization

• More complex and costly, used in high performance processors and DPSs.
• Data and instructions are stored in separate physical memories. There are 

two or more bus systems.
• Introduces a first degree of parallelism: can fetch an instruction and its 

operands in the same clock cycle, reading two different memories.
• Modified Harvard introduces more parallelism: some functional units (e.g., 

ALU) are replicated in order to allow parallel execution of instructions.
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Von Neumann architecture
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Harward architecture
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Bus system

• Inside a processor, buses allow data transfer between different functional units.
• They are composed by a certain number of lines, bits, that can assume two 

logic levels.
• Buses are driven by suitable logic gates, characterized by a three-state output. 

Thus, the unit can be disconnected from the bus at the end of data 
transmission.

• Different types of buses are present in µCs and DSPs. As in GPPs, separate 
buses transfer data/instructions and addresses. There are buses for interrupts 
and internal buses for specific functional units. Their number bits can be 
different.
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User architecture

• A processor architecture can be defined as the combination of resources that 
allow programming the processor in assembly language. This is also called user 
architecture.

• Independently of its implementation, the task of an architecture is that of 
providing an efficient support for the processor programming.

• Relevant aspects of the processor architecture are:
• Instruction structure,
• Data addressing modes,
• Functions implemented by the instructions.
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Architecture characteristics

• The most interesting characteristics of an instruction sets are:
• Symmetry,
• Orthogonality,
• Regularity,
• Compactness,
• Speed of execution,
• Debugging simplicity.

• Symmetry when instructions do not behave differently depending on operands. 
(example: when some registers can be copied to memory and others not).

• Orthogonality refers to the uniformity of addressing modes to the different 
instructions: we have it if all addressing modes are applicable to all instructions.
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Architecture characteristics

• Regularity: when the instruction words (IWs) have the same length and the size 
of fields dedicated to specific functions (e.g., OpCode, registers) are always the 
same.

• Compactness of the instruction set refers to the size of the machine code 
generated by the assembler for a certain program.

• The Execution speed depends on the organization at circuit level of the 
processor. Architectures symmetric, orthogonal, and regular simplify decoding 
and execution, reducing the complexity of the overall circuit.

• Debugging simplicity means readability of the code generated by the compiler 
or programmer. It is important for code reuse and portability.
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RISC and CISC architectures

• A possible classification of architectures is the following:
• RISC (reduced instruction set computer) architectures

• Registers based
• Accumulator/stack based (obsolete).

• CISC (complex instruction set computer) architectures
• Extended von Neumann
• High level language oriented.
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RISC architectures

• Instructions are less numerous (few dozens) and as simple as possible.
• Simple both in terms of instruction format and instruction function.
• Since instruction decoding (almost always cabled) is very simple, RISC 

architecture allow instruction execution in a single machine cycle.
• They allow a high reduction in silicon area need, and thus a low final cost.

• Nowadays, CPU organization is almost always of the kind “with many registers”.
• Historically, first implementations of RISC processors had an organization based 

on a single register (called accumulator) and a small stack. Thus, all instructions 
were without operands.
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CISC architectures

• Are characterized by very numerous instruction sets (hundreds of instructions), 
with variable structure, also very complex. 

• Decoding in this case is microprogrammed.
• Execution requires different cycle times.
• CISC architectures were very common in GPPs, but rare in µCs and DSPs.
• Many CISC variants:

• Extended von Neumann organizations, empowered with cache memories, 
coprocessors, debugging and program tracing circuits …

• High-level language oriented to facilitate compilation.
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µC and DSP architectures

• Some old µC architectures (of the 70s but still in use) were CISC (e.g., Intel 
8XC196, Reneas H8S). Current µC architectures are RISC.

• DSPs are mainly RISC but their architecture have evolved in time for providing 
always higher performances.

• Instruction words have become more and more complex, split in several fields 
to improve flexibility, but often loosing symmetry and orthogonality.

• Another trend has been the Very Long Instruction Word (VLIW). In this 
architecture is in possible to combine in a single macro-instruction several (2, 4, 
8) small instructions, which are executed in parallel, often in a single cycle, 
using several ALUs. Only arithmetic instructions are used in VLIW. Thus, we 
have IWs of different sizes.

• In Single Instruction Multiple Data (SIMD) architecture, the same instruction is 
executed on different operands, allowing parallelism on data.
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µC and DSP instruction sets

• DSPs always include a multiplication instruction performed in a single cycle 
(and many include also a division). Multiplication can be combined with shift 
operations and addition with an accumulator in the same cycle.

• Most DSPs allow to control the result of the operations and perform truncation 
or rounding. It is also possible to work with a saturated arithmetic.

• Moreover, they allow 
• data moving, data comparison, bit manipulation, 
• code repetition, jumps, branches and subroutine calls, 
• floating point emulation.

• Many current µCs have an HW organization identical to DSPs. They have a 
similar instruction set, RISC based, and even HW multipliers. But typically they 
have a lower parallelism to reduce costs.
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µC and DSP instruction sets

• DSPs and  µCs differ from GPPs for data addressing. Common to all are:
• Immediate addressing, with operand in IW
• Register addressing, operand in a register specified in IW
• Direct or absolute addressing, IW has the address of memory operand
• Indirect addressing, IW has memory address of operand address (pointer)

• More specific of DSPs and µCs:
• Indirect addressing with auto-increment, where IW has the address to a 

pointer, to which an increment is automatically added.
• Indirect addressing with off-set, where an offset included in the IW is 

added to the pointer.
• DSPs and  µCs often have separate Address Generation Units (AGU) to allow:

• Indirect addressing from register;  Circular or modulo addressing; 
• Bit reversed addressing
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Modulo addressing
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Bit Reversal addressing
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Control strategies
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Control strategy

• Let us consider the hypothetical processor of the previous slide. 
• The control unit decode and execute the instructions, and update the program 

counter (PC), fetching the next instruction.
• The control unit is here composed of three register:

• IR has the OpCode of the instruction
• SRC can contain a parameter included in the IW or a memory address, 

often expressed in relative terms as a PC increment.
• DEST can contain an address or the pointer to a register where to write 

the result.
• From the analysis of the OpCode, the control unit must provide the sequence 

of control signals necessary for 
1. Fetch and update of the PC
2. Execution of the current instruction.
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Control strategy

• Historically, two possible approaches have been followed for the control unit:
• Microprogrammed approach
• Cabled approach
• Microcontrollers with old architectures are microprogrammed. More 

recent ones, especially RISC ones, are cabled.
• Two possible clocking strategies:

• Multi-cycle control
• Fetch, decode, execute performed with multiple clock period.

• Single-cycle control
• Fetch, decode, execute performed in a single period.

• Single-cycle control strategy is employed only in cabled controls. 
• Multi-cycle control strategy is used both in all microprogrammed controls 

and in some cabled controls.
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Microprogrammed control

• Is implemented with a control unit that replicate the structure of a simple CPU 
with a memory, a PC, an ALU, called microcode engine.

• Each macro-instruction corresponds to a microcode, composed by some 
words. Microcodes are stored in a ROM memory.

• Two possibilities:
• Horizontal microprogramming: the control unit execute the code strictly 

sequentially, starting from the address pointed by the OpCode.
• Vertical microprogramming: jumps are possible and allow to repeat 

microcode segments, i.e., the introduction micro-subroutines.
• The microcode is composed of words, whose bits directly assert/negate 

specific control signals. 
• The microcode wordlenght depends on the number of control signals.
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Microprogrammed control
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Cabled control

• The microcode engine is replaced by a combinatorial logic circuit that 
generates directly the control signals form the OpCode of the current 
instruction, managing also temporizations.

• Includes a secondary clock generator, whose purpose is the time distribution 
of control signal activations.

• Let us assume that a single instruction is executed in 7 periods.
• The secondary clock generator is a clock divider by 7 that generates 1 pulse 

every 7 clock periods, and feeds a shift register of 6 FlipFlops.
• The decoder activates one output line for each OpCode.
• The combinatorial network, composed by AND and OR gates, feeds the control 

lines on the basis of the OpCode and of secondary clock state (from 1 to 7).
• The solution provides very fast response, with little silicon area occupation, but 

lack flexibility, and could require nop cycles to manage shorter instructions
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Cabled control
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• Only the availability of multiple resources allow a single cycle temporization.
• It requires at least that the fetch phase is performed simultaneously to decode 

and execute.
• It imposes the following system requirements:

• Separate data memory and instruction memory;
• Separate ALU for PC increment;
• Flexible PC increment for managing jumps without main ALU intervention.

• Unless the instruction set is very simple, the single cycle organization is often 
inefficient. It is the most onerous instruction that determine the clock period.

• On the contrary, in multi-cycle organization, it is the slowest functional unit 
(ALU or memory) that determines the minimum period.

• It is possible to combine advantages of both, using a pipeline organization.
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See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e 
DSP» Società editrice Esculapio, 2018
• Chapter 5
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