
Control unit

A.Carini – Microcontrollers

Control unit

• The control unit is composed by all those circuits that ensure the right
operation of the CPU.

• First of all, these circuits allow to fetch, decode, execute the instructions of a
program.

• Moreover, they allow to manage the external peripherals, like the memory, the
I/O data channels, permitting the processor to interact with the external world
when required.

• The design of a CPU control unit is strictly related to its internal hardware
organization, and to its architecture, meaning the available set of instructions
and the data addressing modes to be provided to the programmer.

A. Carini - Microcontrollers

Microprocessor organization

• Two main strategies:
• Von Neumann organization

• simple and cheap, used in general purpose processors (GPPs) and low-cost
microcontrollers (µCs) (but also in ARM 7).

• Data and instructions share the same physical memory. Thus, only a bus.
• Harvard organization

• More complex and costly, used in high performance processors and DPSs.
• Data and instructions are stored in separate physical memories. There are

two or more bus systems.
• Introduces a first degree of parallelism: can fetch an instruction and its

operands in the same clock cycle, reading two different memories.
• Modified Harvard introduces more parallelism: some functional units (e.g.,

ALU) are replicated in order to allow parallel execution of instructions.

A. Carini - Microcontrollers

Von Neumann architecture

A. Carini - Microcontrollers

CPU
Instruction and
Data Memory

Data bus

Address bus

n lines

m lines

Harward architecture

A. Carini - Microcontrollers

CPU

Data Memory

Data bus

Address bus

n lines

m lines

Instruction
Memory

Intruction bus

Address bus

p lines

q lines

Bus system

• Inside a processor, buses allow data transfer between different functional units.
• They are composed by a certain number of lines, bits, that can assume two

logic levels.
• Buses are driven by suitable logic gates, characterized by a three-state output.

Thus, the unit can be disconnected from the bus at the end of data
transmission.

• Different types of buses are present in µCs and DSPs. As in GPPs, separate
buses transfer data/instructions and addresses. There are buses for interrupts
and internal buses for specific functional units. Their number bits can be
different.

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

User architecture

• A processor architecture can be defined as the combination of resources that
allow programming the processor in assembly language. This is also called user
architecture.

• Independently of its implementation, the task of an architecture is that of
providing an efficient support for the processor programming.

• Relevant aspects of the processor architecture are:
• Instruction structure,
• Data addressing modes,
• Functions implemented by the instructions.

A. Carini - Microcontrollers

Architecture characteristics

• The most interesting characteristics of an instruction sets are:
• Symmetry,
• Orthogonality,
• Regularity,
• Compactness,
• Speed of execution,
• Debugging simplicity.

• Symmetry when instructions do not behave differently depending on operands.
(example: when some registers can be copied to memory and others not).

• Orthogonality refers to the uniformity of addressing modes to the different
instructions: we have it if all addressing modes are applicable to all instructions.

A. Carini - Microcontrollers

Architecture characteristics

• Regularity: when the instruction words (IWs) have the same length and the size
of fields dedicated to specific functions (e.g., OpCode, registers) are always the
same.

• Compactness of the instruction set refers to the size of the machine code
generated by the assembler for a certain program.

• The Execution speed depends on the organization at circuit level of the
processor. Architectures symmetric, orthogonal, and regular simplify decoding
and execution, reducing the complexity of the overall circuit.

• Debugging simplicity means readability of the code generated by the compiler
or programmer. It is important for code reuse and portability.

A. Carini - Microcontrollers

RISC and CISC architectures

• A possible classification of architectures is the following:
• RISC (reduced instruction set computer) architectures

• Registers based
• Accumulator/stack based (obsolete).

• CISC (complex instruction set computer) architectures
• Extended von Neumann
• High level language oriented.

A. Carini - Microcontrollers

RISC architectures

• Instructions are less numerous (few dozens) and as simple as possible.
• Simple both in terms of instruction format and instruction function.
• Since instruction decoding (almost always cabled) is very simple, RISC

architecture allow instruction execution in a single machine cycle.
• They allow a high reduction in silicon area need, and thus a low final cost.

• Nowadays, CPU organization is almost always of the kind “with many registers”.
• Historically, first implementations of RISC processors had an organization based

on a single register (called accumulator) and a small stack. Thus, all instructions
were without operands.

A. Carini - Microcontrollers

CISC architectures

• Are characterized by very numerous instruction sets (hundreds of instructions),
with variable structure, also very complex.

• Decoding in this case is microprogrammed.
• Execution requires different cycle times.
• CISC architectures were very common in GPPs, but rare in µCs and DSPs.
• Many CISC variants:

• Extended von Neumann organizations, empowered with cache memories,
coprocessors, debugging and program tracing circuits …

• High-level language oriented to facilitate compilation.

A. Carini - Microcontrollers

µC and DSP architectures

• Some old µC architectures (of the 70s but still in use) were CISC (e.g., Intel
8XC196, Reneas H8S). Current µC architectures are RISC.

• DSPs are mainly RISC but their architecture have evolved in time for providing
always higher performances.

• Instruction words have become more and more complex, split in several fields
to improve flexibility, but often loosing symmetry and orthogonality.

• Another trend has been the Very Long Instruction Word (VLIW). In this
architecture is in possible to combine in a single macro-instruction several (2, 4,
8) small instructions, which are executed in parallel, often in a single cycle,
using several ALUs. Only arithmetic instructions are used in VLIW. Thus, we
have IWs of different sizes.

• In Single Instruction Multiple Data (SIMD) architecture, the same instruction is
executed on different operands, allowing parallelism on data.

A. Carini - Microcontrollers

µC and DSP instruction sets

• DSPs always include a multiplication instruction performed in a single cycle
(and many include also a division). Multiplication can be combined with shift
operations and addition with an accumulator in the same cycle.

• Most DSPs allow to control the result of the operations and perform truncation
or rounding. It is also possible to work with a saturated arithmetic.

• Moreover, they allow
• data moving, data comparison, bit manipulation,
• code repetition, jumps, branches and subroutine calls,
• floating point emulation.

• Many current µCs have an HW organization identical to DSPs. They have a
similar instruction set, RISC based, and even HW multipliers. But typically they
have a lower parallelism to reduce costs.

A. Carini - Microcontrollers

µC and DSP instruction sets

• DSPs and µCs differ from GPPs for data addressing. Common to all are:
• Immediate addressing, with operand in IW
• Register addressing, operand in a register specified in IW
• Direct or absolute addressing, IW has the address of memory operand
• Indirect addressing, IW has memory address of operand address (pointer)

• More specific of DSPs and µCs:
• Indirect addressing with auto-increment, where IW has the address to a

pointer, to which an increment is automatically added.
• Indirect addressing with off-set, where an offset included in the IW is

added to the pointer.
• DSPs and µCs often have separate Address Generation Units (AGU) to allow:

• Indirect addressing from register; Circular or modulo addressing;
• Bit reversed addressing

A. Carini - Microcontrollers

Modulo addressing

A. Carini - Microcontrollers

Bit Reversal addressing

A. Carini - Microcontrollers

Control strategies

A. Carini - Microcontrollers

Control strategy

• Let us consider the hypothetical processor of the previous slide.
• The control unit decode and execute the instructions, and update the program

counter (PC), fetching the next instruction.
• The control unit is here composed of three register:

• IR has the OpCode of the instruction
• SRC can contain a parameter included in the IW or a memory address,

often expressed in relative terms as a PC increment.
• DEST can contain an address or the pointer to a register where to write

the result.
• From the analysis of the OpCode, the control unit must provide the sequence

of control signals necessary for
1. Fetch and update of the PC
2. Execution of the current instruction.

A. Carini - Microcontrollers

Control strategy

• Historically, two possible approaches have been followed for the control unit:
• Microprogrammed approach
• Cabled approach
• Microcontrollers with old architectures are microprogrammed. More

recent ones, especially RISC ones, are cabled.
• Two possible clocking strategies:

• Multi-cycle control
• Fetch, decode, execute performed with multiple clock period.

• Single-cycle control
• Fetch, decode, execute performed in a single period.

• Single-cycle control strategy is employed only in cabled controls.
• Multi-cycle control strategy is used both in all microprogrammed controls

and in some cabled controls.

A. Carini - Microcontrollers

Microprogrammed control

• Is implemented with a control unit that replicate the structure of a simple CPU
with a memory, a PC, an ALU, called microcode engine.

• Each macro-instruction corresponds to a microcode, composed by some
words. Microcodes are stored in a ROM memory.

• Two possibilities:
• Horizontal microprogramming: the control unit execute the code strictly

sequentially, starting from the address pointed by the OpCode.
• Vertical microprogramming: jumps are possible and allow to repeat

microcode segments, i.e., the introduction micro-subroutines.
• The microcode is composed of words, whose bits directly assert/negate

specific control signals.
• The microcode wordlenght depends on the number of control signals.

A. Carini - Microcontrollers

Microprogrammed control

A. Carini - Microcontrollers

Cabled control

• The microcode engine is replaced by a combinatorial logic circuit that
generates directly the control signals form the OpCode of the current
instruction, managing also temporizations.

• Includes a secondary clock generator, whose purpose is the time distribution
of control signal activations.

• Let us assume that a single instruction is executed in 7 periods.
• The secondary clock generator is a clock divider by 7 that generates 1 pulse

every 7 clock periods, and feeds a shift register of 6 FlipFlops.
• The decoder activates one output line for each OpCode.
• The combinatorial network, composed by AND and OR gates, feeds the control

lines on the basis of the OpCode and of secondary clock state (from 1 to 7).
• The solution provides very fast response, with little silicon area occupation, but

lack flexibility, and could require nop cycles to manage shorter instructions

A. Carini - Microcontrollers

Cabled control

A. Carini - Microcontrollers

A. Carini - Microcontrollers

Cabled control

Example

A. Carini - Microcontrollers

A. Carini - Microcontrollers

Cabled control

• Only the availability of multiple resources allow a single cycle temporization.
• It requires at least that the fetch phase is performed simultaneously to decode

and execute.
• It imposes the following system requirements:

• Separate data memory and instruction memory;
• Separate ALU for PC increment;
• Flexible PC increment for managing jumps without main ALU intervention.

• Unless the instruction set is very simple, the single cycle organization is often
inefficient. It is the most onerous instruction that determine the clock period.

• On the contrary, in multi-cycle organization, it is the slowest functional unit
(ALU or memory) that determines the minimum period.

• It is possible to combine advantages of both, using a pipeline organization.

A. Carini - Microcontrollers

Single cycle organization

See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e
DSP» Società editrice Esculapio, 2018
• Chapter 5

A. Carini - Microcontrollers

