
Pipeline organization

A.Carini – Microcontrollers



Pipeline

• A pipeline is obtained by performing fetching, decoding, and execution 
simultaneously on different instructions.

• In the most simple case, the instructions are consecutive.
• The pipeline is implemented by making autonomous the functional units of the 

CPU dedicated to the different phases, to allow them to work at the same time 
on different instructions without interfering.

• The pipeline organization allows to speed up considerably the CPU, but takes 
also to an increased circuit complexity, a more complex control. This translates 
to higher costs of the processor.

• It explain why, while known for a long time, it has been exploited only recently, 
thanks to the high production volumes and the reduced costs of design and 
production.

A. Carini - Microcontrollers



Pipeline

• It is used in many microcontrollers (µCs), based on RISC architectures, and in 
many DSPs.

• The pipeline complexity in these devices in much smaller than in GPPs. There 
are two reasons:
• Industrial devices have stringent cost constraints.
• Extreme pipeline organizations can make efficient and compact coding 

much more difficult.



Pipeline concept

A. Carini - Microcontrollers



Pipeline concept

A. Carini - Microcontrollers



Multi-stage pipeline

• A multi-stage pipeline acts on a larger block of instructions. There is a larger 
delay before steady-state operation, but also a larger improvement in the 
number of operations executed per unit time.



A. Carini - Microcontrollers

• Let us consider:
• Fetch 5 ns
• Decode 3 ns
• Operands read 5 ns
• Execute 2 ns
• Result write 5ns

• Then a single cycle execution would require a clock period

• With a multi-cycle organization it could work at

• Which correspond to a maximum machine cycle of

Multi-stage pipeline



A. Carini - Microcontrollers

• In a pipeline, the clock period is determined by the slowest functional unit (the 
slowest pipeline stage) exactly as in multi-cycle organizations. 

• Without conflicts, called hazards, in every clock period it executes an 
instruction, as in single-cycle organizations.

• In ideal conditions, a pipeline with n stages can accelerate the processor speed 
by a factor n, in comparison with a multi-cycle organization at same conditions.

• In reality, without hazards, the time required for completing N instructions 
is 𝑛 + 𝑁 − 1 ∙ 𝑇𝑐𝑙𝑜𝑐𝑘 and the number of operation per unit time is

• In µCs and DSPs the number of stages is typically 3 (fetch, decode, execute), but 
there exists pipelines with 5 stages (e.g., TMS320C54x)

Acceleration



A. Carini - Microcontrollers

• Two different instructions of a program could require the use of the same 
pipeline stage at the same clock cycle, determining a structural hazard.

• Avoiding structural hazards requires modifying the HW organization using 
functional units redundancy. Costs increase and a compromise is necessary.

• Most simple solution to structural hazards involves the introduction of delays in 
the pipeline control, stalling operations with a technique called interlocking.

Structural hazards



A. Carini - Microcontrollers

• There exist also other types of hazards:
• Data hazards

• When an instruction uses the results of a previous instruction that 
has not yet concluded.

• Control hazards
• When a program has jumps or branches.

Other hazards



A. Carini - Microcontrollers

• Data hazards between an instruction <i> and a following instruction <j> can be 
at least of three types:
• <j> try to read a data written by <i> before <i> is completed.
• <j> try to overwrite a data read by <i> before <i> has read it.
• <j> try to write a data in the same position of <i> before <i> is completed.

Data hazards



A. Carini - Microcontrollers

• In the example, the data hazard can be solved by delaying the operand read, 
i.e., by interlocking. 

• Alternatively, the data hazard can be managed with the following strategies:
• Bypass: the data required by <j> is taken whenever ready, even before 

being written.
• Overlap: operand reading and writing can be performed on the same 

cycle, because it is divided in two phases, the first for writing the second 
for reading.

• Reordering: the sequence of operations is altered (by the compiler or 
programmer) in order to avoid the hazard.

Data hazards



Data hazards

A. Carini - Microcontrollers



A. Carini - Microcontrollers

• In jumps or branches, the instructions that follow must be discarded, since they 
belong to a piece of code that has not to be executed.

• This is known as a control hazard and creates a bubble in the pipeline.

Control hazards



A. Carini - Microcontrollers

• To avoid these hazards, some processors allow delayed jumps, which consist in 
completing the pipeline instructions before executing the jump. It requires 
anticipating the jump in the program.

Control hazards



A. Carini - Microcontrollers

• In the most simple µCs and DSPs, the jump execution is always performed with 
interlocking, i.e., with the generation of a bubble.

• Some DSPs implements only delayed jumps, others implements both delayed 
jumps and jumps with interlocking, according to the coder preferences.

• In branches, it is better to avoid the immediate introduction of a bubble, 
because, if the branch condition is false, we have to execute all instructions of 
the pipeline. Only when the condition is true, we will have to eliminate all the 
pipeline instructions that follows.

• Interrupts also produce effects similar to jumps. They require a sudden change 
of context for servicing the interrupt subroutine.

Control hazards



Pipeline acceleration

A. Carini - Microcontrollers



Pipeline acceleration

A. Carini - Microcontrollers

• Factors that limit the performance improvement offered by a pipeline are
1. Data hazards: the larger the number of stages, the larger is the penalty 

caused by an hazard.
2. Delay in jump execution: the larger the number of stages, the larger the 

delay.
3. CPU complexity: it forces to reduce the clock frequency, due to the 

pipeline support structures.



Pipeline in ARM processors

A. Carini - Microcontrollers

• ARM processors exploit a pipeline with three stages, F – D – E , corresponding 
to Fetch, Decode, and Execute.

• The machine cycle coincides with the clock period.
• The pipeline allows managing control hazards, due to jumps, and structural 

hazards, due to memory read/write operations.
• The pipeline can stall the instructions in the stages, or can remove them in case 

of jumps.



Pipeline in ARM processors

A. Carini - Microcontrollers



Pipeline in ARM processors

A. Carini - Microcontrollers



Pipeline in ARM processors

A. Carini - Microcontrollers



Advanced DSP organizations

A. Carini - Microcontrollers

• DSPs of the last generation introduce often solutions taken from GPPs, like 
superscalar (or vector) architectures.

• These solutions consist in replicating (2 to 4 times) the functional units (ALU 
and AGU) of the CPU to allow the parallel execution of many instructions.

• The corresponding control strategies consider also:
• Branch condition prediction,
• Advanced memory managements (with DRAM and multilevel cache);
• Dynamic pipeline management.

• The instruction set is typically RISC, but SIMD architectures are also frequent.



Advanced DSP organizations

A. Carini - Microcontrollers

• The dynamic pipeline management allows to fetch and execute instructions in 
an order different from the code sequence.

• The typical structure of a dynamic pipeline includes three units:
• The fetch and decode unit (FDU).
• The execution unit (EXU).
• The write-back unit (WBU).

• The first and last follow the natural instruction order, the second not.
• Instructions are fetched in blocks by FDU; are distributed to different ALU by 

the EXU, and executed in parallel, without considering their logic order unless 
the WBU detect hazards. WBU manages write back and provides a coherent 
output.



Example

A. Carini - Microcontrollers



See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e 
DSP» Società editrice Esculapio, 2018
• Chapter 6

A. Carini - Microcontrollers


