
I/O subsystem management

A.Carini – Microcontrollers



I/O subsystem

• The “I/O subsystem” is the set of circuits, external to the CPU but implemented 
on chip, that transfer signals from the µC or DSP to the external world and vice 
versa. They are also called peripherals or I/O peripherals.

• Most common peripherals:
• Analog to digital converters (ADC) and digital to analog converters (DAC)
• Timers and counters, PWM modulators,
• Communication modules (serial ports, CAN bus, I2C, SPI, …)
• Interface circuits for encoders.
• Display interfaces,
• Peripherals for external memory modules management.

• The I/O subsystem can be managed with different approaches:
• The most common solution is based on interrupts, but we will see also 

polling (or program control) and direct memory access controller (DMAC).

A. Carini - Microcontrollers



I/O subsystem

• The different peripherals are connected to the bus with an interface circuit.
• The interface circuit provides the logical and (if needed) electrical adaptation 

between peripherals and CPU.
• The interface must have some registers for the peripheral configuration (CREG), 

for storing the exchanged data (DREG), for reading the peripheral status (SREG).
• CREG and SREG often have a few bits and form a unique register.
• The size of registers CREG, DREG, SREG could be different from that of the bus.
• If the size of DREG is larger than the bus, it can be placed in two or more 

memory locations.
• The CPU and peripheral interaction can be performed in two ways:

• Isolated input/output;
• Memory mapped input/output.

A. Carini - Microcontrollers



I/O subsystem

A. Carini - Microcontrollers



Isolated I/O

• The isolated I/O organization exploits instructions specifically dedicated to the 
peripheral management.

• The set of instructions is composed by two classes: the CPU instructions and 
the peripherals instructions.

• The execution of a peripheral instruction operates on the bus similarly to the 
memory read and write instructions. But, there are dedicated control lines that 
select the desired peripherals.

• This I/O subsystem organization has been practically abandoned.

A. Carini - Microcontrollers



Memory mapped I/O

• In memory mapped I/O the registers of peripherals are treated directly as 
normal memory locations, without dedicated instructions or control lines.

• The technique is nowadays used in all modern µCs, DSPs, DSCs.
• Its implementation requires the peripheral to access and decode at least some 

of the address bus lines.
• In most recent µCs, DSPs, DSCs, a bus exclusively dedicated to the peripherals is 

available. This bus does not interfere with the memory access.

A. Carini - Microcontrollers



I/O subsystem management strategies

• The peripherals operate asynchronously and with a lower speed than CPU.
• There is the problem of synchronizing the data exchange from processor and 

external units.
• There are three fundamental approaches:

• Polling or program controlled I/O;
• Interrupts;
• The use of a I/O dedicated processor, or DMAC.

A. Carini - Microcontrollers



Program controller I/O

• In program controlled I/O, the user code is designed to periodically poll the 
status register of the peripherals of interest.

• Inside an infinite cycle, the register is read and compared with a predefined 
configuration.

• When there is a match, the CPU jumps to a subroutine that perform the desired 
operation. 

• Once completed the subroutine, the control return to the main program that 
repeats the polling.

• The approach is very inefficient: the CPU remains in a wait state for long times, 
without the possibility of doing other jobs.

A. Carini - Microcontrollers



Interrupts

• Allow the CPU to perform other jobs while the peripherals are active.
• When a peripheral needs a CPU intervention (for example, because it has pro-

duced a data), it sends the CPU a request by asserting a dedicated control line.
• The signal sent to the CPU is called interrupt request or IRQ: after receiving it, 

the CPU stops the execution of its program and manage the request.
• Interrupts are a particular case of exception. The term indicates all operation 

conditions of a processor that do not correspond to the normal code execution:
• Reset, when a processor start execution
• Fault:

• Hard: processor is in an undetermined state
• Memory: the code has tried to access some protected are of memory
• Program: the code has performed instructions with undefined result

• System clock zero: watchdog has reached zero.

A. Carini - Microcontrollers



Interrupts

A. Carini - Microcontrollers



Interrupts

• At an interrupt request, the CPU must 
1. Complete the current instruction,
2. Save context
3. Activate the interrupt service routine,
4. Recover context
5. Continue program execution.

• Context saving requires storing at least the program counter and status register
• Some processor (e.g., ARM7) operates on an alternative set of registers.
• Others require the programmer to store in a stack the contents of the registers 

used by the service routine and to restore them at the routine end.

A. Carini - Microcontrollers



Interrupts

• Since there can be many peripherals of a µC or DSP, in the interrupt 
management we have to face some problems:

1. Determine the peripheral that has requested the interrupt,
2. Manage simultaneous IRQ by different peripherals
3. Manage interrupts inside an interrupt service routine (nested interrupts)

• These problems have been solved in different ways, with:
• Interrupt status register
• Vectored interrupts
• Daisy chain

A. Carini - Microcontrollers



Interrupt status register

• The first solution of early devices exploits one or more interrupt status register 
(ISR), where each bit is dedicated to a different peripheral.

• At the IRQ, the corresponding status bit is asserted in the register.
• The interrupt service routine must check one by one the bits to determine 

which peripheral to service.
• The solution implicitly implements a priority mechanism, scanning the bits in 

the order decided by the programmer.
• It is also possible to service nested interrupts.
• The method is anyway inefficient, since the ISR scanning can require a 

significant time.

A. Carini - Microcontrollers



Vectored interrupts

• In this case the processor has different interrupt lines (IRQ1, IRQ2, …), each 
dedicated to a different peripherals (of small group of peripherals) and can 
automatically activate the appropriate service routine.

• When the control circuits receive an interrupt request, it identifies it using an 
encoder with priorities. 

• Immediately, it saves the program counter and updates it with the address 
location reserved to the interrupt source in the interrupt vector.

• The interrupt vector is a portion of the instruction memory where are placed 
the subroutine calls to the different interrupts.

• In this organization, both the identification of the calling peripheral and the 
context saving are performed automatically by the control circuit.

• It is still possible to manage nested interrupts.

A. Carini - Microcontrollers



Vectored interrupts

A. Carini - Microcontrollers



Daisy chain

• All peripherals are connected in series to the same control line. 
• This solution allows to minimize the CPU access lines and to serve a large 

number of peripherals.
• When the CPU receives an IRQ, the CPU sends an acknowledgement along the 

daisy chain, which propagate from peripheral to peripheral till the interrupt 
source.

• The peripheral that asserted the IRQ, stops the propagation of the 
acknowledgement and reply by writing on the data bus his address. 

• Similarly to vectored interrupt, the program counter is saved and overwritten 
with the address of the interrupt service routine.

• It introduces implicitly a priority system.
• Nested interrupts are also possible.

A. Carini - Microcontrollers



A. Carini - Microcontrollers

Daisy chain



A. Carini - Microcontrollers

Daisy chain



Interrupt masking

• It is possible to avoid the CPU being interrupted by peripherals by masking the 
interrupt sources. 

• This is achieved keeping low the Interrupt Enable control signal, always present 
in µCs, DSPs, DSCs.

• Sometimes, this is obtained by using a certain user code in specific instruction. 
• In other cases, by modifying one or more bits of the processor status register.
• Often it is possible to inhibit the single source.
• Anyway all processor have a non-maskable interrupt NMI for handling 

emergency conditions.

A. Carini - Microcontrollers



Parameters of an interrupt system

1. Maximum number of sources;
2. Priority management way;
3. Speed of context saving;
4. Interrupts masking.

• In real-time control the speed of context saving is often a critical parameter.
• Equally important is the interrupt masking in critical code regions.
• Most recent µCs, DSPs, DSCs have a vectored interrupt system. The interrupt 

service subroutine is called automatically, together with context saving.
• The number of interrupt sources if often very high (e.g. > 10) and is often 

possible to prioritize the interrupts.

A. Carini - Microcontrollers



Parameters of an interrupt system

A. Carini - Microcontrollers



Parameters of an interrupt system

A. Carini - Microcontrollers



Parameters of an interrupt system

• Nesting can be advantageous. 
• We can obtain similar performance without nesting only in case we have few 

ISRs of short execution time.
• Interrupt managing without nesting is the most frequent in µCs and DSPs. 
• ARM Cortex M3 allows vectored interrupts with nesting (with up to 240 

interrupts). Context saving in a stack is automatic.
• ARM7 manage at most two interrupt sources and does not allow nesting. Also 

in this case context saving is automatic.

A. Carini - Microcontrollers



Analysis of latency times in interrupts

• In many sensitive applications it is necessary to forecast the maximum delay 
before an interrupt request is serviced, i.e., its latency time.

• The latency time always have an intrinsic component 𝑇𝐿𝐼, due to the necessity 
to save the context. Other delays can add

1. When a particularly complex instruction is executed (in CISC arch.). Since 
this must be completed before servicing the ISR, we have a delay 𝑇𝐼𝑆𝑇

2. When interrupt requests are disabled to protect critical code regions, 𝑇𝑅𝐶
• Thus, the total latency time is the sum of tree contributes:

• Critical regions are code segments that must be executed strictly in sequence, 
e.g. for guaranteeing a precise temporization.

A. Carini - Microcontrollers



Analysis of latency times in interrupts

• In systems with several sources, interrupt requests can interfere. 
• The lower priority requests will have larger latencies.
• In systems with nesting, the worst case latency of an interrupt with priority n is

• Where 𝑇𝑑𝑖 is the length of ISR i:

• In systems without nesting,

A. Carini - Microcontrollers



Interrupt density

• When a µC or DSP has to manage a certain number of interrupt sources, we 
must guarantee that all can be serviced.

• A necessary (but non sufficient) condition for sustainability is 

• Where 𝑇𝑝𝑖 is the repetition period of i-th ISR.

• The condition is not sufficient, since there could be critical regions and since 
the combined requests could prevent to service the i-th ISR in 𝑇𝑝𝑖.

• To include also these conditions, for any interrupt we must have:

A. Carini - Microcontrollers



Example

A. Carini - Microcontrollers



Direct memory access (DMA)

• Is the most efficient approach for interfacing a CPU and some I/O peripherals.
• It consists of a additional control circuit, called DMA controller (DMAC) that, 

once programmed, can manage peripherals without involving the CPU.
• The DMAC exploits a portion of data memory, specified by the programmer in 

the configuration, for transferring in a bidirectional way the data produced or 
expected by the peripherals, and this at the maximum velocity without any 
CPU activity.

• When the memory block has been updated with new data, or all data has been 
transferred to the peripheral, a single interrupt request is generated.

• This is an efficient and expensive solution, but is now available in many µCs, 
DSPs, and DSCs.

A. Carini - Microcontrollers



DMAC organization

• The DMAC acts replacing the CPU in the address and data bus control.
• To control the bus, DMAC uses some gates that act as switches. When they are 

active, they isolate the CPU from bus for all the data transfer time.
• The operation can be performed a little at a time, with a cycle stealing 

approach, or from the beginning till the end of a block of data, with an 
approach called burst.

• The protocol used is the following:
1. The peripheral requests to DMAC permission to transfer (Transfer Request).
2. DMAC request CPU permission to use bus (DMA Request).
3. CPU grant use of bus (DMA Grant): switches isolate CPU and connects 

DMAC and peripheral to memory.
4. DMAC set the address on bus an authorize the peripheral to read or write 

data (Transfer Grant).

A. Carini - Microcontrollers



DMAC organization

A. Carini - Microcontrollers



See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e 
DSP» Società editrice Esculapio, 2018
• Chapter 8

A. Carini - Microcontrollers


