
Time intervals measurement

A.Carini – Microcontrollers



Time interval measurement

• Measuring time intervals is often required in the implementation of control 
systems or digital supervision systems.

• Many DSPs and practically all µCs provide to the user one or more peripherals 
dedicated to time interval measurement, called timers.

• Timers can be:
• General purpose (GPT)
• Dedicated to specific functions (e.g., PWM modulators).
• Real time clocks (RTC)
• Watchdog timer (WDT).

• Measuring time is required to establish accurate pauses or delays in the code, 
or for the generation of periodic command signals to peripherals.

A. Carini - Microcontrollers



Timing of applications

• In principle, the timing of an application can be implemented with code blocks, 
in the form of cycles (e.g., for, while, repeat), inside the main program, that 
have the required time length. The approach is inefficient.

• A much more efficient approach is based on interrupts.
• All timers can generate an interrupt request after a programmed time interval.
• Any delay, wait, cadence function can be managed by associating the timing 

activities to the ISRs of these IRQs.
• Nevertheless, particular care must be taken to the other sources of interrupts, 

not associated with the timer, which could interfere with the stability of the 
timing.

• In the next example, if the perturbation of IRQ1 is large, IRQ2 could also not be 
serviced. If it is small, most likely it will produce just some jitter in the events 
associated with the timer.

A. Carini - Microcontrollers



Example

A. Carini - Microcontrollers



Timing of applications

• It is possible to attenuate the interference problems with the following 
strategies:

1. Associate to timer the IRQ with highest priority (effective only if ISR 
nesting is allowed).

2. Stop interrupt generation at priorities higher than timer by masking 
(applicable only for short period of times).

3. Resort to different timing mechanisms, based on timer working in match 
or compare mode (to be discussed later).

A. Carini - Microcontrollers



The timer circuit

• The timer is just a binary counter with n bits. 
• It counts the clock periods or multiples of this quantity. Any timer has a 

configuration register to set the rate of counting, using a clock divider.
• Often, it is possible to set the continuing mode (up, down, with stop at 

overflow, with restart at overflow).
• Some timers allow to set the starting value in a preload register.
• When the value set in the match (or compare) register is reached, the timer can 

generate an interrupt request, or can set the status of an output bit without 
any CPU intervention.

• The counting frequency can be set to a fraction of the clock, with a circuit 
called prescaler.

A. Carini - Microcontrollers



The timer circuit

A. Carini - Microcontrollers



Timer operation modes

• In the timer configuration register, it is possible to configure the counting mode 
of the timer, not only deciding the direction of counting, but also setting the 
restart mode when the compare value is reached.

• It is possible to impose the timer to stop till a novel start is decided by the CPU, 
a mode called program controlled.
• This mode can be used to introduce a predetermined delay between two 

actions of the CPU.
• Alternatively, it is possible to automatically reload the starting value and restart 

counting without any CPU intervention, obtaining periodic IRQs: free-run mode.
• Can be used to periodically repeat the action without any jitter.
• Pulses of different width can be originated with the match register. The 

match register is loaded with the width of the pulse. At the timer start, the 
output bit is set, and it is reset when the match conditions is reached.

A. Carini - Microcontrollers



Example: program controlled

A. Carini - Microcontrollers



Example: free-run

A. Carini - Microcontrollers



Pulse width modulation (PWM) mode

• Differently from the previous cases, the pulses have variable width but constant 
period.

• Thus, the value stored in the match register is periodically modified, e.g., by the 
interrupt service routine, to modify the width of the pulses.

• At the same time, the overflow value is kept constant, to keep constant the 
pulse period.

• In many cases this operation mode is facilitated by the presence of specific 
timers, called PWM modulators.

A. Carini - Microcontrollers



Example: PWM modulation

A. Carini - Microcontrollers



Timer in capture mode

• In capture mode, the timer start counting in response to an external event, a 
rising or falling edge on one of the external pins of processor.

• This mode allows to measure the time width of external events, the pulse width 
on an input pin measured in clock periods.

• Can be used to realize automatic synchronization systems between two signals.
• The counter normally works in free-run. His values are saved in appropriate 

registers, one for each event. 
• The temporal width of the two events can be obtained by the subtraction of 

the two saved values.
• Provided there is at most an overflow between the two events, the subtraction 

in 2 complement will provide the right value of the time width.
• An interrupt can be generated at each event (A and B), but it is much more 

convenient to have it only at the concluding event.

A. Carini - Microcontrollers



Example: capture mode

A. Carini - Microcontrollers



Timers with specific functions

• Some timers are optimized for specific functions, and cannot be used for 
different tasks:
• Real time clock, RTC
• Watchdog timer, WDT
• PWM modulators.

• The real time clock is a programmable timer that can generate interrupts with a 
predetermined period without external interactions.

• Very often it is organized with many counting registers connected, that 
together allow to represent intervals in seconds, minutes, hours, days.

A. Carini - Microcontrollers



Watchdog timer WTD

• Operates in free-run. 
• Once activated, it can generate a non-maskable interrupt typically at overflow.
• The interrupt can be used for different ends.
• Quite commonly, it is used to detect and correct deadlock conditions.
• For this purpose, the last action of algorithm in execution is assume to be the 

WDT reset.
• It the algorithm is stalled, the WTD will never be reset and a non-maskable 

interrupt (NMI) will be generated at overflow.
• The ISR of this NMI will detect the malfunction and will typically reset the 

system to restart from known conditions.

A. Carini - Microcontrollers



Example: watchdog

A. Carini - Microcontrollers



Counting frequency

• The first choice in configuring a timer is the counting frequency.
• The maximum frequency is the processor clock frequency, but it is always 

possible to reduce it by setting the prescale register, a clock divider.
• The two parameters we have to choose are the maximum width and the 

counting resolution.
• The ratio between the maximum measurable interval and the resolution is 

constant and equal to 2𝑛, with n the counter bits.
• A low value of the prescaler allows a high resolutions in separating events in 

time, but reduces the maximum interval. A high value allows to enlarge the 
interval but reduces resolution.

• Example: a 16 bit prescaler with clock of 10 MHz. The maximum interval is 429s. 
The highest resolution is 100ns, but the corresponding maximum interval is just 
6.5ms.

A. Carini - Microcontrollers



Operation modes

• We shall also decide the counter operation mode.
• The first choice is between program controlled, i.e., single shot and free-run.
• Then we shall define if it is necessary the generation of an interrupt at match or 

at overflow, or if we want a compare mode, maybe without interrupts because 
we have just to change the status of an I/O pin.

• In case we need the capture mode we shall define the sequence of events that 
cause the timer value read.

A. Carini - Microcontrollers



Typical applications

• Command pulse generation with a programmable delay referred to specific 
events.

• Time measurements, frequency measurements, or other physical quantity 
measurements, e.g., using transducers with PWM output.

• Synchronization of signals or processes.
• PWM modulation for controlling static converters as those of electrical drivers, 

battery chargers, photovoltaic systems, uninterruptable power supply (UPS).

A. Carini - Microcontrollers



See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e 
DSP» Società editrice Esculapio, 2018
• Chapter 11

A. Carini - Microcontrollers


