
Serial Communication

A.Carini – Microcontrollers

Serial communication

• It is the simplest and cheapest way to realize a data exchange between a µC or
DSP and an external peripheral.

• It allows transmission and reception, also simultaneous, of data one bit at a time
and requires a minimal physical support (3-4 lines, also just 2 lines).

• In contrast, the parallel transmission requires a bus with as many lines at the
bits parallel transferred plus some control lines, but allows faster speed.

• The serial communication is much used and is at the basis of many successful
communication protocols, as Controller Area Network (CAN) or Inter Integrated
Circuit (I2C).

• All µCs and most DSPs integrate peripherals called USART, Universal Synchronous
Asynchronous Receiver Transmitter, for implementing serial communications.

• Many have more sophisticated peripherals capable to simplify the
implementation of CAN, I2C, and SPI protocols.

A. Carini - Microcontrollers

Serial communication

• There are two possible mode of operation: synchronous and asynchronous.
• The synchronous mode allows faster speed but requires a more complex

physical support.
• The asynchronous mode requires a minimal complexity of the connection (just

2 lines for unidirectional communications) but allows only slower speeds.
• The peripherals of µCs allow both modes, but the asynchronous mode is

usually preferred when there is no need for high speed.
• The synchronous mode is usually implemented with one of the following

communication buses:
• I2C (Inter-Integrated Circuit) introduced in mid 80’s by Philips (now NXP).
• SPI (Serial Protocol Interface) developed in 1979 by Motorola (later

become Freescale, NXP)
• Both protocols have a certain complexity, managed with dedicated peripherals.

A. Carini - Microcontrollers

Asynchronous serial communication

• It is implemented without a clock synchronization between the transmitter Tx
and the receiver Rx.

• The receiver will extract synchronism from the data line.
• Each transmission is preceded by a start bit and is concluded by one or more

stop bit.
• Initially conceived for isolated transmission, with long pauses between

transmissions, thanks to its simplicity it is also used for continuous
transmissions.

A. Carini - Microcontrollers

A. Carini - Microcontrollers

Asynchronous serial communication

• The same time interval, called bit time, is assigned to each transmitted bit.
• We should distinguish between logic states, active and inactive, and logic

levels, low and high. The association between state and level can change.
• The start bit is always signaled by a transition of the line between inactive

(here low) to active state.
• The stop bit has always the polarity of the inactive state.

Asynchronous serial communication

• The channel configuration that must be shared between Tx and Rx is based on
few typical parameters:
• Number of start bits: 1
• Number of data bits: from 5 till 8
• Number of parity bits: 0 or 1.
• Number of stop bits: 1, 1.5, 2;
• Communication speed: 1200, 2400, 4800, 9600, 19200 bps

• These parameters are configured acting on some registers of the USART
peripheral, here acting as Universal Asynchronous Receiver Transmitter UART.

• The optional parity bit allows to check communication errors: it is 0 if the sum
of data bits is even, otherwise is 1 (but is also possible the opposite convention).

• The “additional” bits reduce the transmission speed. In the best case, 8+2 bits,
the data rate is reduced by 20% from the start and stop bit.

A. Carini - Microcontrollers

Synchronization extraction from data line

• The synchronization procedure provides that the receiver start to sample the
data line after its first transition from inactive to active.

• Ideally, the receiver should sample bits in the middle of their temporal interval,
which is BT=1/bps, with bps also called baud rate. Thus, at 1.5 BT, 2.5 BT, …

• Rx and TX know the communication speed that has been set, but each has his
own frequency, which introduces an uncertainty on the sampling times.

• The problem is solved by sampling the data line with a period lower than bit
time, typically BT/16.

A. Carini - Microcontrollers

A. Carini - Microcontrollers

• The synchronization procedure starts at first transition from inactive to active.
• After 6 sampling periods, three consecutive samples are read to check start.
• From this moment on, every 16 periods 3 samples are read.

Synchronization extraction from data line

A. Carini - Microcontrollers

• We can evaluate the maximum allowed clock difference between Tx and Rx.
• The most critical bit for sync errors is the last data bit.
• Taking into account the uncertainty in detecting the start, at most BT/16, a sync

error could occur if, in a time equal to 9.5 BT, the receiver accumulates a drift of
±(0.5 -1/16) BT, which means:

• A relative frequency precision of ± 2.25 % is sufficient to avoid errors. Such
precision is easily achievable with quartz oscillators.

Synchronization extraction from data line

Synchronous serial communication

• The transmitter acts as master and sends its clock to the receiver on a
dedicated line.

• Often further control lines are present, which allow to send a frame sync, each
word or frame.

• With this serial, the lines can be used for 100% of time to transmit data and the
transmission speed can be increased in comparison with asynchronous
systems.

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

• In the picture, the clock falling edge signals “data is stable and can be sampled”.
• The frame sync indicates the beginning of a new word.

Synchronous serial communication

• USRT peripherals allow to configure many of the transmission parameters:
• The clock polarity, i.e., the clock edge that signals the sampling time
• The data polarity, the logical association to high and low voltages.
• The bit transmission order, MSB first or LSB first.
• The data size, 8, 16, ….

• Also the frame sync can be configured in many modes.
• The active phase can last 1 BT or 1 word.
• It is possible to transmit sync every two words.

• In many USRT it is possible to flexibly set the clock frequency, since there is a
programmable clock divider.

• In other cases the transmission frequencies are predefined.
• In rare cases, clock can be generated by an external circuit.

A. Carini - Microcontrollers

Physical layer standards for serial communications

• Serial communication, both synchronous and asynchronous, is often
implemented according to one the following physical layer standards:
• RS232, in one of the many variants;
• RS422/v11 or v12;
• RS485;
• Current loop at 20mA.

• They define the number of conductors, the voltage levels, the line drive.
• In case of closed systems, i.e., in systems where the serial communication is

used for connecting internal components, it is possible to not meet any
particular standard.

A. Carini - Microcontrollers

RS232

• Introduced in 1962 and modified many times.
• Was designed to connect a DTE (Data Terminal Equipment) and a modem.
• The standard defines 54 lines, establishing their functions.
• An RS232 connector has 25 poles, or in many cases, 9 poles.
• Only 3 lines are needed for asynchronous communications (Rx, Tx, 0V ref).
• The voltage levels established by the standard are +12 V (logic 0), -12 V (logic 1).

But many devices works also with +10 V, -10 V.
• Communication with RS232 standard often requires a driver, a device capable to

drive the lines, adapting the µC output voltages (usually ≤5V) to the line voltage,
and providing a sufficient current to sustain a cable also longer than 1m.

• The communication is full duplex, since we can have a simultaneous Tx and Rx.

A. Carini - Microcontrollers

RS232

A. Carini - Microcontrollers

RS422 and RS485

• These standard were introduced to guarantee a good quality of serial
communication also in industrial environments, characterized by a relatively
high electromagnetic pollution.

• Both standards foresee data transmission in differential mode with two
conductors normally intertwined to minimize possible interferences by the
electromagnetic field radiated by other conductors in proximity.

A. Carini - Microcontrollers

RS422 and RS485

• The differential mode transmission associates the information to the difference
between the voltage levels of the two lines.

• The differential transmission is insensitive to the common mode components,
i.e., to a common voltage applied to both conductors. Capacitive couplings
between the two lines and conductors in proximity give rise to common mode
voltages that alter the average level of the two lines.

• The two lines are intertwined to allow cancellation of voltages induced by
variable magnetic fields, since two close loops will have opposite induced
voltages. With this trick, the transmission is robust against inductive couplings.

• The better immunity to noise allows us to sustain relatively fast transmission
speed (10 Mbs for distances < 15m).

• In contrast to RS422, in RS485 it is possible to have multiple-transmitters on the
same line, with each Tx in high impedance when inactive.

A. Carini - Microcontrollers

Digital transmission with current loop

• The connection between two devices can also exploit the circulation of a
current to transmit information.

• This channel, called current loop, associates a current, typically of 20mA, to a
logic 1, and the absence of current to a logic 0.

• The transmission method is much used in industry, since it is less sensitive to
electromagnetic noise. The current is imposed by the driver and is independent
from the average or differential voltage level of the two conductors.

• To realize the communication, often opto-isolated drivers are used, which keep
galvanically isolated the transmitter and receiver up to kV voltage differences.

A. Carini - Microcontrollers

Digital transmission with current loop

A. Carini - Microcontrollers

Bus I2C, Inter Integrated Circuit

• Is a bus standard largely used at industrial level.
• It allows the synchronous serial interconnection of a suitable µC (with I2C

peripheral) and a large variety of compatible digital integrated circuits.
• The µC acts as bus master, with the bus composed by two lines, one for data,

DA, and one for clock, CL.
• There is no frame sync.

A. Carini - Microcontrollers

Bus I2C, Inter Integrated Circuit

• In I2C, different operation modes are possible, which differ for the allowed
transmission speed.

• In normal mode, we have data rates between 0 and 100 kbps; in fast mode
(introduced later) we arrive up to 400 kbps, now we have also a ultra fast mode,
up to 5 Mbps.

• In case many devices with different speed are connected to the same bus, the
bus shall be operated at the data rate of the slowest device.

• The protocol transmits messages composed by a 9 bit packet.
• Each message begins with the µC generation of a start signal and ends with a

stop signal from the microcontroller.
• The start and stop conditions are characterized by data line that moves towards

low (start) or high (stop) during the clock high phase. Any other bit is set during
the low clock phase.

A. Carini - Microcontrollers

Example

A. Carini - Microcontrollers

Bus I2C, Inter Integrated Circuit

• The first 8 bit of each packet are written by the transmit unit, the ninth bit is
written by the destination unit. Each byte start with the MSB.

• The ninth bit is an acknowledgement bit. The receiver must acknowledge setting
low the data line at bit 9.

• The µC connects with a peripheral by transmitting as first byte after start the
address of the peripheral (7 bit) and a bit establishing the direction of
transmission (low from µC to peripheral, high for vice versa).

• When a peripheral reads his address, it responds setting low the data line at
ninth bit. The µC reading the low value knows he can start transmission or
reception because he knows the peripheral is ready.

• In case of complex peripherals, the µC can send more than one byte for
configuration purposes, before the communication begins.

A. Carini - Microcontrollers

Bus I2C, Inter Integrated Circuit

A. Carini - Microcontrollers

Bus I2C, Inter Integrated Circuit

A. Carini - Microcontrollers

• Reading data from a peripheral, the µC can stop communication by not giving
acknowledgment after a byte received.

Bus I2C, Inter Integrated Circuit

A. Carini - Microcontrollers

• In commerce are available many kind of devices with I2C interface.
• You can find demultiplexers, temperature and pressure sensors, A/D and D/A

converters, etc.
• All allow the user to define the peripheral address by setting the level of some

dedicated pins.
• In general just the lowest 3 can be set, since rarely more than 8 peripheral of

the same type are needed.

Bus SPI

A. Carini - Microcontrollers

• Exploits a synchronous serial communication.
• The number of lines is at least 5:

• A clock (SLCK) sent by master to all devices,
• A selection line (SSn) for each slave device;
• A MOSI (master out slave in) data line
• A MISO (master in slave out) data line
• A reference voltage line (0V).

• The protocol is very simple, the master starts communication by activating the
slave selection line, then start sending the information bit to MOSI, and sample
the MISO line. Communication is full-duplex.

• There are 4 communication modes, that differ from the clock edge where the
MOSI line change state and for the inactive clock level. These are controlled by
two parameters: CPOL, Clock polarity, and CPHA, Clock phase.

Bus SPI

A. Carini - Microcontrollers

• The master-slave couple share the same settings of clock frequency, CPOL,
CPHA, but the configuration can be changed according to the selected slave.

CAN Bus

A. Carini - Microcontrollers

• The bus CAN (Controller Area Network) is an asynchronous serial standard for
industrial environments, also for real-time applications.

• Developed by Bosch in 1986 under request of Mercedes, the CAN bus is
characterized by high transmission speeds, low costs, and numerous
mechanisms for error detection and correction.

• The CAN bus has a particular structure of data frames, called messages.
• It adopts a specific mode for accessing bus and arbitrating contentions.
• At physical level, it follows the RS485 standard, with an intertwined pair having

impedance of 120Ω.
• Data transmission speed depends on the connection length.

CAN Bus

A. Carini - Microcontrollers

CAN Bus messages

A. Carini - Microcontrollers

• CAN Messages do not have sender and receiver, but are labelled on the basis of
their content.

• The various units interfaced with the bus receive only and all the messages
whose content is relevant for them.

• The ID of the content of a message shall be unique for all the network.
• Without addresses, the CAN bus is very flexible and allow plug and play addition

of new nodes.
• Moreover, there is no bus master.
• Since a message can start anywhere, the network is multicast.
• When two or more unit contend the bus for message transmission, the

assignment is automatic on the basis of the implicit priority of any ID.
• Low binary values prevail on the higher ones according to a wired-and logic, i.e.,

low levels are dominant and high level are recessive.

CAN Bus messages

A. Carini - Microcontrollers

• The message with the lower ID prevails, and looser units stop:

CAN Bus messages

A. Carini - Microcontrollers

• There are 4 possible messages:
• Data frame;
• Remote frame;
• Overload frame;
• Error frame.

• The first two messages have different formats in case of a standard (11 bit ID) or
extended (29 bit ID) CAN bus.

• Let us consider an example of message of according to CAN 2.0A.

CAN Bus messages

A. Carini - Microcontrollers

CAN Bus messages

A. Carini - Microcontrollers

• The start of frame is a dominant bit, a zero that follows an idle phase of bus, in
which the bus is in high state.

• The message opens with the ID field of 11 bit, and is followed by a Remote
Transmission Request, RTR.
• RTR = 0 for a data frame, i.e., if we are transmitting data.
• RTR = 1 for a remote frame, i.e., if we are requesting data.

• The next six bit are a control field. The first two are reserved (always low), while
the next four indicate the number of bytes (from 0 to 8) that will be transmitted.

• The CRC field of 15 bits is reserved for cyclic redundancy check code, for error
detection and correction.

• After a high bit, a two bit acknowledgement follows: in the first all peripherals
that correctly received the message take the bus to 0; the second is high.

• EOF consists in 7 high bits.

CAN Bus messages

A. Carini - Microcontrollers

• The bus is considered free only after three high bits.
• After the EOF, the units can send on the bus an overload frame.
• The overload frame consists in a low bit, signaling “the node cannot receive

other data because is busy processing the previous message”. The other units
respond with a low bit on bus.

CAN Bus error conditions

A. Carini - Microcontrollers

• Each unit of bus detects an error any time there is a violation of the protocol
transmission rules, at bit level or frame level.

• There are many rules that make this protocol robust.
• A first rule is that of bit stuffing. Any transmitter cannot send more than 5 bits

of the same value. After 5 equal bits, one of complementary value is added. If a
receiver read more than 5 equal bits, it is sure of an error.

• The transmitter continuously monitors the values he writes and, if he finds a
value different from the intended one, he signals an “error” condition.

• A checksum error is generated by a receiver that finds a CRC error on the
received data.

• A frame error is detected when the size of the fields are violated.
• An acknowledgement error is generated if no one acknowledge a message.

CAN Bus error conditions

A. Carini - Microcontrollers

• Any detected error causes the transmission of a single error frame from the
node that detected it, and a consequent response form all other nodes.

• The error frame is compose by 6 equal bits, dominant (low) for the node that
detected the error, recessive (high) for all other nodes.

• In presence of an error frame, the last message will be discarded (and all units
will be protected).

• As a further protection mechanism, each unit counts the errors.
• A counter is incremented at each error, and decremented at each correctly

received frame:
• If the counter exceeds 127, the unit signal malfunction.
• If the counter exceeds 255, the unit detaches from the bus, protecting the

others.

Peripherals available on µCs and DSPs

A. Carini - Microcontrollers

• All µCs and many DSPs include peripherals for asynchronous (UART), and/or
synchronous (USRT, SPI) communications.

• Often I2C or CAN bus peripherals are also available. CAN bus controllers are
generally of the type basic.

• More and more often, µCs can connect to an Ethernet network.
• Programming peripherals for I2C or CAN bus, or Ethernet network, is complex.

The problem is mitigated by the availability of specific libraries, provided by the
same chip manufacturers.

Wireless communications

A. Carini - Microcontrollers

• The demand of wireless data transmission systems has increased in the last
years, both in consumer and industrial electronics.

• In consumer electronics, we have high production volumes and low costs, which
need simple solutions. As possible applications we have:
• Smart domestic appliances,
• Electricity metering and control equipment,
• Wireless domestic alarm systems,
• Home automation systems
• Wearable electronic devices, …

• Industrial applications are instead characterized by higher complexity and
higher reliability and security constraints.

• The availability of processing power and transmission devices on the same chip
are very interesting in these fields.

Example

A. Carini - Microcontrollers

Modulations

A. Carini - Microcontrollers

Amplitude Shift Keying

On/Off Keying

Frequency Shift Keying

Wireless Transmission Standards

A. Carini - Microcontrollers

• Currently, those most used are the following:
• IEEE 802.11, WiFi
• IEEE 802.15.1, Bluetooth
• IEEE 802.15.4, ZigBee

• ZigBee was recently introduced for applications with low power consumption
(e.g., wireless sensor networks).

• It allows short range communication (30m indoor, 100m outdoor) and works at
2.4GHz (guaranteeing good penetration in walls, etc.)

• It has a slow transmission speed (250 kbit/s) suitable for sporadic
communications of small length.

• Typical applications: Home automation, wireless sensor networks, but also
industrial control and automation.

See:

• Simone Buso, «Introduzione alle applicazioni industriali di Microcontrollori e
DSP» Società editrice Esculapio, 2018
• Chapter 13

A. Carini - Microcontrollers

