Exercises QFT II — 2018/2019

Problem Sheet 7

Problem 13: β function for $\lambda \phi^4$ theory

In $\lambda \phi^4$ theory, the renormalized 1PI four point function is

$$i\tilde{\Gamma}^{(4)}(s,t,u;\lambda_r,m_r,\mu) = -i\lambda_r - i\frac{\lambda_r^2}{32\pi^2} \int_0^1 dx \left[\ln\left(\frac{m_r^2 - x(1-x)s}{4\pi\mu^2}\right) + \ln\left(\frac{m_r^2 - x(1-x)t}{4\pi\mu^2}\right) + \ln\left(\frac{m_r^2 - x(1-x)u}{4\pi\mu^2}\right) \right]$$
(1)

where λ_r is the renormalized coupling constant. Let us suppose that by performing a measurement, we find

$$\tilde{\Gamma}^{(4)}(4m^2, 0, 0; \lambda_r(\mu), m_r(\mu), \mu) = -L_{\exp}$$
(2)

where L_{exp} is a measured number, that does not depend on the arbitrary scale μ (this implies that λ_r must depend on μ).

1. By deriving (2) with respect to μ , compute (at order λ_r^2)

$$\mu \frac{d\lambda_r}{d\,\mu}\,.\tag{3}$$

- 2. Integrate the differential equation and find the explicit expression of $\lambda_r(\mu)$ as a function of μ . Use the initial condition $\lambda_r(\mu_0) = \lambda_0$.
- 3. Compute the position of the Landu pole in the μ space.
- 4. Compute the scale $\bar{\mu}$ at which the theory becomes strongly coupled (i.e. $\lambda_r(\bar{\mu}) \simeq 1$).
- 5. Compute

$$\lim_{\mu \to 0} \lambda_r(\mu) \,. \tag{4}$$

What is the value of $\beta(\lambda_r) = \mu \frac{d\lambda_r}{d\mu}$ in this limit? Is there an IR fixed point?

Problem 14: γ matrices

Recall that the γ matrices satisfy the anticommutation relations $\{\gamma^{\mu}, \gamma^{\nu}\} = 2\eta^{\mu\nu}\mathbf{1}$ and that the Lorentz generators in the spinorial representation are written as $\mathcal{S}^{\mu\nu} = \frac{i}{4} [\gamma^{\mu}, \gamma^{\nu}]$. Moreover, $\gamma^{5} = i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$.

1) Prove that $S^{\mu\nu}$ satisfy the same commutation relations of the Lorentz algebra generators $J^{\mu\nu}$, i.e.

$$[J^{\mu\nu}, J^{\rho\sigma}] = i \left(\eta^{\nu\rho} J^{\mu\sigma} - \eta^{\mu\rho} J^{\nu\sigma} - \eta^{\nu\sigma} J^{\mu\rho} + \eta^{\mu\sigma} J^{\nu\rho}\right) .$$
(5)

2) Work out the value of the following expressions:

$$\begin{pmatrix} \gamma^5 \end{pmatrix}^p = ? & \text{p positive integer} \\ \begin{bmatrix} \gamma^5, \gamma^{\mu} \dots \gamma^{\rho} \end{bmatrix} = ? & \text{even or odd number of } \gamma^{\lambda} \\ \begin{bmatrix} \gamma^5, \mathcal{S}^{\mu\nu} \end{bmatrix} = ? & \\ \begin{bmatrix} \gamma^{\rho}, \mathcal{S}^{\mu\nu} \end{bmatrix} = ? & \\ \begin{bmatrix} \gamma^{\rho} \gamma^5, \mathcal{S}^{\mu\nu} \end{bmatrix} = ? & \\ \end{bmatrix}$$

A Lorentz transformation can be expressed as $\Lambda = e^{i\omega_{\mu\nu}J^{\mu\nu}}$ in terms of the generators $J^{\mu\nu}$ of the corresponding Lie Algebra. This is represented on the Dirac spinors by the matrix

$$R_s(\Lambda) = e^{i\omega_{\mu\nu}\,\mathcal{S}^{\mu\nu}}.$$

3) Prove that, for infinitesimal Lorentz transformation ($\omega_{\mu\nu} \ll 1$), the inverse action $R_s(\Lambda)^{-1}$ can be expressed as

$$R_s(\Lambda)^{-1} = \gamma^0 R_s(\Lambda)^{\dagger} \gamma^0.$$

Is the previous formula valid also for $\omega^{\mu\nu}$ not necessarily small?