Cyber-Physical Systems

Laura Nenzi

Università degli Studi di Trieste Il Semestre 2018

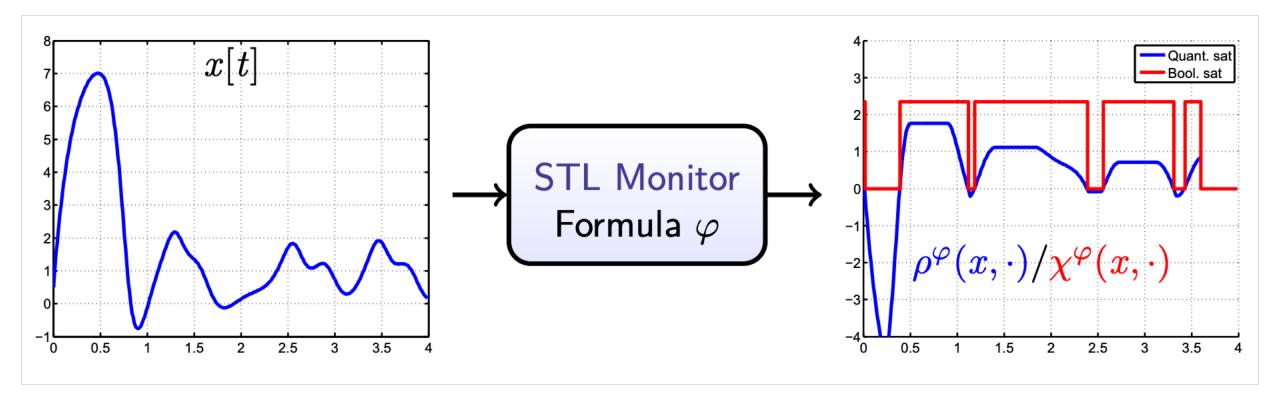
Lecture 10: STL applications

[Many Slides due to J. Deshmukh, S. Silvetti and E. Bartocci]

Terminology

- **Syntax**: A set of syntactic rules that allow us to construct formulas from specific ground terms
- Semantics: A set of rules that assign meanings to well-formed formulas obtained by using above syntactic rules
- Model-checking/Verification: $M \models \phi \iff \forall \mathbf{x} \in trace(M) \ \beta(\varphi, \mathbf{x}, 0) = 1$
- Monitoring: computing β for a single trace $\mathbf{x} \in trace(M)$
- Statistical Model Checking: "doing statistics" on $\beta(\varphi, \mathbf{x}, 0)$ for a finite-subset of trace(M)

STL Monitor

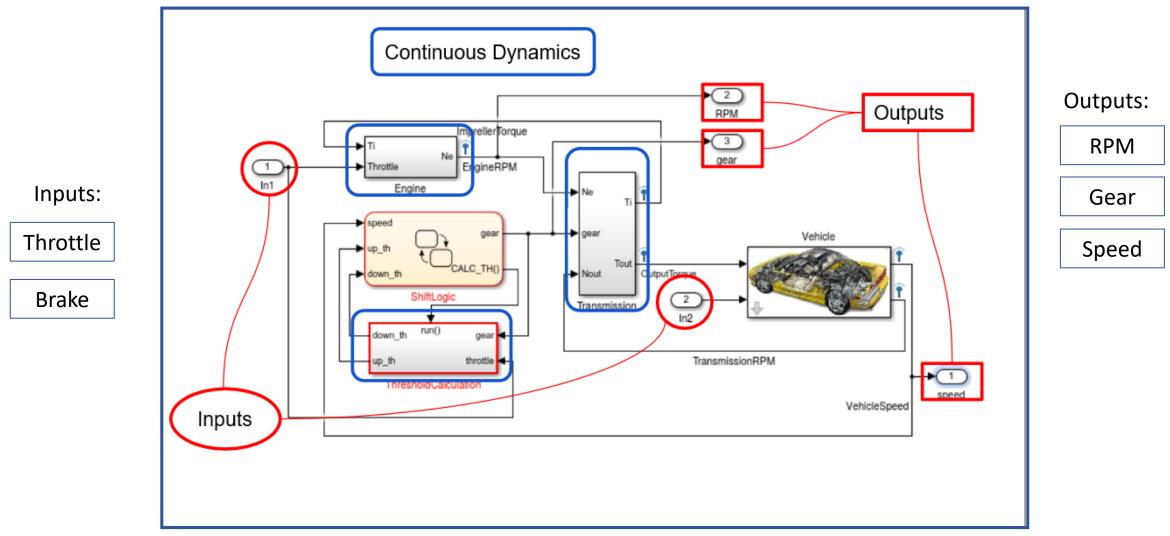


A robust STL monitor is a transducer that transform x into Boolean or a quantitative signal

Closed-loop Models

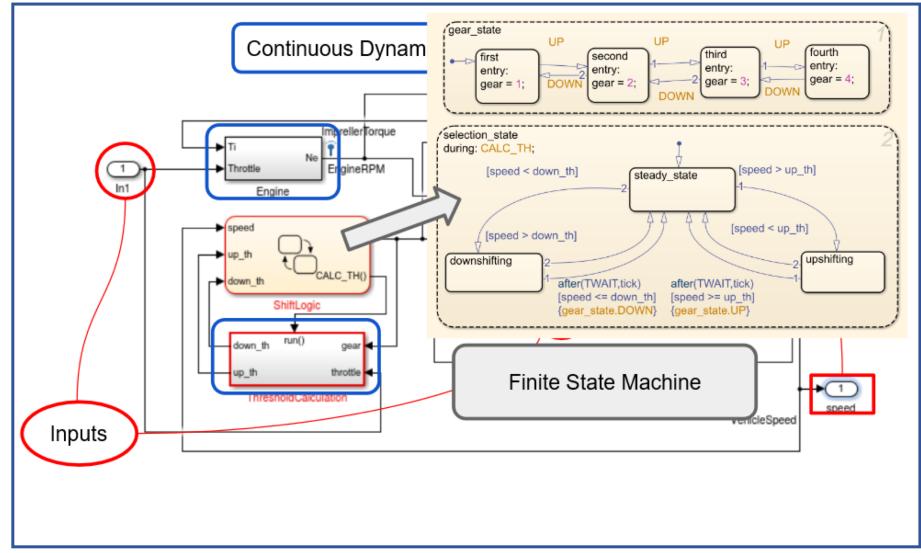
- Closed-loop Models contain:
 - Dynamics describing Physical Processes (Plant)
 - Code describing Embedded Control, Sensing, Actuation
 - Models of connection between plant and controller (hard-wired vs. wired network vs. wireless communication)

Example

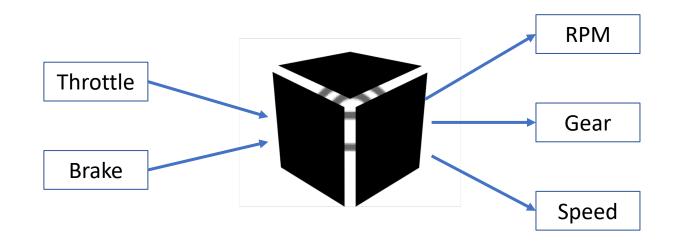


Simulink model of a Car Automatic Gear Transmission Systems

Example

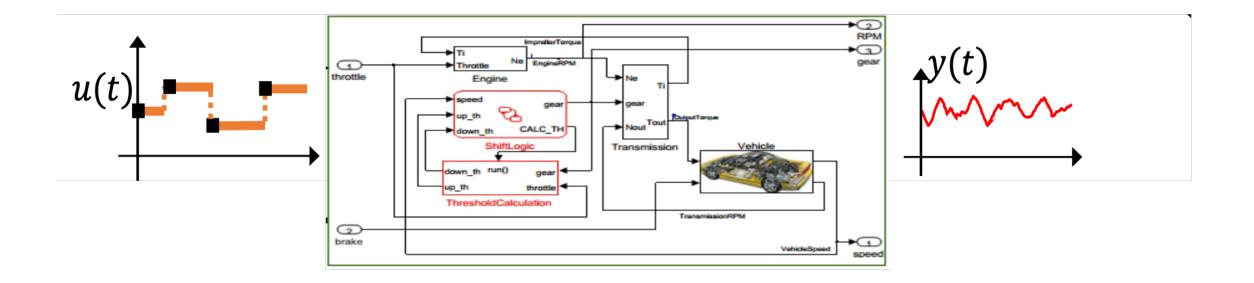


Black Box Assumption



Black Box Assumption

For simplicity, consider the composed plant model, controller and communication to be a model M that is excited by an input signal $\mathbf{u}(t)$ and produces some output signal $\mathbf{y}(t)$



Verification vs. Testing

- For simplicity, **u** is a function from \mathbb{T} to \mathbb{R}^m ; let the set of all possible functions representing input signals be U
- Verification Problem:

Prove the following: $\forall \mathbf{u} \in U: (\mathbf{y} = M(\mathbf{u})) \land \varphi(\mathbf{u}, \mathbf{y})$

Falsification/Testing Problem:

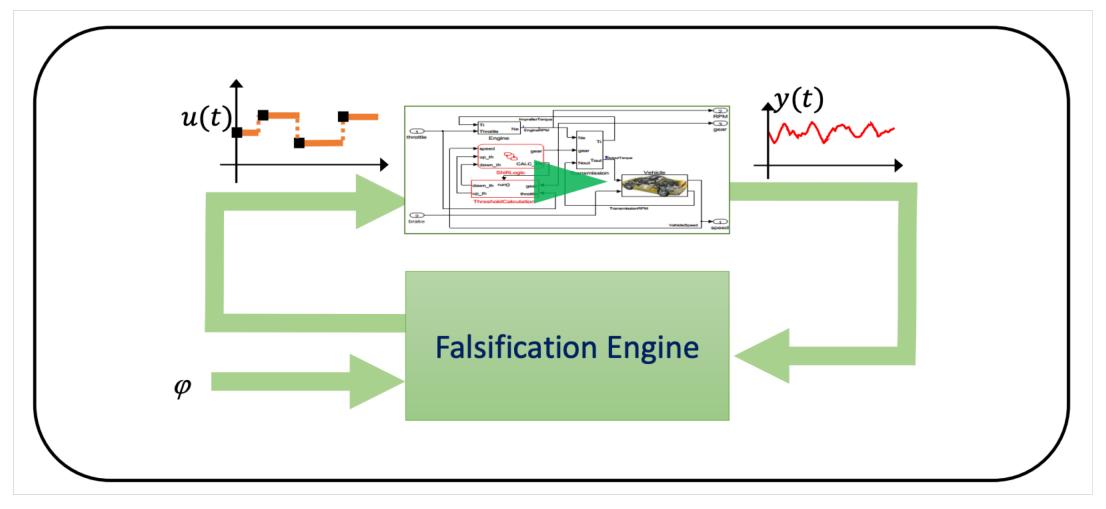
Find a witness to the query: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \land \neg \varphi(\mathbf{u}, \mathbf{y})$

These formulations are quite general, as we can include the following "model uncertainties" as input signals: Initial states, tunable parameters in both plant and controller, time-varying parameter values, noise, etc.,

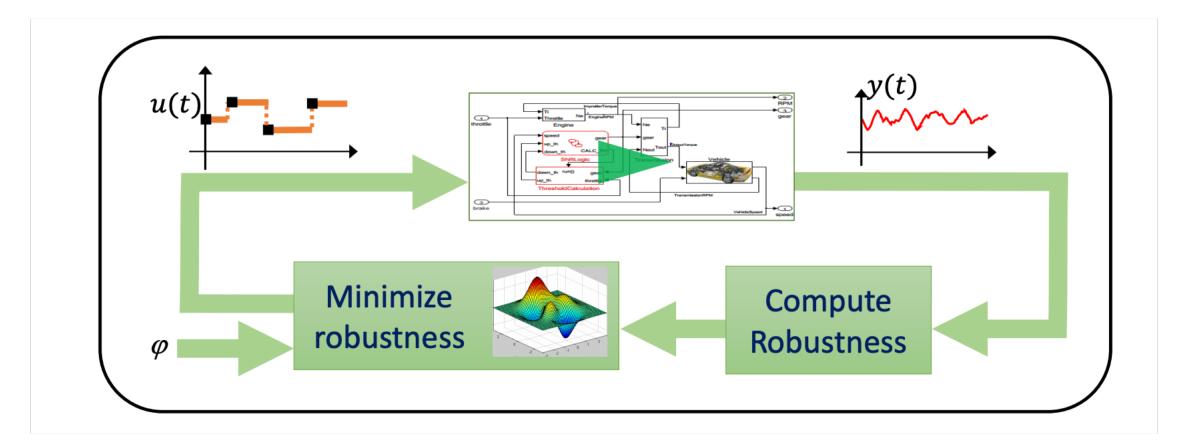
Challenges with real-world systems

- If plant model, software and communication is simple (e.g. linear models), then we can do formal analysis
- Most real-world examples have very complex plants, controllers and communication!
- Verification problem, in the most general case is *undecidable* it is proved to be impossible to construct an <u>algorithm</u> that always leads to a correct yes-or-no answer to the problem

Falsification/Testing



Falsification by optimization



Use robustness as a cost function to minimize with Black-box/Global Optimizers

Falsification/Testing

- Falsification or testing attempts to find one or more **u** signals such that $\neg \varphi(\mathbf{u}, M(\mathbf{u}))$ is true.
- In verification, the set \mathbb{T} (the time domain) could be unbounded, in falsification or testing, the time domain is necessarily bounded, i.e. $\mathbb{T} \subseteq [0, T]$, where T is some finite numeric constant
- In verification the co-domain of \mathbf{u} , could be an unbounded subset of \mathbb{R}^m , in falsification, we typically consider some compact subset of \mathbb{R}^m
- For the i^{th} input signal component, let D_i denote its compact co-domain. Then the input signal **u** is a function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$ In simple words: input signals range over bounded intervals and over a bounded time horizon

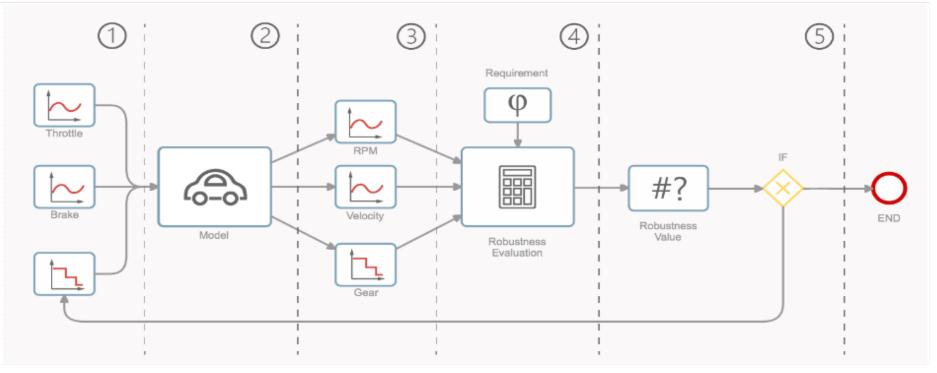
Falsification re-framed

Given:

- Set of all such input signals : U
- ▶ Input signal **u** : function from \mathbb{T} to $D_1 \times \cdots \times D_m$, where $\mathbb{T} \subseteq [0, T]$
- Model M that maps u to some signal y with the same domain as u, and codomain some subset of Rⁿ
- Property φ that can be evaluated to true/false over given **u** and **y**

Check: $\exists \mathbf{u} \in U : (\mathbf{y} = M(\mathbf{u})) \land \neg \varphi(\mathbf{u}, \mathbf{y})$

Falsification CPS



Goal:

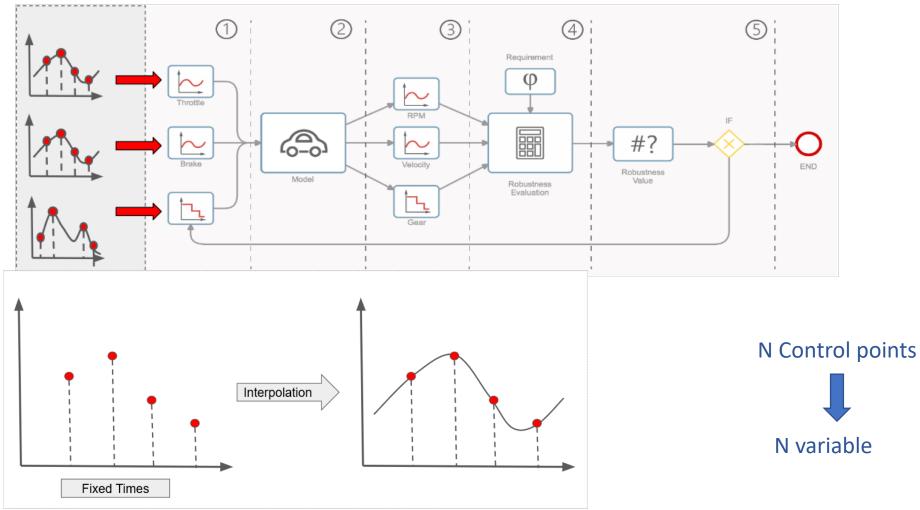
Find the inputs (1) which falsify the requirements (4)

Problems:

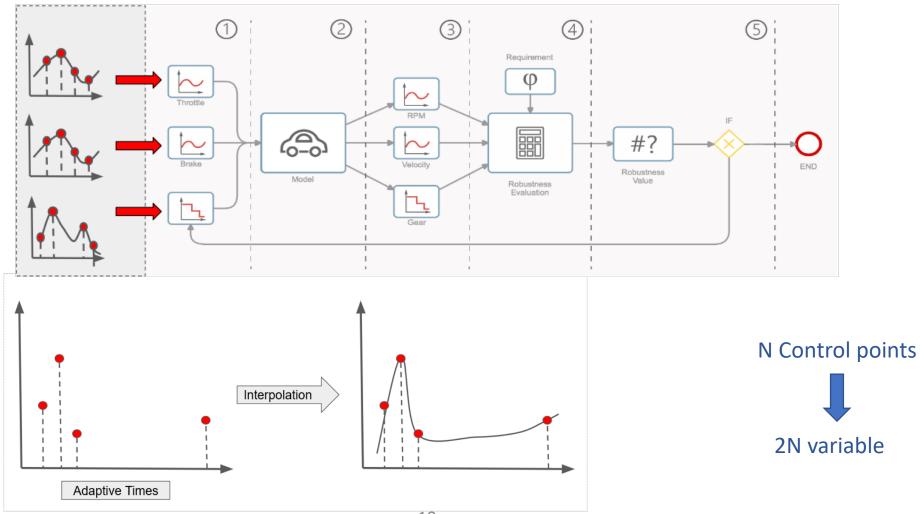
- Falsify with a low number of simulations
- Functional Input Space

Active Learning Adaptive Parameterization

Adaptive Parameterization



Adaptive Parameterization



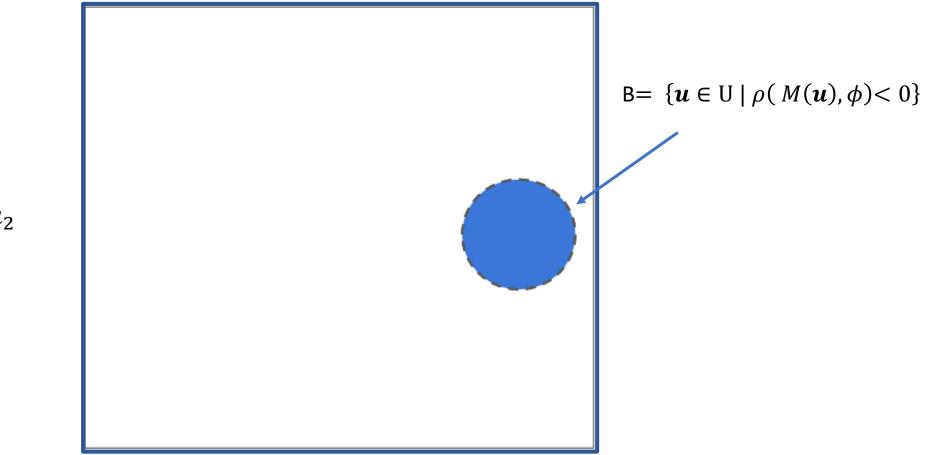
Problem

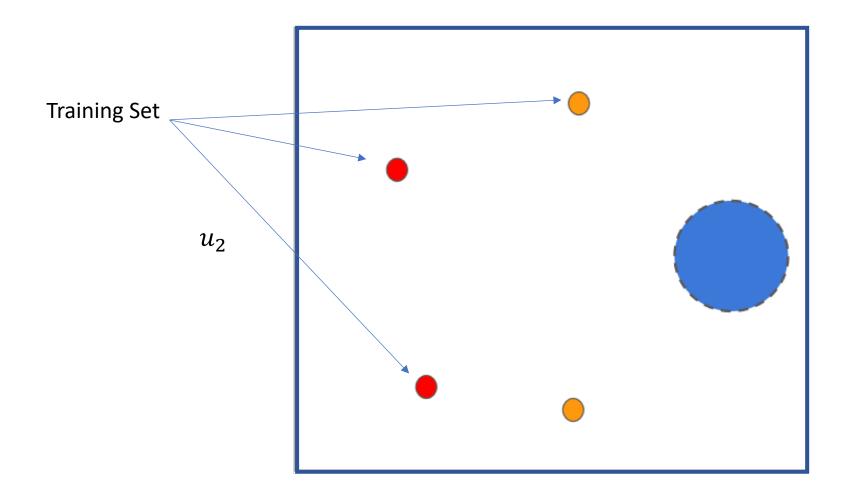
Find the trajectories which falsify the requirements:

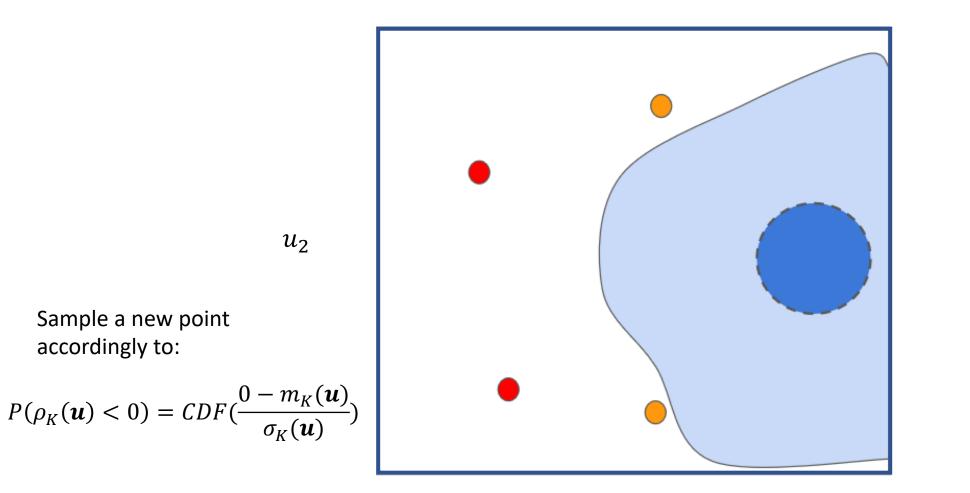
$$\mathsf{B}= \{ \boldsymbol{u} \in \mathsf{U} \mid \rho, (M(\boldsymbol{u}), \phi) < 0 \} \subseteq U$$

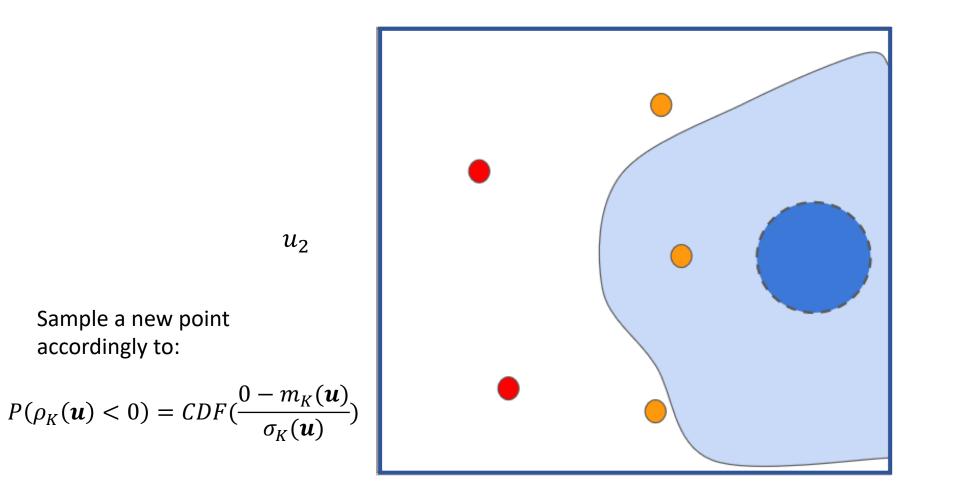
➤ Training Set: K = { u_i , $\rho(M(u_i), \phi)$ }_{i≤n} (the partial knowledge after n iterations)
➤ Gaussian Process: $\rho_K(u) \sim GP(m_K(u), \sigma_K(u))$ (the partial model)

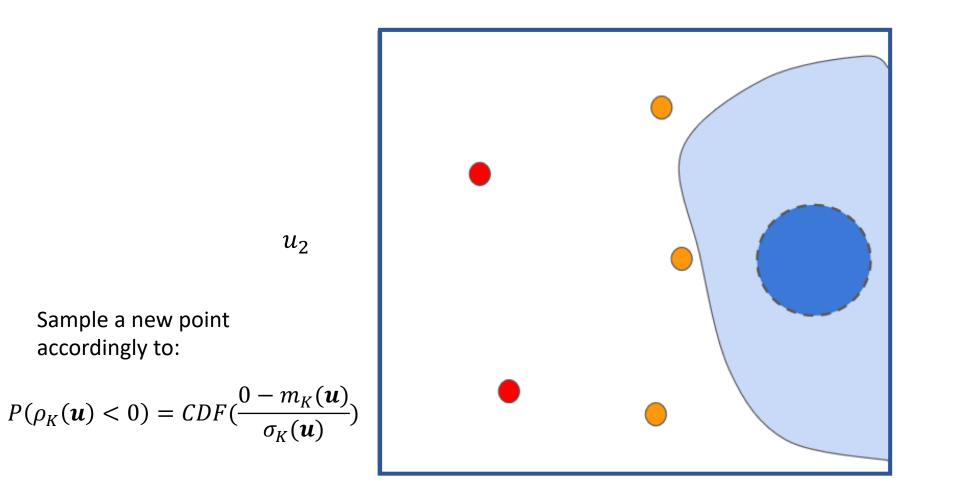
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

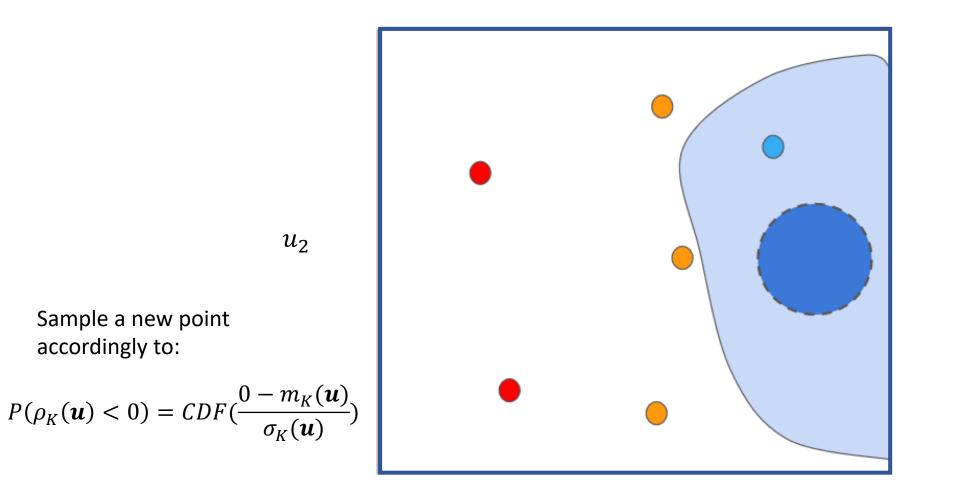


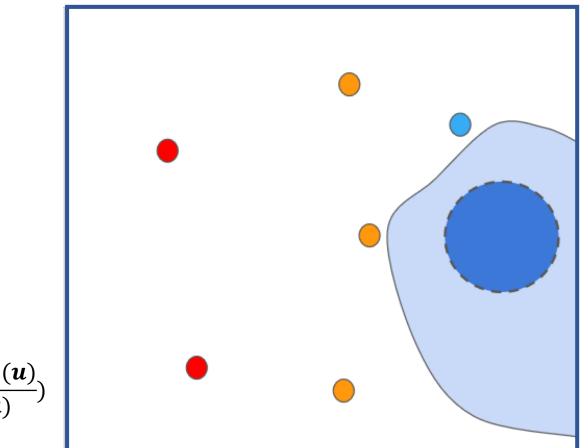




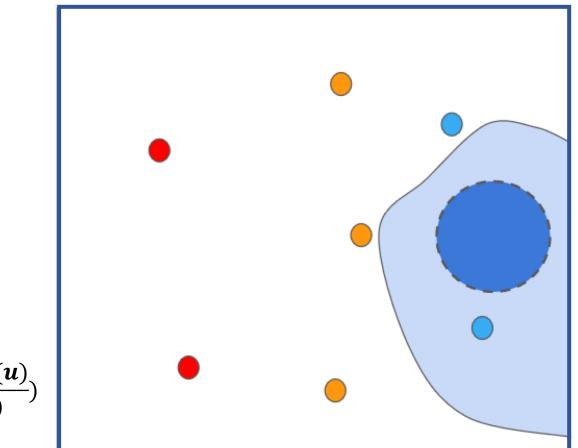




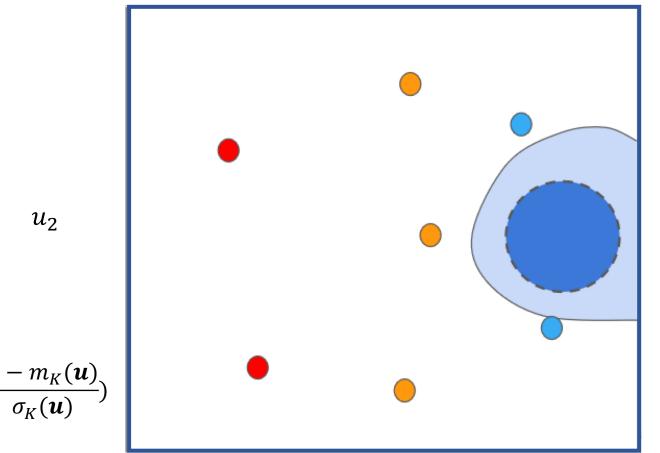




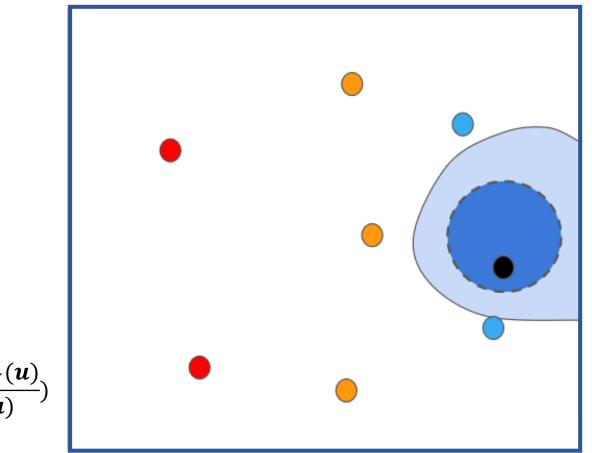
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



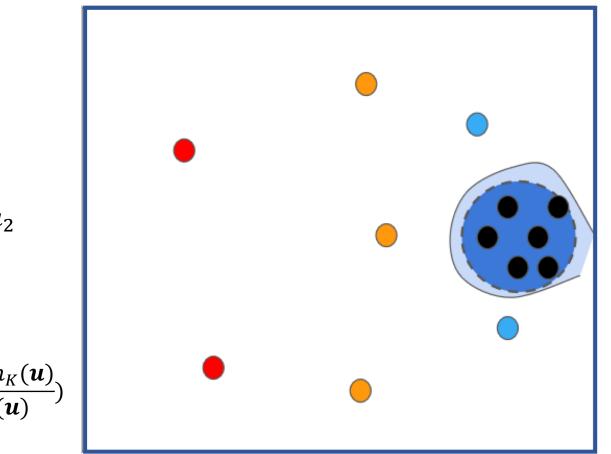
$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$



$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

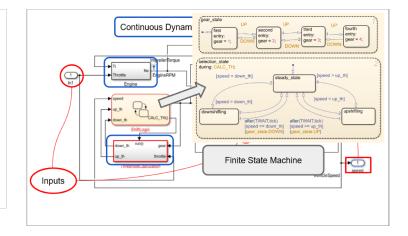


$$u_{2}$$

$$P(\rho_K(\boldsymbol{u}) < 0) = CDF(\frac{0 - m_K(\boldsymbol{u})}{\sigma_K(\boldsymbol{u})})$$

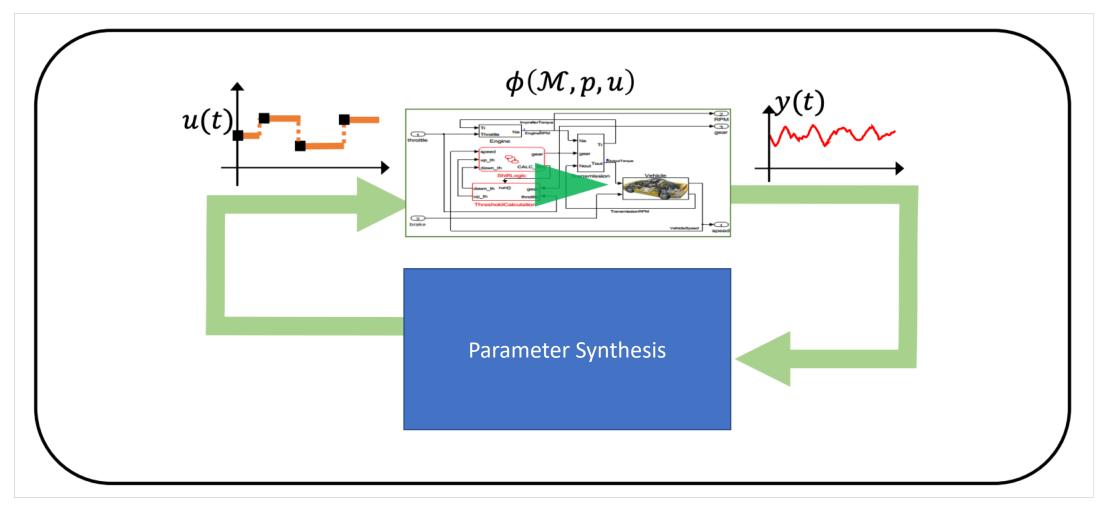
Tests Case & Results

- $\phi_1(\bar{v},\bar{\omega}) = \mathbf{G}_{[0,30]}(v \leq \bar{v} \wedge \omega \leq \bar{\omega})$ (in the next 30 seconds the engine and vehicle speed never reach $\bar{\omega}$ rpm and \bar{v} km/h, respectively)
- φ₂(v̄, ω̄) = G_[0,30](ω ≤ ω̄) → G_[0,10](v ≤ v̄) (if the engine speed is always less than ω̄ rpm, then the vehicle speed can not exceed v̄ km/h in less than 10 sec)
- φ₃(v̄, ω̄) = F_[0,10](v ≥ v̄) → G_[0,30](ω ≤ ω̄) (the vehicle speed is above v̄ km/h than from that point on the engine speed is always less than ω̄ rpm)



	Adaptive DEA		Adaptive GP-UCB		S-TaLiRo		
Req	nval	times	nval	times	nval	times	Alg
ϕ_1	4.42 ± 0.53	2.16 ± 0.61	4.16 ± 2.40	0.55 ± 0.30	5.16 ± 4.32	0.57 ± 0.48	UR
ϕ_1	6.90 ± 2.22	5.78 ± 3.88	8.7 ± 1.78	1.52 ± 0.40	39.64 ± 44.49	4.46 ± 4.99	SA
ϕ_2	3.24 ± 1.98	1.57 ± 1.91	7.94 ± 3.90	1.55 ± 1.23	12.78 ± 11.27	1.46 ± 1.28	CE
ϕ_2	10.14 ± 2.95	12.39 ± 6.96	23.9 ± 7.39	9.86 ± 4.54	59 ± 42	6.83 ± 4.93	SA
ϕ_2	8.52 ± 2.90	9.13 ± 5.90	13.6 ± 3.48	4.12 ± 1.67	43.1 ± 39.23	4.89 ± 4.43	SA
ϕ_{3}	5.02 ± 0.97	2.91 ± 1.20	5.44 ± 3.14	0.91 ± 0.67	10.04 ± 7.30	1.15 ± 0.84	CE
ϕ_3	7.70 ± 2.36	7.07 ± 3.87	10.52 ± 1.76	2.43 ± 0.92	11 ± 9.10	1.25 ± 1.03	UR

Parameter Synthesis



Parameter Synthesis

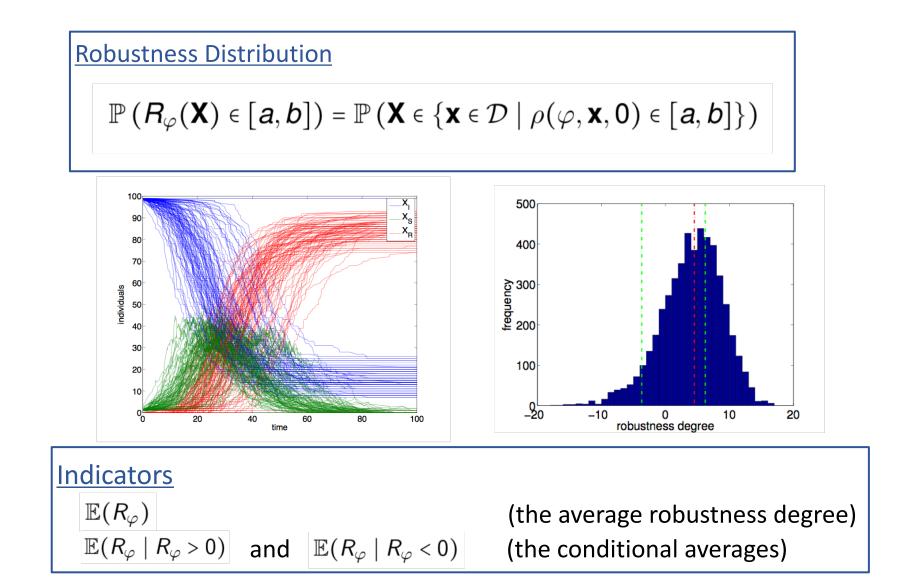
Problem

Given a model, depending on a set of parameters $\theta \in \Theta$, and a specification ϕ (STL formula), find the parameter combination θ s.t. the system satisfies ϕ as more as possible

Solution Strategy

- **rephrase** it as a optimisation problem (maximizing ρ)
- evaluate the function to optimise
- **solve** the optimisation problem using

Parameter Synthesis via Robustness Maximisation



Parameter Synthesis

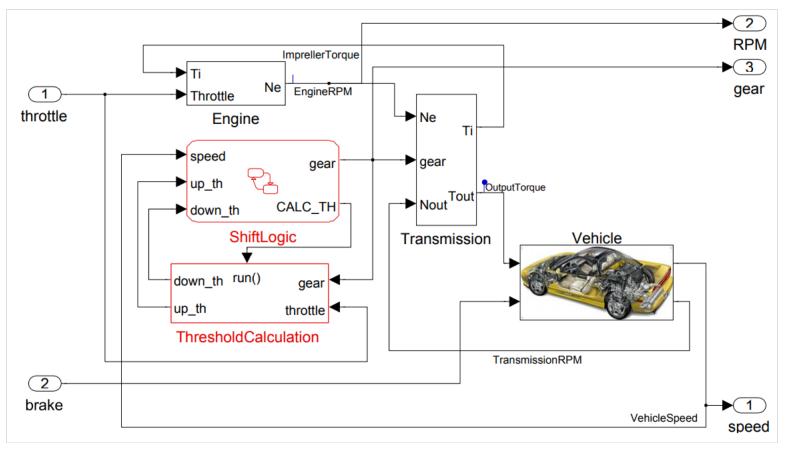
Problem

Find the parameter configuration that maximizes $E[R_{\phi}](\theta)$, of which we have few costly and noisy evaluations.

Methodology

- **1.** Sample { $(\theta_{(i)}, y_{(i)})$, i = 1,...,n}
- 2. Emulate (**GP Regression**): $E[R_{\bullet}] \sim GP(\mu,k)$
- 3. Optimize the emulation via **GP-UCB algorithm**, new $\theta_{\text{(n+1)}}$

Specification Mining



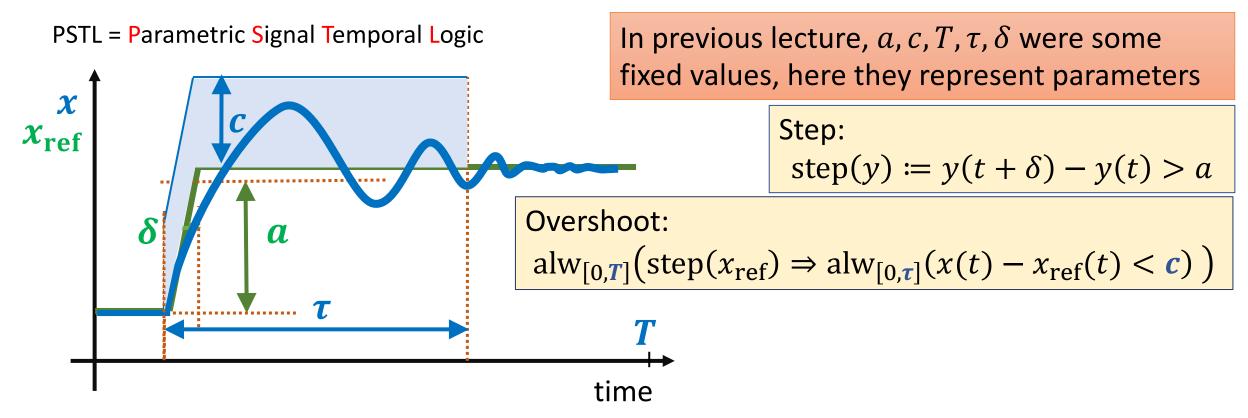
- What is the maximum speed that the vehicle can reach ?
- What is the minimum d well time in a given gear ?

Specification Mining

- Specification Mining: Try to find values of parameters of a PSTL formula from a given model
 - Why?
 - Good to know "as-is" properties of the model
 - Finds worst-case behaviors of the model
 - Discriminates between regular and anomalous behaviours

Specification Templates using PSTL

If we convert all values in an STL formula to parameters, then we get a specification template, or a Parametric STL (PSTL) formula



Parametric Signal Temporal Logic

Definition (PSTL syntax)

$$\phi \coloneqq (x_i \bowtie \pi) \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \mathcal{U}_{[\tau_1, \tau_2]} \varphi_2$$

with $\bowtie \in \{>, \leq\}$

- π is **threshold** parameter
- τ_1 , τ_2 are **temporal** parameters

- $\mathbb{K} = (\mathcal{T} \times \mathcal{C})$ be the **parameter space**
- $\theta \in \mathbb{K}$ is a parameter configuration

e.g.,
$$\phi = \mathcal{F}_{[a,b]}(x_i > k), \theta = (0, 2, 3.5)$$
 then $\phi_{\theta} = \mathcal{F}_{[0,2]}(x_i > 3.5).$

Parameter inference for PSTL

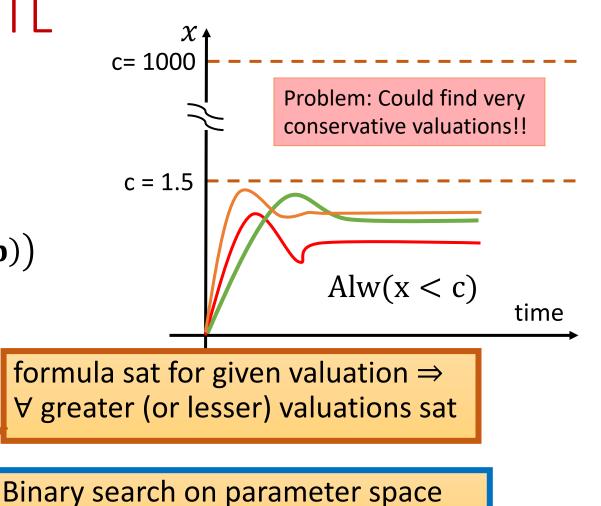
Given:

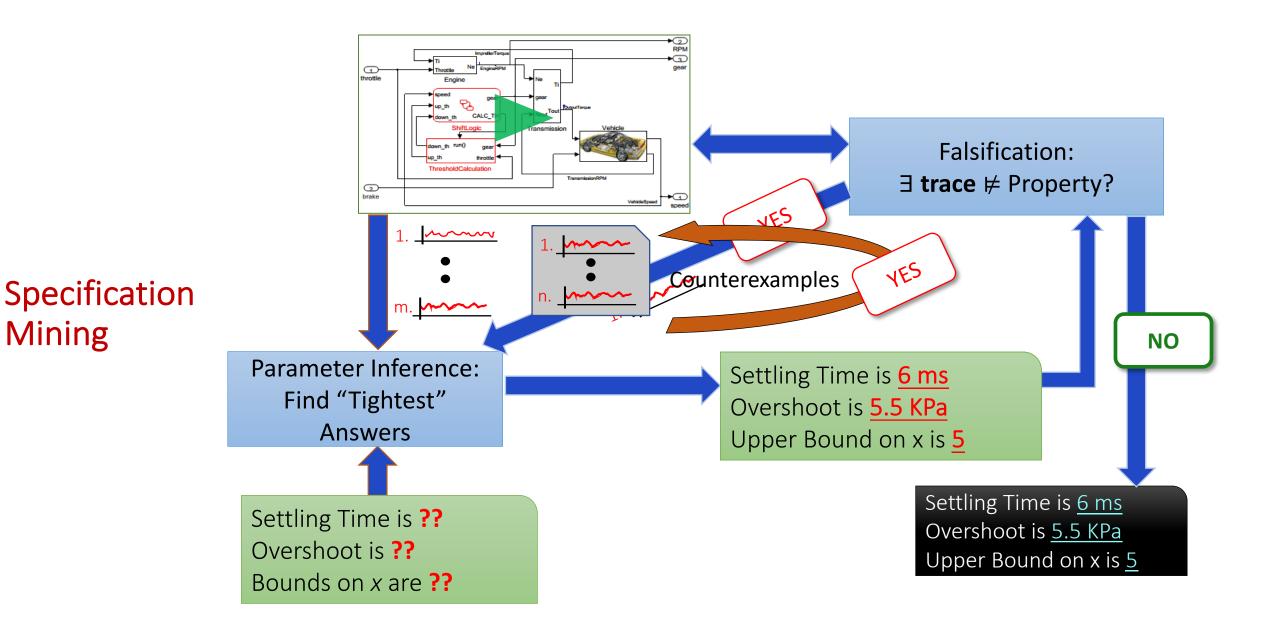
- ▶ PSTL formula $\varphi(\mathbf{p})$, $[\mathbf{p} = (p_1, p_2, ..., p_m)]$
- Fraces x_1, \dots, x_n

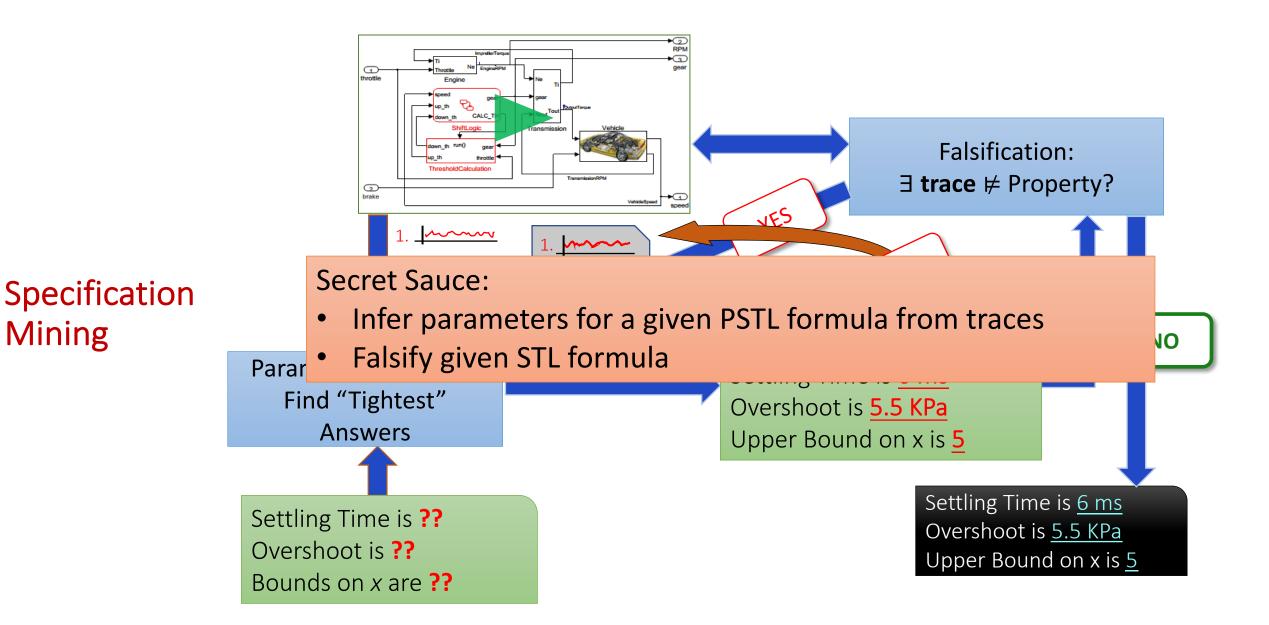
Find:

- ► Valuation $v(\mathbf{p})$ such that: $\forall i : x_i \vDash \varphi(v(\mathbf{p}))$ δ -tight valuation
- and ∃i: x_i⊭φ(ν(**p**) ± δ):
 i.e. small perturbation in ν(**p**) makes some trace not satisfy formula

Finding δ -tight valuations hard in general, but **efficient** for **Monotonic PSTL**





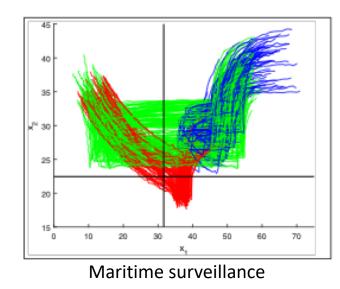


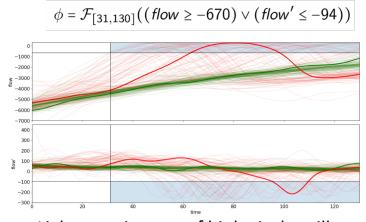
Learning STL classifiers

Goal: Given sets of good and bad trajectories (or generative models), learn MTL properties that can separate the two behaviours (a MTL classifier)

Idea: for a fixed template formula, learn optimally separating parameters by Bayesian Optimisation.

 $\varphi = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$





Light entrainment of biological oscillator

Idea: explore formula structure by genetic programming on syntactic trees

Problem Formulation

A supervised two-class classification problem

Given a training set of $D_p(good)$ and $D_n(bad)$ find the best ϕ that better separates the two sets.

Discrimination Function

$$\widehat{\sigma}(\phi) = \frac{\mathbb{E}(R_{\phi}|\vec{X}_{p}) - \mathbb{E}(R_{\phi}|\vec{X}_{n})}{\sigma(R_{\phi}|\vec{X}_{p}) + \sigma(R_{\phi}|\vec{X}_{n})}$$

Observation: only statistical and noisy evaluations of $G(\phi)$ **Goal**: maximize $G(\phi)$

ROGE – RObustness GEnetic Algorithm

It is a bi-level optimization algorithm. A GEnetic algorithm to learn the structure and a Bayesian optimization algorithm to learn the parameters.

Require: $\mathcal{D}_{p}, \mathcal{D}_{n}, \mathbb{K}, Ne, Ng, \alpha, s$ 1: $gen \leftarrow GENERATEINITIALFORMULAE(Ne, s)$ 2: $gen_{\Theta} \leftarrow \text{LEARNINGPARAMETERS}(gen, G, \mathbb{K})$ 3: for i = 1 ... Ng do $subg_{\Theta} \leftarrow SAMPLE(gen_{\Theta}, F)$ 4: $newg \leftarrow EVOLVE(subg_{\Theta}, \alpha)$ 5: $newg_{\Theta} \leftarrow \text{LEARNINGPARAMETERS}(newg, G, \mathbb{K})$ 6: $gen_{\Theta} \leftarrow \text{SAMPLE}(newg_{\Theta} \cup gen_{\Theta}, F)$ 7: 8: end for 9: return gen_{Θ}

 $\phi_{best} = \operatorname{argmax}_{\phi_{\theta} \in gen_{\Theta}}(G(\phi_{\theta}))$

Learning the Parameters

Problem

Given a PSTL formula ϕ , a parameter space K, find Θ that maximises the discrimination function $G(\phi_{\circ})$.

Methodology

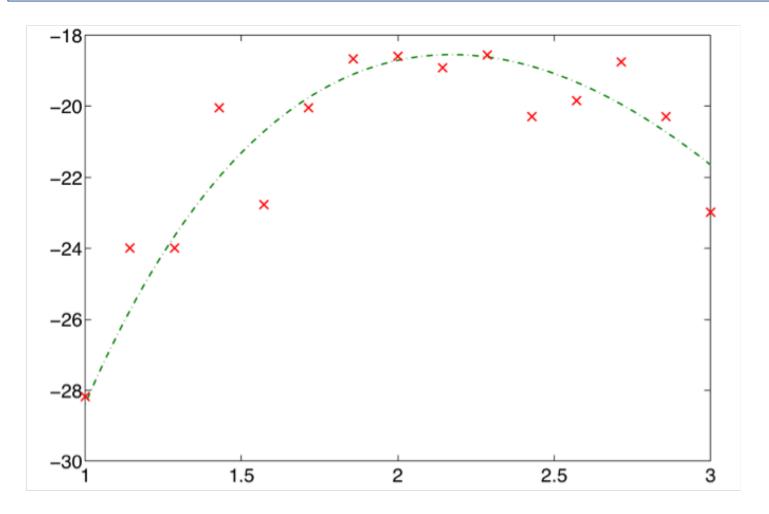
- 1. Sample {(θ_(i),y_(i)), i = 1,...,n}
- 2. Emulate (**GP Regression**): $G[R_{\bullet}] \sim GP(\mu,k)$
- 3. Optimize the emulation via **GP-UCB algorithm**, new $\theta_{(n+1)}$

 $\exists \delta \text{ s.t. } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_{p}) > \delta \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_{n}) \leq \delta$ **Translation**. $(\vec{x} - \delta) \Rightarrow \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_{p}) > 0 \text{ and } \mathbb{E}(R_{\phi_{\Theta}*}|\vec{X}_{n}) \leq 0$

4

(1) The $G(\phi_{a})$ Computation

Collection of the training set {($\theta^{(i)}, y^{(i)}$), i = 1,...,m} for parameters values θ .

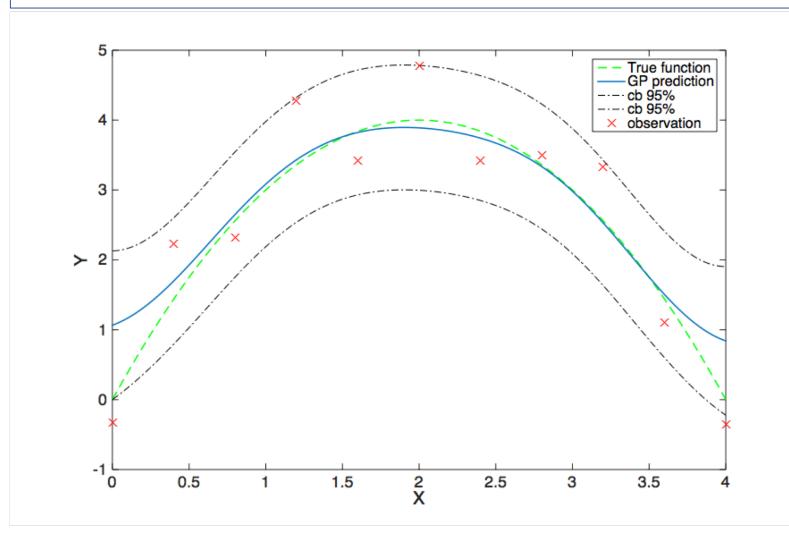


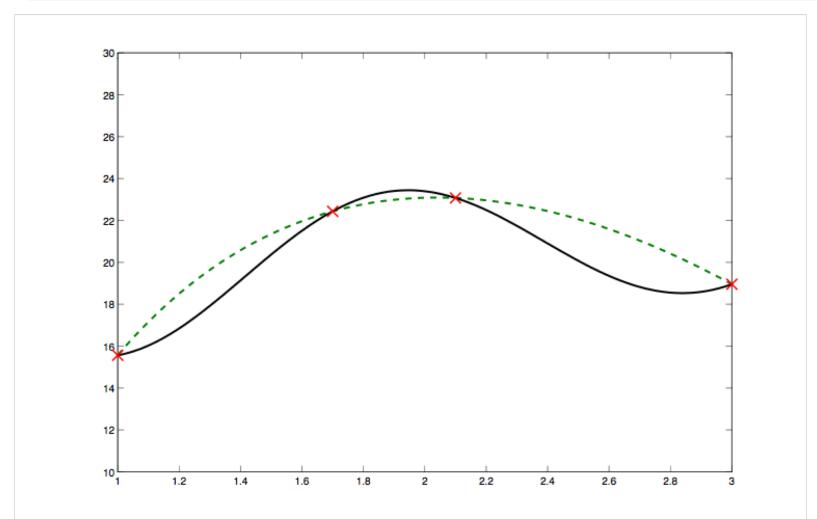
(2) The GP Regression

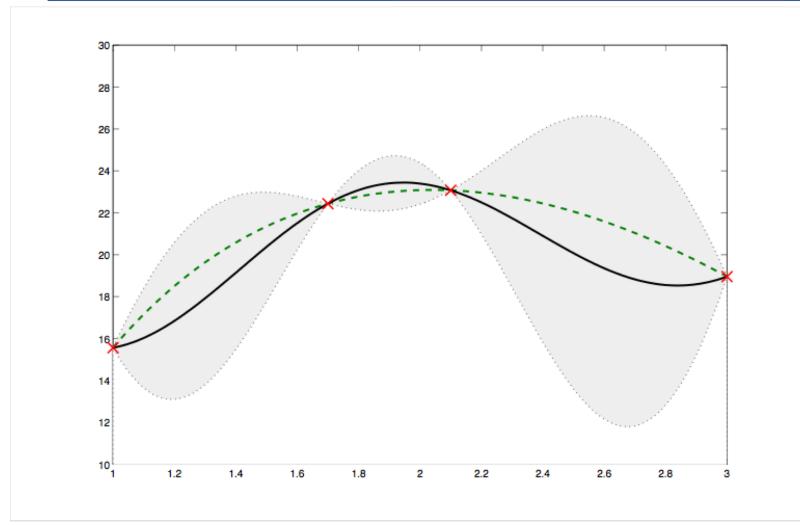
We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

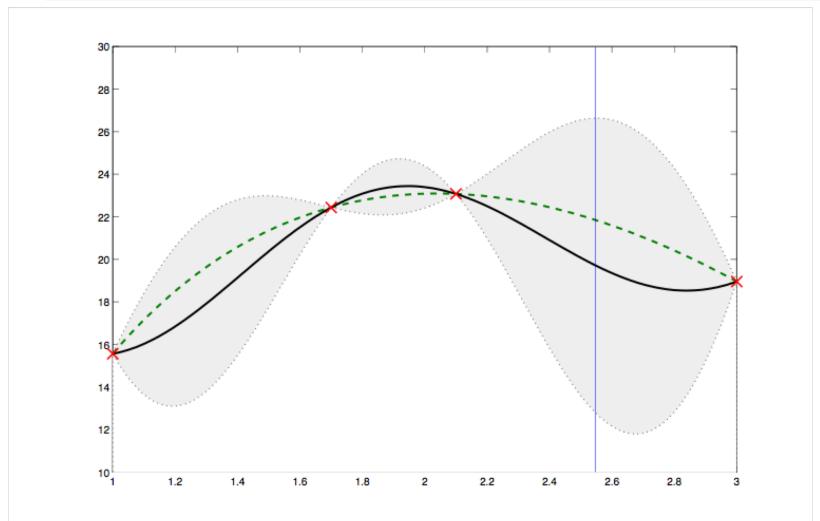
(2) The GP Regression

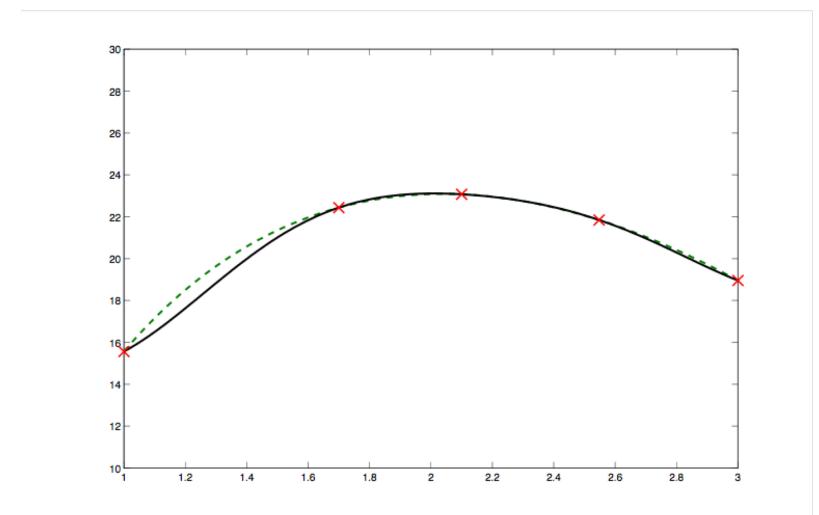
We have noisy observations y of the function value distributed around an unknown true value f (θ) with spherical Gaussian noise

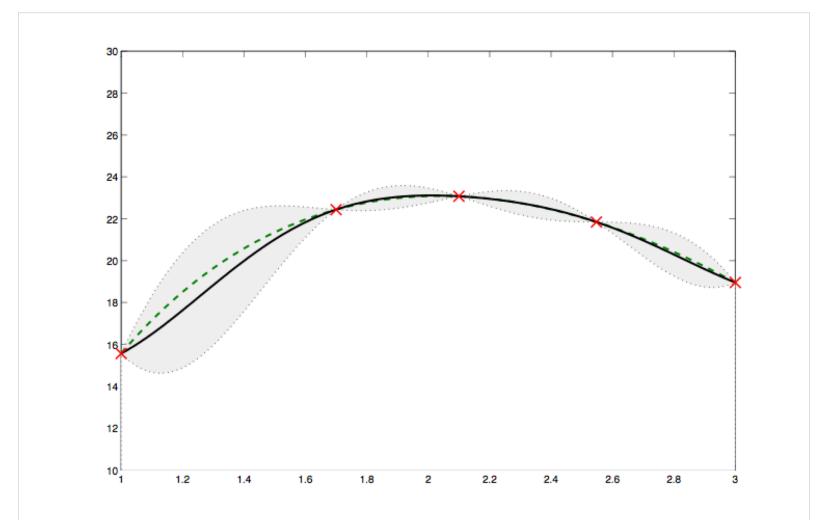


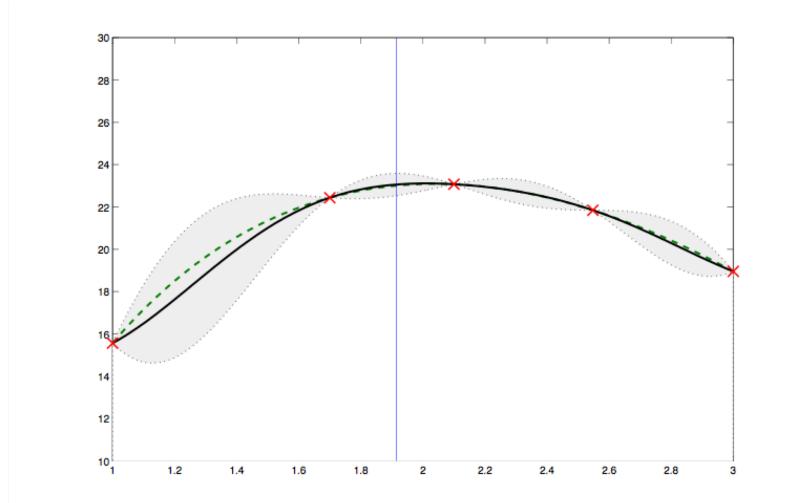












Learning the Structure

Problem

Given a set of PSTL formulas *gen*, find the best ϕ such that ϕ_{\circ} maximises the discrimination function $G(\phi_{\circ})$.

<u>Methodology</u>

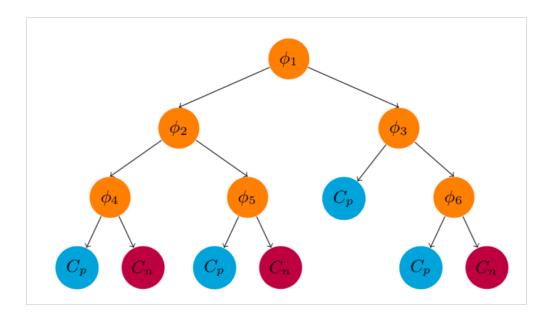
- **1. GENERATEINITIAL FORMULAE:** gen= $\{\phi_1, \dots, \phi_{N_e}\}$
- **2. SAMPLE**(gen_{Θ}, F)=subg_{Θ}, N_{ε}/2 formulae, F(φ)=G(φ)-S(φ)
- **3.** EVOLVE(subg_o, α) = newg_o, based on two genetic operators, a

recombination and a mutation operator.

Regularization

Formula size penalty $S(\phi)$ and complexity of initial population.

DTL4STL [2], that uses a decision tree algorithm for the structure of the formula and an heuristic impurity measure for parameter synthesis

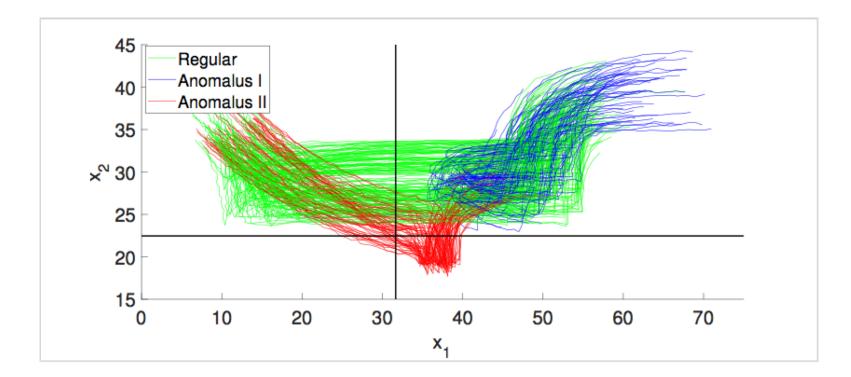


$$\phi_{Tree} = (\phi_1 \land ((\phi_2 \land \phi_4) \lor (\neg \phi_2 \land \phi_5))) \lor (\neg \phi_1 \land (\phi_3 \lor (\neg \phi_3 \land \phi_6)))$$

[2] Bombara, G et all, A Decision Tree Approach to Data Classification Using Signal Temporal Logic. In: Proc. of HSCC, 2016.

Maritime Surveillance

Synthetic dataset of naval surveillance of 2-dimensional coordinates traces of vessels behaviours.



$$\phi_{ROGE} = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$$

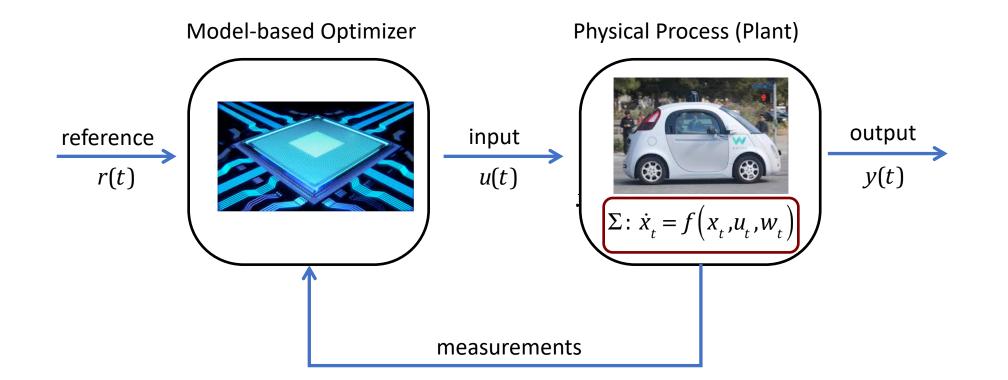
Maritime Surveillance

$$\phi_{ROGE} = ((x_2 > 22.46) \mathcal{U}_{[49,287]} (x_1 \le 31.65))$$

$$\begin{split} \psi_{DTL4STL} &= \left(\left(\left(\mathcal{G}_{[187,196)} x_1 < 19.8 \right) \land \left(\mathcal{F}_{[55.3,298)} x_1 > 40.8 \right) \right) \lor \left(\left(\mathcal{F}_{[187,196)} x_1 > 19.8 \right) \land \\ & \left(\left(\mathcal{G}_{[94.9,296)} x_2 < 32.2 \right) \lor \left(\left(\mathcal{F}_{[94.9,296)} x_2 > 32.2 \right) \land \left(\left(\left(\mathcal{G}_{[50.2,274)} x_2 > 29.6 \right) \land \\ & \left(\mathcal{G}_{[125,222)} x_1 < 47 \right) \right) \lor \left(\left(\mathcal{F}_{[50.2,274)} x_2 < 29.6 \right) \land \left(\mathcal{G}_{[206,233)} x_1 < 16.7 \right) \right) \right) \end{split}$$

	ROGE	DTL4STL	DTL4STL _p
Mis. Rate	0	0.01 ± 0.013	0.007 ± 0.008
Comp. Time (sec.)	73 ± 18	144 ± 24	-

Control Synthesis with STL



The idea is to use the dynamical model of the process to predict its future evolution and optimize consequently the control input signal

Bibliography

- IFM17] Silvetti S., Policriti A., Bortolussi L. (2017) An Active Learning Approach to the Falsification of Black Box Cyber-Physical Systems. IFM 2017. LNCS, vol 10510. Springer, Cham.
- [TACAS18] Bortolussi L., Silvetti S. (2018) Bayesian Statistical Parameter Synthesis for Linear Temporal Properties of Stochastic Models. TACAS 2018. LNCS, vol 10806. Springer, Cham
- [QEST18] Nenzi L., Silvetti S., Bartocci E., Bortolussi L. (2018) A Robust Genetic Algorithm for Learning Temporal Specifications from Data. QEST 2018. LNCS, vol 11024. Springer, Cham.
- Several excellent papers on the first development of falsification technology can be found on the web-site of S-TaLiRo : <u>https://sites.google.com/a/asu.edu/s-taliro/references</u>
- 2. Breach : <u>https://link.springer.com/chapter/10.1007/978-3-642-14295-6_17</u>
- 3. Jyotirmoy Deshmukh, Marko Horvat, Xiaoqing Jin, Rupak Majumdar, and Vinayak S. Prabhu. 2017. Testing Cyber-Physical Systems through Bayesian Optimization. *ACM Trans. Embed. Comput. Syst.* 16, 5s, Article 170 (September 2017)
- 4. Deshmukh, Jyotirmoy, Xiaoqing Jin, James Kapinski, and Oded Maler. Stochastic Local Search for Falsification of Hybrid Systems. In *International Symposium on Automated Technology for Verification and Analysis*, pp. 500-517.
- 5. Jin, Deshmukh et al. Mining Requirements from Closed-loop Control Models (HSCC '13, IEEE Trans. On Computer Aided Design '15)