
Exercise Lecture IX

Lattice gas,

Diffusion Limited Aggregates,

fractal models of surface growth.

(the first exercise is mandatory)

1. Self-diffusion coefficient in a lattice gas model
Consider a finite square lattice with sites randomly occupied by particles with a given density ρ. The
particles can move randomly to empty nearest sites (two particles can not occupy the same site). It is an
example of a restricted random walk. A meaningful physical quantity is the self-diffusion coefficient D of
an individual particle. D is the limit t→∞ of D(t), where D(t) is given by:

D(t) =
1

2dt
〈∆R2(t)〉,

with d which is the dimensionality of the system and 〈∆R2(t)〉 is the net instantaneous mean square
displacement per particle, averaged over all particles, after t units of time (〈...〉 here indicates the average
over particles and not temporal averages).
The dynamical model can be summarized by the following algorithm:

i) Occupy at random the L× L sites of a square lattice with N particles subject to the condition that
no double occupancy is allowed, with the desired density ρ = N/L2 ≤ 1. Tag each particle, that is,
distinguish it from the others, and record its initial position in an array.

ii) At each step choose a particle (randomly, or, alternatively, in an ordered way) and one of its nearest
neighbor sites at random. If the neighbor site is empty, the particle moves to this site; otherwise it
does not. Loop over the particles.

Note 1: The measure of “time” in this context is arbitrary. The usual definition is that during one unit
of time or one Monte Carlo step, each particle on average attempts one jump. Time goes on even if the
particles do not move, i.e., the tentative move is not accepted.
Note 2: Consider periodic boundary conditions, but note that reliable results can be obtained only for
〈∆R2(t)〉 < (L/2)2 (this sets a limit to number of MC steps). Otherwise, they could be affected by the
imposed periodicity.

Do a Monte Carlo simulation to determine D and its dependence on the particles concentration ρ.

See for instance the code latticegas.f90. Internal units for Monte Carlo time step and displacement
should be preferred. For comparison with a realistic situation, such as for instance diffusion in solids,
we may consider Monte Carlo time step equal to 1 ns and the unit length to 2 Å, properly rescaling the
internal quantities at the end of the calculations.

(a) Study 〈∆R2(t)〉 as a function of time for a fixed value of ρ, for instance 0.03 or 0.2, and for a fixed
number of particles (e.g., 13 particles in a 20×20 lattice for ρ = 0.03). What do you see increasing
time (within the limit mentioned above)? Make a fit and compare your result (the slope) with the
expected behavior of a standard random walk.
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(b) Plot D(t) as a function of time: after a certain equilibration time, it fluctuates. Calculate the
amplitude of the fluctuations as a function of t (from the distribution of data over the particles).
These fluctuations remain also by increasing t.

(c) In order to estimate D, which is defined as the limit of D(t) for t → ∞, do a temporal average
〈D(t)〉 (〈...〉 here indicates a temporal average, for instance from 0 to t, or some block average). Plot
together D(t) and 〈D(t)〉. Change the seed, do another run and compare the plot and the estimate
of D(t) and 〈D(t)〉 with the previous results.

(d) Better statistics for D(t) (and consequently for D) can be obtained by calculating 〈∆R2(t)〉 as average
over many particles (i.e., for a given ρ, considering a lattice with L as large as possible; it is suggested
L ≥ 40). Verify that fluctuations of D(t) (and the deviations of 〈D(t)〉 over more runs from its mean
value) are proportional to the inverse square root of the number of particles.

(e) Study the dependence of D on the concentration, using for instance ρ=0.1, 0.2, 0.3, 0.5, and 0.7.
You should find that D is a monotonically decreasing function of ρ. Why?

(f) To gain some insight into this dependence, determine the dependence on ρ of the probability that if
a particle jumps to a vacancy at time t, it returns to its previous position at time t + 1. Is there a
qualitative relation between the density dependence of D and this probability?

2. Diffusion Limited Aggregates (DLA)

(a) Write a program to generate DLA on a square lattice. See for instance the code dla2d.f90. Choose
each walker starting randomly at a distance R = Rmax + 2 from the center, where Rmax is the
maximum distance of the particles already aggregated in the cluster from its origin. To save time,
eliminate the walker that go too much far away, e.g. that reach a distance equal to 2Rmax from
the center (“killing circle”). Choose L=31. Try to color in a different way the sites according to the
order of aggregation (e.g. after 20 particles aggregated change color). Which are the last aggregated?
Which are the former?

(b) At t = 0 we have 4 perimetral sites with a probability pi=1/4 of being occupied. After having
occupied one of them, we have 6 perimetral sites which have different occupancy possibility: two of
them have pi=2/9 and the other 4 have pi = 5/36. Verify with a Monte carlo simulation.

(c) The efficiency of the algorithm can be improved considering displacements with variable length, the
longer the distance from the center, the longer is the step length. For instance, if the walker is at
distance R > Rmax, consider a length displacement R − Rmax − 1 (if it is > 1), whereas consider a
unitary displacement if the walker is close to the cluster already grown.

(d) Generate some DLA clusters and calculate their fractal dimension, which should be d = 1.66 (see:
Witter et al., Phys. Rev. Lett. 47, 1400 (1983)).
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

latticegas.f90 - from Gould-Tobochnick

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program latticegas

implicit none

logical, allocatable :: lattice(:,:)

integer, allocatable :: x(:),y(:)

double precision, allocatable :: dx(:),dy(:)

Integer :: Nsteps,Np,L

integer :: istep,isubstep

integer :: dir,i,j,nfail,njumps

integer, dimension(1) :: seed

integer, parameter :: MAXINT=1000000000 ! Variables for counting

! allowed directions

integer :: free(4),nfree

integer :: dxtrial(4),dytrial(4)

integer :: xnew(4),ynew(4)

Real, dimension(2) :: rnd(2)

real :: rnd1

double precision :: dxsum,dysum,dxsqsum,dysqsum

double precision :: t,deltat,drsqave,D,a,help

! Set average time between jumps and jump length Units is s and cm

! although actually this is not needed for the simulation

deltat=1.d0 ! or 1d-9 in order to consider 1 ns

a=1.d0 ! or 2e-8 in order to consider 2 Ang

print*," Nsteps>"

read*, Nsteps

print*," Np>"

read*, Np

print*," L>"

read*, L

print*," seed>"

read*, seed

call random_seed(put=seed)

print *,’Doing lattice gas walk to’,Nsteps,’MC steps, initial seed’,seed

print *,’using’,Np,’ particles on a’,L,’^2 square lattice’

if (Np >= L*L) then
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print *,’Number of particles > number of sites !!!’

STOP ’Too small lattice’

endif

allocate(lattice(0:L-1,0:L-1))

allocate(x(Np),y(Np))

allocate(dx(Np),dy(Np))

! Mark all positions as empty

do i=0,L-1

do j=0,L-1

lattice(i,j) = .false.

enddo

enddo

! Enumeration of directions: 1=right; 2=left; 3=up; 4=down

dxtrial(1)=+1; dytrial(1)= 0;

dxtrial(2)=-1; dytrial(2)= 0;

dxtrial(3)= 0; dytrial(3)=+1;

dxtrial(4)= 0; dytrial(4)=-1;

Nfail=0; njumps=0;

! Generate particles on lattice

do i=1,Np

do ! Loop until empty position found

! To be on safe side, check that upper limit not reached

call random_number(rnd)

x(i)=int(rnd(1)*L); if (x(i)>=L) x(i)=L-1;

y(i)=int(rnd(2)*L); if (y(i)>=L) y(i)=L-1;

if (lattice(x(i),y(i))) then

! Position already filled, loop to find new trial

cycle

else

lattice(x(i),y(i))=.true.

! Success, go to next particle

exit

endif

enddo

dx(i)=0.0d0; dy(i)=0.0d0;

enddo

T=0.0;

do istep=0,Nsteps-1 ! Loop over MC steps

do isubstep=1,Np ! Do all particles on average once every MC step

! Pick one particle at random

call random_number(rnd1)
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i=int(rnd1*Np)+1; if (i>Np) i=Np;

! Find possible directions, store it in free()

Nfree=0

do j=1,4

xnew(j)=x(i)+dxtrial(j);

if (xnew(j) >= L) xnew(j)=0; if (xnew(j)<0) xnew(j)=L-1;

ynew(j)=y(i)+dytrial(j);

if (ynew(j) >= L) ynew(j)=0; if (ynew(j)<0) ynew(j)=L-1;

if (.not. lattice(xnew(j),ynew(j))) then

! Success: position free

nfree=nfree+1

free(nfree)=j

endif

enddo

! If no possible directions, get new particle

If (nfree == 0) then

nfail=nfail+1

cycle

endif

njumps=njumps+1

! Pick one of the possible directions randomly

! Note that the dir>nfree check here really is needed!

call random_number(rnd1)

dir=int(rnd1*nfree)+1; if (dir>nfree) dir=nfree

j=free(dir)

! Now x(i),y(i) is old position and xnew(j),ynew(j) new

! Double check that new site really is free

if (lattice(xnew(j),ynew(j))) then

print *,’ERROR: THIS SHOULD BE IMPOSSIBLE’

print *,i,j,dir,nfree

print *,free

print *,x(i),y(i),xnew(j),ynew(j)

STOP ’ERROR new site bug’

endif

!Empty old position and fill new

lattice(x(i),y(i))=.false.

lattice(xnew(j),ynew(j))=.true.

X(i)=xnew(j); y(i)=ynew(j);

dx(i)=dx(i)+dxtrial(j); dy(i)=dy(i)+dytrial(j);

enddo

5



If (mod(istep*Np,1000000) == 0) then

! Calculate and print intermediate results

! Get total displacement from dx,dy

dxsum=0.0d0; dysum=0.0d0;

dxsqsum=0.0d0; dysqsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);

dxsqsum=dxsqsum+dx(i)*dx(i);

dysqsum=dysqsum+dy(i)*dy(i);

enddo

drsqave=(dxsqsum+dysqsum)/(1.0*Np)

if (t>0.0) then

! Get diffusion coefficient by proper scaling

D=drsqave*a*a/(4*t)

write(*,fmt=’(3(a,1pe10.2))’)&

’At ’,t,’ <dR^2>=’,drsqave*a*a,’ D=’,D,’ cm^2/s’

endif

endif

t=t+deltat

enddo

! Get total displacement from dx,dy

dxsum=0.0d0; dysum=0.0d0;

dxsqsum=0.0d0; dysqsum=0.0d0;

do i=1,Np

dxsum=dxsum+dx(i); dysum=dysum+dy(i);

dxsqsum=dxsqsum+dx(i)*dx(i); dysqsum=dysqsum+dy(i)*dy(i);

enddo

print *,’dxsum’,dxsum,’ dysum’,dysum

print *,’dxsqsum’,dxsqsum,’ dysqsum’,dysqsum

drsqave=(dxsqsum+dysqsum)/(1.0*Np)

print *,’drsqave’,drsqave

print *,’Number of failed jumps’,nfail,’ number of successes’,njumps

! Get diffusion coefficient by proper scaling

D=drsqave*a*a/(4*t)

write(*,fmt=’(a,f6.4,a)’)’For Np/L^2=’,real(Np)/L**2,’ :’

write(*,fmt=’(3(a,1pe10.2))’)&

’at ’,t,’ <dR^2>=’,drsqave*a*a,’ D=’,D,’ cm^2/s’

deallocate (lattice,x,y,dx,dy)

end program latticegas

6



!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! dla2d.f90

!

! simulates the growth of a 2D crystal that forms by DLA

!

! M.P. commented and adapted from G. Hart - NAU - March 2002

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program dla2d

implicit none

integer, parameter :: Nw = 200 ! Number of walkers (particles in the crystal)

logical, dimension(-Nw:Nw,-Nw:Nw) :: occupied ! Grid where the crystal grows

logical :: stuck ! Did the current walker get stuck yet?

integer :: mass ! number of particles in the cluster inside a given radius

integer, dimension(2) :: newpos, prevpos ! current and previous position of the current walker

integer :: i, j, idist ! general loop counters

real :: radius ! outer radius of the crystal plus a little

real :: distance ! distance of the walker from the origin

real :: theta, rndstep ! random numbers for starting and stepping the walkers, respectively

real :: twopi

radius = 5

twopi = 8*atan(1.0)

occupied(:,:) = .false.! Initialize the array

occupied(0,0) = .true. ! Make the origin occupied (this is the seed crystal)

do ! Start a walker at a random postion outside the crystal (on a circle of radius "radius")

call random_number(theta)

theta = theta * twopi

newpos = nint( radius*(/cos(theta),sin(theta)/)) ! Start a new walker

if(occupied(newpos(1),newpos(2)))cycle ! Already occupied, try again

! "cycle" means: continue with the start of the next loop (in this iteration jump to the "end do", without doing the instructions after this line)

prevpos = newpos

do

newpos = prevpos

call random_number(rndstep)

select case(int(rndstep*4)+1)

case(1)

newpos(1) = newpos(1) -1

case(2)

newpos(1) = newpos(1) +1

case(3)

newpos(2) = newpos(2) -1

case(4)

newpos(2) = newpos(2) +1
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end select

if(any(abs(newpos) > Nw)) exit ! Walker stepped out of the box. Start a new one

if(occupied(newpos(1),newpos(2))) then ! walker gets stuck to the crystal

occupied(prevpos(1),prevpos(2)) = .true. ! Add the walker to the crystal

distance = sqrt(real(dot_product(prevpos,prevpos)))

if(distance > (radius-5)) radius = distance + 5 ! Make the starting circle larger if necessary

exit ! terminates the loop immediately

endif

prevpos = newpos ! Walker made a valid move (didn’t get stuck or wander away). Update and keep it moving

enddo

if(radius > Nw) exit ! terminates the loop immediately

enddo

! Write occupied sites to disk

open(10,file="dla2d.data",status="replace")

do i = -Nw, Nw

do j = -Nw, Nw

if(occupied(i,j)) write(10,*) i,j

enddo

enddo

close(10)

! Do the m(r) analysis and write results to disk

open(11,file="dlamass.data")

do idist = 2, int(0.75*distance)

mass = 0

do i = -Nw, Nw

do j = -Nw, Nw

if(occupied(i,j)) then

if(idist**2 >= i**2 + j**2) mass = mass + 1

endif

enddo

enddo

write(11,’(2i10)’) idist, mass

enddo

close(11)

end program dla2d
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3. Fractal growth of surfaces

Conside the Eden model to generate a corrugated surface. The algorithm is:

(a) choose randomly a lattice site and occupy it. The nearest neighbor sites of the occupied site (i.e. 4
sites in case of a square lattice) are the perimetral sites.

(b) choose randomly a perimetral site and occupy it. When occupied, it is no longer a perimetral site:
update the list of perimetral sites with the new ones. Repeat from (1).

The code eden.f90 is proposed as a draft here (the suggestion is to modify it, it has several “print” for
checks. . . )

Consider a simple model where the surface is initially (at time t = 0) an horizontal line of L occupied
sites. The growth is along the vertical direction.

According to the Eden model, choose a perimetral site randomly and occupy it. For the initial configuration
of our surface, at time t = 0 the perimetral sites are the horizontal line of empty sites adjacent to the line
of occupied sites. The average height of the cluster is:

h̄ =
1

Ns

Ns∑
i=1

hi

where hi is the distance of the i surface site from the initial line, and the sum is over all the surface sites
Ns.

The deposition of a particle corresponds to the increment of time t by one. Study how the roughness w
of the surface change with time, where w is defined as:

w2 =
1

Ns

Ns∑
i=1

(hi − h̄)2,

(w=0 for a planar surface). w depends on L and t. Initially w increases with time:

w(L, t) ∼ tβ

β measures the increasing in time of the correlations in the vertical direction. Given a characteristic time,
the length for the correlation of the fluctuations is comparable with L, and the roughness w reaches a
limiting value depending only on L. We can write:

w(L, t >> 1) ∼ Lα,

where α measure the corrugation.

(a) Consider a 1D surface growing over a line of L=100 sites and apply the Eden model. Consider x
the horizontal index, i.e. the label of the columns, and hx the height (max. distance of a perimetral
site from the substrate). Use PBC in the horizontal direction. We call surface sites those perimetral
sites with maximum h for a given x. Try to visualize the growth in time, with the evidence of the
occupied, perimetral and surface sites.
a) is the surface well defined?
b) where are most of the perimetral sites?
c) if we choose all perimetral sites as surface sites, is something changing?
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(b) Plot w(t) as a function of t for L=32, 64, 128 and estimate the exponents α e β.
a) Which kind of plot is it convenient to do?
b) Does w increase initially with a power law? If yes, estimate β.
c) Is there a characteristic time (depending on L) for w to reach an asymptotic value?
d) Can you estimate α? (you should find β = 1/3 and α = 1/2).

(c) The dependence of w on L and t can be summarized with the law:

w(L, t) ≈ Lαf(t/Lα/β)

where : f(x) ≈ xβ for x << 1 and f(x) = constant for x >> 1

a) Using for α and β the best estimates obtained in the previous point, verify the law plotting
w(L, t)/Lα as a function of t/Lα/β for the different values of L considered. b) Repeat using instead
the exact result, β = 1/3 and α = 1/2. You should find a universal curve (i.e. the same curve using
the scaled variables for different values of L)

(d) Random Deposition In the Eden model each perimetral site can be part of the cluster. In the random
deposition model, instead, a column is chosen randomly and a particle is deposited on top of it. No
horizontal correlations are therefore present.
a) Make a simulation with this model and visualize the surface.
b) Verify that the height of the colums follow a Poisson distribution and that h̄ ∼ t and w ∼ t1/2.
This structure does not depend on L and therefore α = 0.

(e) Balistic Deposition In this model the horizontal coordinate is chosen randomly and a particle falls
down up to reach the first available perimetral site which is a nearest neighbor of an occupied site.
This algorithm allows also a horizontal growth. Consider one particle falling down for each unit time.
Discuss the differences -in terms of algorithm and results- with respect to the previous models.
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! eden.f90

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

module common

implicit none

public::load, init, edengen

integer, parameter, public :: d=2

integer, public :: Lx, Ly, nmcs, posx, c, xmax

real,public :: rnd

integer, public, dimension(1)::seed

contains

!grid parameters

subroutine load()

print*, "L>"

read*, Lx

print*, "nmcs>"

read*, nmcs

Ly=nmcs

print*, "seed>"

read*, seed

end subroutine load

!Initialize the lattice

subroutine init(grid, Lx,Ly,s, v)

integer,intent(inout) :: Lx,Ly,v

integer :: i

integer, dimension(Lx,Ly), intent(inout) :: grid

integer, dimension(2,v), intent(inout) :: s

grid = 0

s = 0

do i=1,Lx

grid(i,1) = 1

s(1,i)=i

s(2,i)=2

end do
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!do i= 1, nmcs

! w(i) = 0.0_d

! hmed(i) = 0.0_d

!end do

end subroutine init

!eden model

subroutine edengen(grid,Lx,Ly,v,s)

integer,intent(inout) :: v,Lx,Ly

integer :: i,ccp,j

integer, dimension(Lx,Ly), intent(inout) :: grid

integer, dimension(2,v), intent(inout) :: s

integer, dimension(2) :: loc

call random_seed (put = seed)

loc = minloc(s)

xmax = loc(2) - 1

print*,"xmax = ",xmax

call random_number(rnd)

posx=int(rnd*xmax)+1

c=0

print*,"posx=",posx, "s(1:2,pox)=",s(:,posx)

grid(s(1,posx),s(2,posx))=1

if (s(1,posx)==1) then

ccp=Lx

else

ccp=s(1,posx)-1

end if

if (grid(ccp,s(2,posx))==0) then

do i=1,xmax

if ((s(1,i)/=ccp) .and. (s(2,i)/=s(2,posx))) then

s(1,posx)=ccp

s(2,posx)=s(2,posx)

c=1
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end if

end do

end if

if (s(1,posx)==Lx) then

ccp=1

else

ccp=s(1,posx)+1

end if

if (grid(ccp,s(2,posx))==0) then

do i=1,xmax

if ((s(1,i)/=ccp) .and. (s(2,i)/=s(2,posx))) then

if (c==0) then

s(1,posx)=ccp

s(2,posx)=s(2,posx)

c=1

else

s(1,xmax+1)=ccp

s(2,xmax+1)=s(2,posx)

xmax=xmax+1

end if

end if

end do

end if

if (s(2,posx)==Ly) then

ccp=1

else

ccp=s(2,posx)+1

end if

if (grid(s(1,posx),ccp)==0) then

print*,"s(1,posx)=",s(1,posx)

print*,"ccp=",ccp

do i=1,xmax

if ((s(1,i)/=s(1,posx)) .and. (s(2,i)/=ccp)) then

print*,"si"

if (c==0) then

s(1,posx)=s(1,posx)

s(2,posx)=ccp

c=1

else

s(1,xmax+1)=s(1,posx)

s(2,xmax+1)=ccp
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xmax=xmax+1

end if

end if

end do

end if

! do i=1,2

! print*,(s(i,j), j=1,v)

! end do

! do i=1,Ly

! print*,(grid(j,i), j=1,Lx)

! end do

if (grid(s(1,posx),s(2,posx)-1)==0) then

print*,"s4"

do i=1,xmax

if ((s(1,i)/=s(1,posx)) .and. (s(2,i)/=s(2,posx)-1)) then

if (c==0) then

s(1,posx)=s(1,posx)

s(2,posx)=s(2,posx)-1

c=1

else

s(1,xmax+1)=s(1,posx)

s(2,xmax+1)=s(2,posx)-1

xmax=xmax+1

end if

end if

end do

end if

end subroutine edengen

end module common

program eden

use common

implicit none

integer::i,v,j

integer, dimension(:,:), allocatable :: grid

real, dimension (:), allocatable :: w, hmed

integer, dimension(:,:), allocatable :: s

open (unit=1, file="eden1.dat", status= "replace", action="write")

call load ()
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v=lx*ly

allocate(grid(Lx,Ly))

allocate(w(nmcs))

allocate(hmed(nmcs))

allocate(s(2,v))

call init(grid,Lx,Ly, s, v)

print*,"v=lx*ly=",v

print*,"nmcs=",nmcs

do i=1, nmcs

! print*," imcs=",i," grid:"

! do j=ly,1,-1

! print*,grid(1:lx,j)

! end do

call edengen(grid,Lx,Ly,v,s)

end do

write(unit=1,fmt=*) s

close(unit=1)

deallocate(grid,w,hmed,s)

end program eden
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