Classical fluids

- Interactions
- Measurable and interesting physical quantities
- Metropolis Monte Carlo approach (mainly)
- Molecular dynamics (ere: several sides;

but today only few basic concepts will be discussed)
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Interactions



A very simple interaction

The lattice gas model :

u(r}

no double site occupancy
(=no overlap)

but in general: ...



Interactions

assume that the force between any pair of rgloletcule)s depends only on the distance
or atoms

(u(rij) depends only on the magnitude of the distance r;; between particles ¢ and j)

the total potential energy U is a sum of two-particle interactions:

U =u(ri2) +u(riz) +--- +u(rssz) + Y Y u(7;;)

1=1 j7=1+1

REMARK:
this 1s an effective interaction, a simple phenomenological form for wu(r)
(it 1s an approximation, since in general, 3-, 4- ... many-body terms are present)




A typical 2-body effective potential

general form
u
repulsion
5 el :
j attraction
minimuin

a strong repulsion for small » and a weak attraction at large r.

'4 N\

consequence of the Pauli exclusion principle mutual polarization of each molecule
core repulsion van der Waals




Phase diagram

fusion

curve

solid c;gli;atd
vapor pressure
sublimation triple curve
curve \ point gas

T

A sketch of the phase diagram for a simple material.

A first goal in the study of fluids:

to gain insight into the qualitative differences

between different phases



Measurable and
interesting
physical quantities



Measurable and
Interesting quantities

® pair correlation function g(r)
® cnergy E

® pressure P



Measurable and
Interesting quantities

concepts and qualitative features
¢ pair correlation function g(f) {mathematical formulation and

forms useful for computation

® cnergy E

® pressure P



Radial distribution function

Definition W

g(r) .l

—'r

g( r ) dr (dr = infinitesimal volume of the shell)

N
is a conditional probability (dimensionless)

of finding a particle in the shell r = r 4 dr

given one at the origin
- J

Consider one reference particle at the origin and count the others; then, average
over the reference particles

(Here: spherically symmetric interactions assumed; g depends only on r=Irl )



Radial distribution function

Normalization
N particles, volume V': density p = N/V

The mean number of particles in the
shell with radius between r and r+dr 1s:

pg(r)dr

(Reminder: spherically symmetric interactions
assumed; g depends only on r=lrl )

volume element dr = 47r?dr (d = 3), 27rdr (d = 2), or 2dr (d = 1)

o0

normalization condition P / g (T) dr =N —-—1~N
0



Radial distribution function

Physical meaning T

i o, )
b
L

S

Gives insight into the structure of a many-body system.
General behavior at short and long distances:
repulsive interactions on short-range scale: g(r — 0) — 0

in general: g(r) — 1 for r — oc



Radial distribution function

Typical features:

gas: almost structureless

(ideal gas: no interactions or correlations, g(r7) = 1 for r large enough)
liquid: some structure with broad peaks

solid: evidence of well separated coordination shells,
zero in between; broadening of the peaks depending on T

5 D
gaseous Ar
4t (90 K) a
solid argon

= 3t Ii?QUOidKA)\r gaseous Ar . 3t
S 5| (300 K) > o

1l 1l liquid argon

o2 ¢4 o6 o8 % 02 04 06 08

distance/nm distance/nm

(credit to: Thomas/Penfold Group, http://rkt.chem.ox.ac.uk/)



another example:
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Graphene pair distance (A)

The initial stages of melting of graphene between 4000 K and 6000 K, E. Ganz et al., Phys. Chem. Chem. Phys.,2017, 19, 3756



Radial distribution function

formulation in case of spherically symmetric interactions:

(two dimensions)

@ first compute n(r, Ar), the number of particles in a spherical (circular) shell
of radius r and small, but nonzero width Ar

with the center of the shell centered about each particle

® For a given particle i, consider only those with j > i

® In total, n(r,4r) gives the number of pairs considered, which is N(N-1)/2

® in 2D: area of the circular shell: 2arAr
Remember: p/g(?“) dr=N—-1~N



Radial distribution function

Again in the case of spherically symmetric interactions
Mathematical formulation - details for the 2D case:

number of pairs with distance between r and r + Ar
2nrAr - pN

Z Z (5 'r‘ — |1'7, J <= (0: to be considered within
27TTAT P N i=1 j£i the accuracy of Ar; up to

here: double counting of pairs)

<= (here: no double
counting of pairs)

OK for a numerical implementation



Pair correlation function

(similar to the radial distribution function,
but more general definition,
i.e., interactions not spherically symmetric)

Mathematical formulation:

N particles, volume V': density p = N/V

g(I’) p— ?<$: S: 5(1*1)5(1'] — rz)> ensemblepz;zl?srage over
i ji
N N\ N\ .
= yaf2 2 0 —riy))
i i

(Here: V 1nstead of A, for a 3D case in general)



Radial distribution function

Related quantities

For comparison with experiments:
geometrical structure factor S(k);
fluctuations in g(r) are related to S(k):

N
p(k) = > exp(ik - r;)
i=1
S(k) = %<p(k)p(—k)> = % <Z exp (ik - (r; — rj))> —

(average
also over time)




Radial distribution function

Relevance of g(r) for other physical quantities

pg(r): local density about a given particle

g(r) gives structural information, but
it 1s relevant to calculate also other ensemble averages of quantities
depending on pair interactions, €.g., energy:

potential energy between this particle and others
in a volume dr around r: u(r)pg(r)dr

average potential energy per particle: = _—

-
DO |

/ g(r)u(r) dr



Pressure

From the virials=resieo and equipartition theorems:

PV 1
NIT L= anr 2T T

1<J

(average over particles pairs and time)
Note the additional term due to interactions with respect
to the eq. of state of the ideal gas

If only two-body forces are present, the virial eq. of state can
be rewritten using the radial distribution function:

P dVv
%zl—g—g/g(r)r df“r) dr

A

dimensionality




Virial theorem

If <E.in> is the time average of the total kinetic energy and Fyis the force
acting on the particle k at the position ry, the virial theorem states:

2(Egin) = — Z<Fk - Tk)

If the force between any two particles of the system results from a
potential energy V(r) = r" where r is the inter-particle distance,
the virial theorem is simply:

2<Ekzn> — n<v;50t>

(average
also over time)



Simple interaction potentials

® Hard disks (spheres)

® | ennard-Jones



Hard disks

A particular form of interacting potential
(similar to the simplest lattice gas model with no double site occupancy,
but here in a continuum)

o u(r) 4

— >

+o00, r<o

u(r) =
() 0, r>ao

No minimum; check overlap!
No attractive part => no transition from gas to liquid



Hard disks

O: diameter of the disks

Solid phase: close-packed
structure (triangular lattice);
position of the peaks:

N shell: 2NN shell: 3NN shell:
V30 20

number of particles N
particle (or number) density : p = i —

area A

. | ( ) . 3
\/§

reduced density :  p* = po” (non-dimensional quantity)

2
max reduced density : p; .. = — = 1.1547

H : . areag{cgu red T T
max packing fraction:  f — pled e — 0.907 f=qr
ar€lgyailable



Radial distribution function

Radial Distribution Function

of hard disks in 2D . at different reduced densities
78 — o059 <= liquid
- pennys 008
m —— 066
[ 0.68 ..
5 0.72 <= transition !
o [ 0.74
> “H <= solid
3 =
’n 5 fz%ﬁ
18 @ -
ol 1 | | ——
1 3 4 5
rlo

the appearance of a double structure in the peak around 20
is a fingerprint of the liquid-solid transition

(high density solid: peaks at ~1.7 0 and 2 0)

max reduced density: p,... = = 1.1547

2
V3



PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Structural precursor to freezing in the hard-disk and hard-sphere systems

Thomas M. Tru_skett,l Salvatore Torquato,z’3~>X< Srikanth Sastry,1 Pablo G. Debenedetti,' and Frank H. Stillinger“’2

2.0 +

0'0 i , § . ) .
0.5 1.5 2.9 3.5 4.5

FIG. 1. Radial distribution function g(r) for hard disks plotted
versus distance r (in units of diameters). Curves represent the fluid
phase with 7=0.65, 0.67, 0.68, and 0.69 (freezing point).

(here :n = p*)



Pressure

case of Hard Disks (Spheres):

Virial eq. of state

pP = @/g(r)rdv(r) dr

0 2d dr
becomes:
6P 2
dr = 4mrdr 7 =1+ gﬂpagg(g) (d=3)
P 1
dr = 27r dr %=1+§7T,0029(0) (d=2)
GP

dr = 2 dr 7:1+,009(0) (d=1)



Lennard-Jones potential
utr) = e |(9) "= (%)

T (A

repu_’.#sion

|

thractioﬁ

minimum




Lennard-Jones potential
utr) = e |(9) "= (%)

T T

u(r) =0atr =0

O‘\l/ f
€
———————— - e: depth of u

liquid argon: € = 1.65 x 10721 J oc=34A4

(r) at the minimum




Units

To reduce the possibility of roundoff error, it is useful to choose units so that the computed
quantities are neither too small nor too large.

quantity unit value for argon

—) | length o 3.4 x1071%m

—_—) | energy € 1.65 x 10721 ]
mass m 6.69 x 10720 kg
time o(m/e)/? 217 x 107125
velocity (e/m)/?  1.57 x 102m/s
force /o 4.85 x 10712 N
pressure e/o? 143 x 1072N-m™!
temperature ¢/k 120K

Table 8.1: The system of units used in the molecular dynamics simulations of particles interacting
via the Lennard-Jones potential. The numerical values of o, €, and m are for argon. The quantity
k is Boltzmann’s constant and has the value k = 1.38 x 10722 J/K. The unit of pressure is for a
two-dimensional system.

Unit of time is derived: e.g., for Ar: At =0.01 = 2.17 x 10~ 5

Typical runs: 10-10% in reduced units = 107111079 s



Generalities in
many-body simulations

® periodic boundary conditions

® minimum image



Periodic Boundary Conditions

for the positions

(here: in the continuum;
before: only in discretized conditions - Ising and lattice models)

function pbc(pos,L) result (f_pbc)

if (pos < 0.0) then

f pbc=pos +L (OK
else if (pos > L) then in the hypothesis that
f pbc = pos -L -L < pos <2L)
else
f pbc = pos
end if

end function pbc



.. Minimum Image convention

for the interactions

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2)

o o o
® o ®

o @X} o
o o

o o o
o © o

LX

Only the 1nteractions with the nearest images are considered




Minimum Image convention

for the interactions

To compute the minimum distance dx between particles 1 and 2 at x(1) and x(2)

function separation(ds,L) result (separation_result)

if (ds > 0.5*L) then
separation_result =ds - L

else if (ds < -0.5*L) then (OK if distances do not
separation_result =ds + L exceed L)

else
separation_result = ds

end if

end function separation



Radial distribution function

subroutine correl()

do i;I,N-I
do j=i+I,N . .
dx = x(i) - () implementation of

dy = y(i) - y(j) the counting algorithm
call separation(dx,dy)
r2 = dx*dx + dy*dy
ibin = int(sqrt(r2)/dr)+1
if (ibin<=nbin) then
gcum(ibin) = gcum(ibin) + |

end i 8(r) = 27r'rAr nN Z 25 = Irig))

end do i=1 j>i
end do /
xnorm = 2./(rho*nmcs*N) ! rho :average density = N/V
r  =ir*dr + 0.5*dr ! r in the middle of the circular shell
area = 2.0%pi*r*dr ! area of the shell

g = gcum(ir)*xnorm/area



Iwo approaches to simulate
the evolution of the system

(to sample the configuration space)

® stochastic (Metropolis Monte Carlo)

® deterministic (integration of the eq. of motion)



Programs:

on

$/home/peressi/comp-phys/X-fluids/
[do: $cp /home/peressil.../ X-fluids/* .]
or moodle2

hd-MC.f90
hd-MD.f90
LJ-MD.f90



Classical fluids:

Metropolis Monte Carlo method
canonical ensemble (NVT)

- calculate Eiot

;> - displace an individual particle by a small amount: calculate AE
(variation of the interaction of that particle with all the others)

- accept/reject the new position with the usual Metropolis factor:
w = min [I, exp (-AE/KkT)]

<« - iterate

- accumulate distances to calculate g(r)



Metropolis Monte Carlo method
for Hard Disks (Spheres)

displace an individual particle by a small amount:
if overlap with another particle: REJECTED
if no overlap with any other particle: ACCEPTED

-Metropolis algorithm with AE =0 or oo

-ergodicity: obvious at low densities;
complicated at high densities



Maximum package

\
\
\

triangular lattice

take the linear dimensions of the cell to be L, and L, = V3L./2  (here: N=16)




some useful gnuplot commands:

set size ratio {Ly/Lx}
unset key (to avoid the label)

p [0:Lx][0:Ly] 'file_of_positions' u 1:2:(0.5) w circles

(the radius could be given in the 3rd column; here it is set
to 0.5)



Molecular dynamics

a deterministic approach to the dynamics of a system

MD generates the dynamical trajectories of a
system of N particles by integrating Newton'’s
equations of motion

- with suitable initial and boundary conditions

- proper interatomic potentials

- while satisfying thermodynamical (macroscopic) constraints

- and with a ‘'smart’ algorithm for numerical integration




Molecular dynamics

and Newton’s equations of motion
F=ma i.e.

Analytical solution for constant forces;
)...for variable forces .......
(analytical integration not always possible)

=> different possible algorithms for
numerical integration
of the eqs. of motion



Basic idea: discretization - e.g. consider uniformly acc. motion

r(t+ At) = x(t) +v(t) - At + %a(t) - At

x(0) v(0) F(O)  x(1) v(1) F(1)  x(2) v(2) F(2)



Uniformly accelerated motion in each time interval

t—t+ At

then iterate!

EULER algorithm

—
. 2t + At) = 2(t) + v(t) AL + %a(t)AtQ
v(t + At) = v(t) + a(t) At
L

r(t) = z(t + At) = z(t + 2At) = z(t + 3At) = ...

v(t) = v(t + At) = v(t + 2At) = v(t -

-3AL) — ...



DO BETTER: instead of choosing the value of the acceleration
at the beginning of each time interval, take its average value in

the interval { — { + /\{ for the update of the velocity

Velocity-VERLET algorithm
P
xr(t+ At) = z(t) + v(t) At + %a(t)At2

ot + Af) = o(t) + 3 (alt) +a(t + A1) At
L

iterate

Remark: the new acceleration can be calculated as soon as the new
position is calculated, so that the algorithm is explicit!



Choice of an integration algorithm

Accuracy - does it give an accurate description of the motion?

Stability - does it conserve the system energy and temperature (in case of
conservative forces)? (*)

Simplicity - is it easy to implement it in a computer code!?

Speed - does it require only few or a lot of operations?

Economy - how much memory does it require?

Velocity- Verlet algorithm

a second-order algorithm allows a good energy conservation
if forces are NOT dependent on velocities (*)



Thermodynamical ensemble

IF POTENTIAL ENERGY does not depend on velocities
(conservative potentials), the TOTAL ENERGY of the system
should be conserved!

Therefore, since Verlet's integration of the Newton'’s equations will:

Conserve total energy (E=const.)
Keep number of particles constant (N=const.)
Keep volume constant (V=const.)

Thus: Yields an NVE ensemble (“microcanonical ensemble”)



Energy
in MD - NVE simulations

the TOTAL ENERGY of the system should be conserved!

TO BE CHECKED during simulations
(it may not be conserved because

of a bad integration algorithm)

It is common practice to compute it at each time step in order to check that it is indeed

constant with time.
During the run energy flows back and forth between kinetic and potential: they fluctuate while

their sum remains fixed.

In practice there could be small fluctuations in the total energy, tolerance ~ 1%



Temperature
in MD - NVE simulations

T is related to (and therefore can be estimated from)
the kinetic energy:

- 2 Ep.
Ekm:§m2v22 » T:?)N];GB

It is not a constant !

Pressure

It can also be calculated at each time step from kinetic energy,
forces and positions (Virial theorem)



Choices of:

- Initial conditions
- time step

A good integration algorithm is not enough:

INITIAL CONDITIONS: Important in case of deterministic evolutions

TIME STEP:

too short => phase space is sampled inefficiently,

too long => energy will fluctuate wildly and simulation may become
catastrophically unstable (“blow up”).

Instabilities are caused e.g. by the motion of particles (atoms, planets...) being
extrapolated into regions where the potential energy is prohibitively high (e.g.
overlapping or too much close particles).

E.g. in atomic fluids simulations: choose time step comparable to the mean time
between ionic collisions (about 5 fs for Ar at 298K) (a good rule of thumb)



Further details

Truncated and shifted potentials :

- Long range potentials (electrostatic) and also VdW
interactions are often truncated at a finite cut-off distance.

- They are sometimes shifted so that the potential is zero at
the cut-off, thus avoiding a discontinuity which can give rise
to poor energy conservation.

- Truncations with periodic boundaries introduce the need
for a long-range correction term (“tail corrections”)




MD vs MC simulations

MD has a kinetic energy contribution to the total energy,
whereas in MC the total energy is determined solely by the
potential energy function.

MD samples naturally from the microcanonical (NVE)
ensemble, whereas Metropolis MC samples from the
canonical (NVT) ensemble.

However, both MC and MD can be modified to sample from
different ensembles.



Sampling other
thermodynamical ensambles with MD

Other thermodynamical ensembles can be realized by
changing the equations of motion (e.g. NVT —coupling to
heat bath..., “canonical ensemble”). Since:

rescale velocities (use a “thermostat”) to keep T~constant



Collisions and PBC

check collisions!

© © ©

®

LX
The positions and velocities of disks 1 and 2 are such that disk 1 collides with an image

of disk 2 that is not the image closest to disk 1.




two examples
for the interaction potential:

HD and L}



A few basic references

The molecular dynamics method was first introduced by Alder and Wainwright in
the late 1950's (AW) to study the interactions of hard spheres. Many important
insights concerning the behavior of simple liquids emerged from their studies. The
next major advance was in 1964, when Rahman carried out the first simulation
using a realistic potential for liquid argon (R).

(AW) B. J. Alder and T. E. Wainwright
Phase Transition for a Hard Sphere System
J. Chem. Phys. 27, 1208 (1957); ibid. 31, 459 (1959)

- more recently: Truskett et al., Phys. Rev. E 58, 3082 (1998) (see slide 25)
(R) A. Rahman
Correlations in the Motion of Atoms in Liquid Argon

A. Phys. Rev. A136, 405 (1964)

- more recently: S. Ranganathan et al., Phys. Rev. A 45, 5793 (1992) (next slides)



A more recent case study (1972
2D with Lennard-Jones potential

liquid argon :

e =1.65 x 10721 ]
oc=34A



PHYSICAL REVIEW A

Liquid-to-glass transition in 2D L] fluids

VOLUME 45, NUMBER 8

Freezing transition of two-dimensional Lennard-Jones fluids

S. Ranganathan

15 APRIL 1992

Department of Mathematics and Computer Science, Royal Military College, Kingston, Ontario, Canada K7K 5LO

K. N. Pathak
Department of Physics, Panjab University, Chandigarh, India 160014

MD simulation with

128 particles confined in a square box with length

1.0

nmes = 6000; At* = 0.032

Temperature T*
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FIG. 1. Phase diagram for the two-dimensional Lennard-
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FIG. 3.
n*=0.81 at two temperatures.
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Pair-distribution function along the isochore
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S(qo) rapidly increases

T*=0.48

more evident shoulder:
. amorphization
] & n”

0.80

16 20

FIG. 4. Structure factor along the isotherm T7*=0.48 at
various densities. The curves are displaced for clarity.

S(g)=1+4+2mn foero(qr)[g(r)—l]dr

The structure factor S(qo) can amplify characteristic features of g(r)
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FIG. 1. Phase diagram for the two-dimensional Lennard-
Jones system. The crosses indicate the (n*,T*) states (0.75,
0.48) and (0.81, 0.58).
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More details:
in the course by E. Smargiassi,

“Classical simulations of many-body systems”
(Simulazioni classiche di sistemi a molti corpi)
Ist semester



