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10. Products of quasi–projective varieties, tensors and Grassmannians.

a) Products
Let Pn, Pm be projective spaces over the same field K. The cartesian product
Pn ⇥ Pm is simply a set: we want to define an injective map from Pn ⇥ Pm to a
suitable projective space, so that the image is a projective variety, which will be
identified with our product.

Let N = (n+1)(m+1)�1 and define � : Pn⇥Pm ! PN in the following way:
�([x0, . . . , xn], [y0, . . . , ym]) = [x0y0, x0y1, . . . , xiyj , . . . , xnym]. Using coordinates
wij , i = 0, . . . , n, j = 0, . . . ,m, in PN , � is defined by

{wij = xiyj , i = 0, . . . , n, j = 0, . . . ,m.

It is easy to observe that � is a well–defined map.
Let ⌃n,m (or simply ⌃) denote the image �(Pn ⇥ Pm).

10.1. Proposition. � is injective and ⌃n,m is a closed subset of PN
.

Proof. If �([x], [y]) = �([x0], [y0]), then there exists � 6= 0 such that x0
iy

0
j = �xiyj

for all i, j. In particular, if xh 6= 0, yk 6= 0, then also x0
h 6= 0, y0k 6= 0, and for all i

x0
i = �yk

y0
k
xi, so [x0, . . . , xn] = [x0

0, . . . , x
0
n]. Similarly for the second point.

To prove the second assertion, I claim: ⌃n,m is the closed set of equations:

(⇤){wijwhk = wikwhj , i, h = 0, . . . , n; j, k = 0 . . . ,m.

It is clear that if [wij ] 2 ⌃, then it satisfies (*). Conversely, assume that [wij ]
satisfies (*) and that w↵� 6= 0. Then

[w00, . . . , wij , . . . , wnm] = [w00w↵� , . . . , wijw↵� , . . . , wnmw↵� ] =

= [w0�w↵0, . . . , wi�w↵j , . . . , wn�w↵m] =

= �([w0� , . . . , wn� ], [w↵0, . . . , w↵m]).

⇤
� is called the Segre map and ⌃n,m the Segre variety or biprojective space. Note
that ⌃ is covered by the a�ne open subsets ⌃ij = ⌃ \ Wij , where Wij = PN \
VP (wij). Moreover ⌃ij = �(Ui ⇥ Vj), where Ui ⇥ Vj is naturally identified with
An+m.

10.2. Proposition. �|Ui⇥Vj : Ui ⇥ Vj = An+m ! ⌃ij
is an isomorphism of

varieties.

Proof. Assume by simplicity i = j = 0. Choose non–homogeneous coordinates on
U0: ui = xi/x0 and on V0: vj = yj/y0. So u1, . . . un, v1, . . . , vm are coordinates on
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U0 ⇥ V0. Take non–homogeneous coordinates also on W00: zij = wij/w00. Using
these coordinates we have:

�|Ui⇥Vj :(u1, . . . un, v1, . . . , vm) ! (v1, . . . , vm, u1, u1v1, . . . , u1vm, . . . , unvm)

||
([1, u1, . . . , un], [1, v1, . . . , vm])

i.e. �(u1, . . . , vm) = (z01, . . . , znm), where

8
<

:

zi0 = ui, if i = 1, . . . , n;
z0j = vj , if j = 1, . . . ,m;
zij = uivj = zi0z0j otherwise.

Hence �|U0⇥V0 is regular.
The inverse map takes (z01, . . . , znm) to (z10, . . . , zn0, z01, . . . , z0m), so it is also
regular. ⇤

10.3. Corollary. Pn ⇥ Pm
is irreducible and birational to Pn+m

.

Proof. The first assertion follows from Ex.5, Ch.6, considering the covering of
⌃ by the open subsets ⌃ij . Indeed, ⌃ij \ ⌃hk = �((Ui ⇥ Vj) \ (Uh ⇥ Vk)) =
�((Ui \ Uh)⇥ (Vj \ Vk)), and Ui \ Uh 6= ; 6= Vj \ Vk.

For the second assertion, by Theorem 9.15, it is enough to note that ⌃n,m

and Pn+m contain isomorphic open subsets, i.e. ⌃ij and An+m. ⇤
From now on, we shall identify Pn ⇥ Pm with ⌃n,m. If X ⇢ Pn, Y ⇢ Pm are

any quasi–projective varieties, then X ⇥ Y will be automatically identified with
�(X ⇥ Y ) ⇢ ⌃.

10.4. Proposition. If X and Y are projective varieties (resp. quasi–projective

varieties), then X ⇥ Y is projective (resp. quasi–projective).

Proof.

�(X ⇥ Y ) =
[

i,j

(�(X ⇥ Y ) \ ⌃ij) =

=
[

i,j

(�(X ⇥ Y ) \ (Ui ⇥ Vj)) =

=
[

i,j

(�((X \ Ui)⇥ (Y \ Vj))).

If X and Y are projective varieties, then X \Ui is closed in Ui and Y \Vj is closed
in Vj , so their product is closed in Ui ⇥ Vj ; since �|Ui⇥Vj is an isomorphism, also
�(X ⇥ Y ) \ ⌃ij is closed in ⌃ij , so �(X ⇥ Y ) is closed in ⌃, by Lemma 8.3.

If X,Y are quasi–projective, the proof is similar: X \ Ui is locally closed in
Ui and Y \ Vj is locally closed in Vj , so X \ Ui = Z \ Z 0, Y \ Vj = W \W 0, with
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Z,Z 0,W,W 0 closed. Therefore (Z\Z 0)⇥(W \W 0) = Z⇥W \((Z 0⇥W )[(Z⇥W 0)),
which is locally closed.

As for the irreducibility, see Exercise 10.1. ⇤

10.5. Example. P1 ⇥ P1

� : P1 ⇥ P1 ! P3 is given by {wij = xiyj , i = 0, 1, j = 0, 1. ⌃ has only one
non–trivial equation: w00w11 � w01w10, hence ⌃ is a quadric. The equation of ⌃
can be written as

(⇤)
����
w00 w01

w10 w11

���� = 0.

⌃ contains two families of special closed subsets parametrised by P1, i.e.

{�(P ⇥ P1)}P2P1 and {�(P1 ⇥Q)}Q2P1 .

If P [a0, a1], then �(P ⇥ P1) is given by the equations:

8
><

>:

w00 = a0y0
w01 = a0y1
w10 = a1y0
w11 = a1y1

hence it is a line. Cartesian equations of �(P ⇥ P1) are:

⇢
a1w00 � a0w10 = 0
a1w01 � a0w11 = 0;

they express the proportionality of the rows of the matrix (*) with coe�cients
[a1,�a0]. Similarly, �(P1 ⇥Q) is the line of equations

n a1w00 � a0w01 = 0
a1w10 � a0w11 = 0.

Hence ⌃ contains two families of lines, called the rulings of ⌃: two lines of the
same ruling are clearly disjoint while two lines of di↵erent rulings intersect at one
point (�(P,Q)). Conversely, through any point of ⌃ there pass two lines, one for
each ruling. Note that ⌃ is exactly the quadric surface of Example 9.17, d) and
that the projection of centre [1, 0, 0, 0] realizes an explicit birational map between
P1 ⇥ P1 and P2.

b) Tensors

The product of projective spaces has a coordinate-free description in terms of
tensors. Precisely, let Pn = P(V ) and Pm = P(W ). The tensor product V ⌦W of
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the vector spaces V,W is constructed as follows: let K(V ⇥W ) be the K-vector
space with basis V ⇥ W obtained as the set of formal finite linear combinations
of type ⌃iai(vi, wi) with ai 2 K. Let U be the vector subspace generated by all
elements of the form:

(v, w) + (v0, w)� (v + v0, w),
(v, w) + (v, w0)� (v, w + w0),
(�v, w)� �(v, w),
(v,�w)� (�(v, w),

with v, v0 2 V , w,w0 2 W , � 2 K. The tensor product is by definition the quotient
V ⌦W := K(V ⇥W )/U . The class of a pair (v, w) is denoted v⌦w, and called a
decomposable tensor. So V ⌦W is generated by the decomposable tensors; more
precisely, a general element ! 2 V ⌦W is of the form ⌃k

i=1vi ⌦ wi, with vi 2 V ,
wi 2 W . The minimum k such that an expression of this type exists is called the
tensor rank of !.

There is a natural bilinear map ⌦ : V ⇥W ! V ⌦W , such that (v, w) ! v⌦w.
It enjoys the following universal property: for any K-vector space Z with a bilinear
map f : V ⇥W ! Z, there exists a unique linear map f̄ : V ⌦W ! Z such that
f factorizes in the form f = f̄ � ⌦.

If dimV = n, dimW = m, and bases B = (e1, . . . , en),B0 = (e01, . . . , e
0
m)

are given, then (e1 ⌦ e01, . . . , ei ⌦ e0j , . . . en ⌦ e0m) is a basis of V ⌦ W : therefore
dimV ⌦W = nm.

If v = x1e1 + . . . xnen, w = y1e01 + . . . yme0m, then v ⌦ w = ⌃xiyjei ⌦ e0j .
So, passing to the projective spaces, the map ⌦ defines precisely the Segre map
� : P(V )⇥P(W ) ! P(V ⌦W ), ([v], [w]) ! [v⌦w]. Indeed in coordinates we have
([x0, . . . , xn], [y0, . . . , ym]) ! [w00, . . . , wnm], with wij = xiyj . The image of ⌦ is
the set of decomposable tensors, or rank one tensors.

The tensor product V⌦W has the same dimension, and is therefore isomorphic
to the vector space of n⇥m matrices. The coordinates wij can be interpreted as
the entries of such a n ⇥m matrix. The equations of the Segre variety ⌃n,m are
the 2 ⇥ 2 minors of the matrix, therefore ⌃n,m can be interpreted as the set of
matrices of rank one.

The construction of the tensor product can be iterated, to construct V1⌦V2⌦
. . .⌦ Vr. The following properties can easily be proved:

1. V1 ⌦ (V2 ⌦ V3) ' (V1 ⌦ V2)⌦ V3;
2. V ⌦W ' W ⌦ V ;
3. V ⇤ ⌦W ' Hom(V,W ), where f ⌦ w ! (V ! W : v ! f(v)w).

Also the Veronese morphism has a coordinate free description, in terms of
symmetric tensors. Given a vector space V , for any d � 0 the d-th symmetric
power of V , SdV or SymdV , is constructed as follows. We consider the tensor
product of d copies of V : V ⌦ . . .⌦ V = V ⌦d, and we consider its subvector space
U generated by tensors of the form v1 ⌦ . . . vd � v�(1) ⌦ . . .⌦ v�(d), where � varies
in the symmetric group on d elements Sd. Then by definition SdV := V ⌦d/U .
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The equivalence class [v1 ⌦ . . .⌦ vd] is denoted as a product v1 . . . vd.
There is a natural multilinear and symmetric map V ⇥ . . .⇥V = V d ! SdV ,

such that (v1, . . . , vd) ! v1 . . . vd, which enjoys the universal property. SdV is
generated by the products v1 . . . vd.

SdV can also be interpreted as a subspace of V ⌦d, by considering the following
map, that is an isomorphism to the image:

SdV ! V ⌦d, v1 . . . vd ! ⌃�2Sd

1

d!
v�(1) ⌦ . . .⌦ v�(d).

If B = (e1, . . . , en) is a basis of V , then it is easy to check that a basis of SdV is
formed by the monomials of degree d in e1, . . . , en; therefore dimSdV =

�
n+d�1

d

�
.

For instance, in S2V the product v1v2 can be identified with 1
2 (v1⌦v2+v2⌦v1).

The symmetric algebra of V is SV := �d�0SdV = K�V �S2V �. . .. An inner
product can be naturally defined to give it the structure of a K-algebra, which
results to be isomorphic to the polynomial ring in n variables, where n = dimV .

If charK = 0 the Veronese morphism can be interpreted in the following way:

vn,d : P(V ) ! P(SdV ), [v] = [x0e0 + . . . xnen] ! [vd] = [(x0e0 + . . .+ xnen)
d].

Moreover S2V can be interpreted as space of the symmetric d ⇥ d matrices,
and the Veronese variety Vn,2 as the subset of the symmetric matrices of rank one.

In a similar way it is possible to define the exterior powers of the vector space
V . One defines the d-th exterior power ^dV as the quotient V ⌦d/⇤, where ⇤ is
generated by the tensors of the form v1⌦ . . .⌦ vi⌦ . . .⌦ vj ⌦ . . .⌦ vd, with vi = vj
for some i 6= j. The following notation is used: [v1 ⌦ . . .⌦ vd] = v1 ^ . . . ^ vd.

There is a natural multilinear alternating map V ⇥ . . . ⇥ V = V d ! ^dV ,
that enjoys the universal property. Given a basis of V as before, a basis of ^dV
is formed by the tensors ei1 ^ . . . ^ eid , with 1  i1 < . . . < id  n. Therefore
dim^dV =

�
n
d

�
. The exterior algebra of V is the following direct sum: ^V =

�d�0 ^d V = K � V � ^2V � . . .. To define an inner product that gives it the
structure of algebra we can proceed as follows.

Step 1. Fixed v1, . . . , vq 2 V , define f : V d ! ^d+pV posing f(x1, . . . , xd) =
x1 ^ . . . ^ xd ^ v1 ^ . . . ^ vq. Since f results to be multilinear and alternating,
by the universal property we get a factorization of f through ^dV , which gives a
linear map f̄ : ^dV ! ^d+pV , extending f . For any ! 2 ^dV , we denote f̄(!) by
! ^ v1 ^ . . . ^ vd.

Step 2. Fixed ! 2 ^dV , consider the map g : V p ! ^d+pV such that
g(y1, . . . , yp) = ! ^ y1 ^ . . . ^ yp: it is multilinear and alternating, therefore it
factorizes through ^pV and we get a linear map ḡ : ^pV ! ^d+pV , extending g.
We denote ḡ(�) := ! ^ �.
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Step 3. For any d, p � 0 we have got a map ^ : ^dV ⇥ ^pV ! ^d+pV , that
results to be bilinear, and extends to an inner product ^ : (^V ) ⇥ (^V ) ! ^V ,
which gives ^V the required structure of algebra.

10.6. Proposition. Let V be a vector space of dimension n.

(i) Vectors v1, . . . , vp 2 V are linearly dependent if and only if v1^. . .^vp = 0.

(ii) Let v 2 V be a non-zero vector, and ! 2 ^pV . Then !^v = 0 if and only

if there exists � 2 ^p�1V such that ! = � ^ v. In this case we say that v divides

!.

Proof. The proof of (i) is standard. If ! = �^v, then !^v = (�^v)^v = �^(v^
v) = 0. Conversely, if ! ^ v = 0, v 6= 0, we choose a basis of V , B = (e1, . . . , en)
with e1 = v. Write ! = ⌃i1<...<ipai1...ipei1 ^ . . . ^ eip . Then 0 = ! ^ e1 =
⌃i1<...<ip(+�)ai1...ipe1^ei1 ^ . . .^eip . If i1 = 1, the corresponding summand does
not appear in this sum, so it remains a linear combination of linearly independent
tensors, which implies ai1...ip = 0 every time i1 > 1. Therefore ! = e1 ^ � for a
suitable �.

⇤

10.7. Proposition. Let ! 6= 0 be an element of ^pV . Then ! is totally

decomposable if and only if the subspace of V : W = {v 2 V | v divides !} has

dimension p.

Proof. If ! = x1^ . . .^xp 6= 0, then x1, . . . , xp are linearly independent and belong
to W . So we can extend them to a basis of V adding vectors xp+1, . . . , xn. If v 2
W , v = ↵1x1+. . .+↵nxn, and v divides !, then !^v = 0, i.e. x1^. . .^xn^(↵1x1+
. . .+↵nxn) = 0. This implies ↵p+1x1 ^ . . .^xp ^xp+1+ . . .+↵nx1 ^ . . .^xp ^xn,
therefore ↵p+1 = . . . = ↵n = 0, so v 2 hx1, . . . , xni.

Conversely, if (x1, . . . , xp) is a basis of W , we can complete it to a basis of V
and write ! = ⌃ai1...ipxi1 ^ . . .^xip . But x1 divides !, so !^x1 = 0. Replacing !
with its explicit expression, we obtain that ai1...ip = 0 if 1 /2 {i1, . . . , ip}. Repeating
this argument for x2, . . . , xp, it remains ! = a1...px1 ^ . . . ^ xp. ⇤

With explicit computations, one can prove the following proposition.

10.8. Proposition. Let V be a vector space with dimV = n. Let B = (e1, . . . , en)
be a basis of V and v1, . . . , vn be any vectors. Then v1^. . .^vn = det(A)e1^. . .^en,
where A is the matrix of the coordinates of the vectors v1, . . . , vn with respect to

B.

10.9. Corollary. Let v1, . . . , vp 2 V , with vj = ⌃aijej, j = 1, . . . , p. Then v1 ^
. . .^vp = ⌃i1<...<ipai1...ipei1^ . . .^eip , with ai1...ip = det(Ai1...ip), the determinant

of the p⇥ p submatrix of A containing the columns of indices i1, . . . , ip.
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c) Grassmannians
Let V be a vector space of dimension n, and r be a positive integer, 1  r  n.

The Grassmannian G(r, V ) is the set of the subspaces of V of dimension r. It can
be denoted also G(r, n).

There is a natural bijection between G(r, V ) and the set of the projective
subspaces of P(V ) of dimension r � 1, denoted G(r � 1,P(V )) or G(r � 1, n� 1).
Let W 2 G(r, V ); if (w1, . . . , wr) and (x1, . . . , xr) are two bases of W , then w1 ^
. . .^wr = �x1^xr, where � 2 K is the determinant of the matrix of the change of
basis. Therefore W uniquely determines an element of ^rV up to proportionality.
This allows to define a map, called the Plücker map,  : G(r, V ) ! P(^rV ), such
that  (W ) = [w1 ^ . . . wr].

10.10. Proposition. The Plücker map is injective.

Proof. Assume  (W ) =  (W 0), where W,W 0 are subspaces of V of dimension r
with bases (x1, . . . , xr) and (y1, . . . , yr). So there exists � 6= 0 in K such that
x1 ^ . . . ^ xr = �y1 ^ . . . ^ yr. This implies x1 ^ . . . ^ xr ^ yi = 0 for all i, so yi is
linearly dependent from x1, . . . , xr, so yi 2 W . Therefore W 0 ⇢ W . The reverse
inclusion is similar. ⇤

In coordinates,  (W ) is given by the minors of maximal order r of the matrix
of the coordinates of the vectors of a basis of W , with respect to a fixed basis of
V .

10.11. Examples.
(i) r = n� 1: ^n�1V has dimension n, so it is isomorphic to the dual vector

space V ⇤, associating to e1 ^ . . .^ êk ^ . . .^ en the linear form e⇤k of the dual basis.
In this case the Plücker map is surjective, so G(n� 1, n) ' V ⇤.

(ii) n = 4, r = 2: G(2, 4) or G(1, 3), the Grassmannian of lines of P3. In
this case  : G(1, 3) ! P(^2V ) ' P5. Let (e0, e1, e2, e3) be a basis of V . If
` is the line of P3 obtained by projectivisation of a subspace L ⇢ V of dimen-
sion 2, let L = hx, yi; then  (`) = [x ^ y]. Its Plücker coordinates are denoted
p01, p02, p03, p12, p13, p23, and pij = xiyj � xjyi, the 2⇥ 2 minors of the matrix

✓
x0 x1 x2 x3

y0 y1 y2 y3

◆
.

This time  is not surjective; its image is formed by the totally decomposable
tensors. They satisfy the equation of degree 2: p01p23�p02p13+p03p12 = 0, which
represents a quadric of maximal rank in P5, called the Klein quadric. The fact
that this equation is satisfied can be seen by considering the 4⇥ 4 matrix

0

B@

x0 x1 x2 x3

y0 y1 y2 y3
x0 x1 x2 x3

y0 y1 y2 y3

1

CA :
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its determinant is precisely the above equation.
For instance the line of equations x2 = x3 = 0, obtained projectivising the

subspace he0, e1i, has Plücker coordinates [1, 0, 0, 0, 0, 0].
In general we can prove the following theorem.

10.12. Theorem. The image of the Plücker map is a closed subset in P(^rV ).

Proof. The image of the Plücker map is the set of the proportionality classes of
totally decomposable tensors. By Proposition 10.7, a tensor ! 2 ^rV is totally
decomposable if and only if the subspace W = {v 2 V | v divides !} has dimension
r. We consider the linear map � : V ! ^r+1V , such that �(v) = !^v. The kernel
of � is equal toW . So ! is totally decomposable if and only if the rank of � is n�r.
Fixed a basis B = (e1, . . . , en) of V , we write ! = ⌃i1<...<irai1...irei1 ^ . . . ^ eir .
We then consider the basis of ^r+1V associated to B and we construct the matrix
A of � with respect to these bases: its minors of order n� p+ 1 are equations of
the image of  , and they are polynomials in the coordinates ai1...ir of !. ⇤

From now on we shall identify the Grassmannian with the projective algebraic
set that is its image in the Plücker map. The equations obtained in Theorem 10.12
are nevertheless not generators for the ideal of the Grassmannian. For instance,
in the case n = 4, r = 2, let ! = p01e0 ^ e1 + p02e0 ^ e2 + . . .. Then:

�(e0) = ! ^ e0 = p12e0 ^ e1 ^ e2 + p13e0 ^ e1 ^ e3 + p23e0 ^ e2 ^ e3;
�(e1) = ! ^ e1 = �p02e0 ^ e1 ^ e2 � p03e0 ^ e1 ^ e3 + p23e1 ^ e2 ^ e3;
�(e2) = ! ^ e2 = p01e0 ^ e1 ^ e2 � p03e0 ^ e2 ^ e3 + p13e1 ^ e2 ^ e3;
�(e3) = ! ^ e3 = p01e0 ^ e1 ^ e3 + p02e0 ^ e2 ^ e3 + p12e1 ^ e2 ^ e3.
So the matrix is 0

B@

p12 �p02 p01 0
p13 �p03 0 p01
p23 0 �p03 p02
0 p23 p13 p12

1

CA .

Its 3 ⇥ 3 minors are equations defining G(1, 3), but the radical of the ideal
generated by these minors is in fact (p01p23 � p02p13 + p03p12).

To find equations for the Grassmannian and to prove that it is irreducible, it is
convenient to give an explicit open covering with a�ne open subsets. In P(^rV ),
let Ui1...ir be the a�ne open subset where the Plücker coordinate pi1...ir 6= 0.
For semplicity assume i1 = 1, i2 = 2, . . . , ir = r, and put U = U1...r. If W 2
G(r, n) \ U , and w1, . . . , wr is a basis of W , then the first minor of the matrix
M , of the coordinates of w1, . . . , wr with respect to a fixed basis of V , is non-
degenerate. So we can choose a new basis of W such that M is of the form

M =

0

B@

1 0 . . . 0 ↵1,r+1 . . . ↵1,n

0 1 . . . 0 ↵2,r+1 . . . ↵2,n

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 ↵r,r+1 . . . ↵r,n

1

CA .
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Conversely, any matrix of this form defines a subspace W 2 G(r, n) \U . So there
is a bijection between G(r, n) \ U and Kr(n�r), i.e. the a�ne space of dimension
r(n� r). The coordinates of W result to be equal to 1 and all minors of all orders
of the submatrix of the last n� r columns of M . Therefore they are expressed as
polynomials in the r(n�r) coordinates elements of M . This shows that G(r, n)\U
is an a�ne rational subvariety of U . By homogenising the equations obtained in
this way, one gets equations for G(r, n).

In the case n = 4, r = 2, the matrix M becomes

M =

✓
1 0 ↵13 ↵14

0 1 ↵23 ↵24

◆
.

One gets 1 = p01,↵23 = p02,↵24 = p03,�↵13 = p12,�↵14 = p13,↵13↵24�↵23↵14 =
p23. If we make the substitutions and homogenise the last equation with respect
to p01, we find the equation of the Klein quadric.

We remark that G(r, n) \ Ui1...ir is the set of the subspaces W which are
complementar to the subspace of equations xi1 = . . . = xir = 0.

Concluding, the projective algebraic set G(r, n) has an a�ne open covering
with irreducible varieties isomorphic to Ar(n�r), and it is easy to check that they
have two by two non-empty intersection. Using Ex. 5 of §6, we deduce that G(r, n)
is a projective variety, of dimension r(n� r), and it is rational.

In the special case n � 4, r = 2, using the Plücker coordinates [. . . , pij , . . .], the
equations of the Grassmannian G(2, n) are of the form pijphk�pihpjk+pikpjh = 0,
for any i < j < h < k.

Also in the case of G(2, n), as for Pn⇥Pm and Vn,2, there is an interpretation
in terms of matrices. Given a tensor in ^2V with coordinates [pij ], we can consider
the skew-symmetric n⇥n matrix whose term of position i, j is indeed pij , with the
conditions pii = 0 and pji = �pij . In this way we can construct an isomorphism
between ^2V and the vector space of skew-symmetric matrices of order n.

From tA = �A, it follows det(A) = (�1)n det(A). If n is odd, this implies
det(A) = 0. If n is even, one can prove that det(A) is a square. For instance if

n = 2, and A =

✓
0 a
�a 0

◆
, then det(A) = a2.

If n = 4, and P =

0

B@

0 p12 p13 p14
�p12 0 p23 p24
�p13 �p23 0 p34
�p14 �p24 �p34 0

1

CA , then det(P ) = (p12p34 �

p13p24 + p14p23)2.
In general, for a skew-symmetric matrix A of even order 2n, one defines the

pfa�an of A, pf(A), in one of the following equivalent ways:

(i) by recursion: if n = 1, pf

✓
0 a
�a 0

◆
= a2; if n > 1, one defines pf(A) =
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⌃2n
i=2(�1)ia1iPf(A1i), where A1i is the matrix obtained from A removing the rows

and the columns of indices 1 and i. Then one verifies that pf(A)2 = det(A).

(ii) Given the matrix A, one considers the tensor ! = ⌃2n
i,j=1aijei ^ ej 2 K2n.

Then one defines the pfa�an as the unique constant such that pf(A)e1^. . .^e2n =
1
n!! ^ . . . ^ !.

For a skew-symmetric matrix of odd order, one defines the pfa�an to be 0.

10.13. Proposition. A 2-tensor ! 2 ^2V is totally decomposable if and only if

! ^ ! = 0.

Proof. If ! is decomposable, the conclusion easily follows. Conversely, if ! =
⌃2n

i,j=1aijei^ej and !^! = 0, then the pfa�ans of the principal minors of order 4
of the matrix A corresponding to ! are all 0, therefore from definition (ii) it follows
that the pfa�ans of the principal minors of all orders are 0, and also det(A) = 0.
In conclusion A has rank 2. Then one checks that ! is the ^ product of two vectors
corresponding to two linearly independent rows of A. For instance, if a12 6= 0, then
! = (a12e2 + . . .+ a1nen) ^ (�a12e1 + a23e3 + . . .+ a2nen). ⇤

The equations of G(2, n) are the pfa�ans of the principal minors of order 4
of the matrix P . They are all zero if and only if the rank of P is 2. Therefore
the points of the Grassmannian G(2, n), for any n, can be interpreted as skew-
symmetric matrices of order n and rank 2.

The subvarieties of the Grassmannian G(r, n) correspond to subvarieties of Pn

covered by linear spaces of dimension r. Conversely, any subvariety of Pn covered
by linear spaces of dimension r gives rise to a subvariety of the Grassmannian.

10.14. Examples. 1. Pencils of lines. A pencil of lines in Pn is the set of lines
passing through a fixed point O and contained in a 2-plane ⇡ such that O 2 ⇡.
Assume that O has coordinates [y0, . . . , yn], and fix two points A,B 2 ⇡, di↵erent
from O. Let A = [a0, . . . , an], B[b0, . . . , bn]. Then a general line of the pencil is
generated by O and by a point of coordinates [. . . ,�ai + µbi, . . .]. Therefore the
Plücker coordinates of a general line of the pencil are pij = yi(�aj+µbj)�yj(�ai+
µbi) = �qij + µq0ij , where qij , q0ij are the Plücker coordinates of the lines OA and
OB respectively. So the lines of the pencil are represented in the Grassmannian
by the points of a line. Conversely one can check that any line contained in a
Grassmannian of lines represents the lines of a pencil.

2. Lines a smooth quadric surface. Let ⌃ : x0x3 � x1x2 = det

✓
x0 x1

x2 x3

◆
= 0

be the Segre quadric in P3. A line of the first ruling of ⌃ is characterised by a

constant ratio of the rows of the matrix

✓
x0 x1

x2 x3

◆
. Therefore it can be generated

by two points with coordinates [x0, x1, 0, 0], [0, 0, x0, x1]. The Plücker coordinates
of such a line are [0, x2

0, x0x1, x0x1, x2
1, 0]. This describes a conic contained in
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G(1, 3). Similarly, the lines of the second ruling describe the points of another
conic, indeed the coordinates are [x2

0, 0, x0x2,�x0x2, 0, x2
2]. These two conics are

disjoint and contained in disjoint planes.
3. One can prove that G(1, 3) contains two families of planes, and no linear

space of dimension > 2. The planes of one family correspond to stars of lines
in P3 (lines of P3 through a fixed point), while the planes of the second family
correspond to the lines contained in the planes of P3. The geometry of the lines
in P3 translates to give a decription of the geometry of the planes contained in
G(1, 3). Since on an algebraically closed field of characteristic 6= 2 two quadric
hypersurfaces are projectively equivalent if and only if they have the same rank,
one obtains a description of the geometry of all quadrics of maximal rank in P5.

Exercises to §10.
1. Using Ex. 5 of §6, prove that, if X ⇢ Pn, Y ⇢ Pm are irreducible projective

varieties, then X ⇥ Y is irreducible.

2. (*) Let X ⇢ An, Y ⇢ An. Show that X \ Y ' (X ⇥ Y )\�An , where �An

is the diagonal subvariety.

3. Let L,M,N be the following lines in P3:

L : x0 = x1 = 0,M : x2 = x3 = 0, N : x0 � x2 = x1 � x3 = 0.

Let X be the union of lines meeting L,M and N : write equations for X and
describe it: is it a projective variety? If yes, of what dimension and degree?

4. Let X,Y be quasi–projective varieties, identify X ⇥ Y with its image via
the Segre map. Check that the two projection maps X ⇥Y

p1! X, X ⇥Y
p2! Y are

regular. (Hint: use the open covering of the Segre variety by the ⌃ij ’s.)

11. The dimension of an intersection.

Our aim in this section is to prove the following theorem:

11.1. Theorem. Let K be an algebraically closed field. Let X,Y ⇢ Pn
be

quasi–projective varieties. Assume that X \ Y 6= ;. Then if Z is any irreducible

component of X \ Y , then dimZ � dimX + dimY � n.
The proof uses in an essential way the Krull’s principal ideal theorem (see for

instance Atiyah–MacDonald [1]).
The proof of Theorem 11.1 will be divided in three steps. Note first that we

can assume that X \Y intersects U0 ' An, so, possibly after restricting X and Y ,
we may work with closed subsets of the a�ne space. Put r = dimX, s = dimY .

Step 1. Assume that X = V (F ) is an irreducible hypersurface, with F ir-
reducible polynomial of K[x1, . . . , xn]. The irreducible components of X \ Y cor-
respond, by the Nullstellensatz, to the minimal prime ideals containing I(X \ Y )
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in K[x1, . . . , xn]. Let me recall that I(X \ Y )=
p

I(X) + I(Y )=
phI(Y ), F i. So

those prime ideals are the minimal ones over hI(Y ), F i. They correspond bijec-
tively to minimal prime ideals containing hfi in O(Y ), where f is the regular
function on Y defined by F . We distinguish two cases:

- if Y ⇢ X = V (F ), then f = 0 and Y \X = Y ; s = dimY > r + s � n =
(n� 1) + s� n. So the theorem is true.

- if Y 6⇢ X, then f 6= 0, moreover f is not invertible, otherwise X \ Y = ;:
hence the minimal prime ideals over hfi in O(Y ) have all height one, so for all Z,
irreducible component of X \ Y , dimZ = dimY � 1 = r + s� n (Theorem 7.7).

Step 2. Assume that I(X) is generated by n� r polynomials (where n� r is
the codimension of X): I(X) = hF1, . . . , Fn�ri. Then we can argue by induction
on n � r: we first intersect Y with V (F1), whose irreducible components are
all hypersurfaces, and apply Step 1: all irreducible components of Y \ V (F1)
have dimension either s or s � 1. Then we intersect each of these components
with V (F2), and so on. We conclude that every irreducible component Z has
dimZ � dimY � (n� r) = r + s� n.

Step 3. We use the isomorphism  : X \Y ' (X⇥Y )\�An (see Ex.2, §10).
Note that X ⇥ Y is irreducible by Proposition 6.11.  preserves the irreducible
components and their dimensions, so we consider instead of X and Y , the algebraic
sets X ⇥ Y and �An , contained in A2n. We have dimX ⇥ Y = r+ s (Proposition
7.10). �An is a linear subspace of A2n, so it satisfies the assumption of Step 2;
indeed it has dimension n in A2n and is defined by n linear equations. Hence, for
all Z we have: dimZ � (r + s) + n� 2n = r + s� n. ⇤

The above theorem can be seen as a generalization of the Grassmann relation
for linear subspaces. It is not an existence theorem, because it says nothing about
X \ Y being non–empty. But for projective varieties, the following more precise
version of the theorem holds:

11.2. Theorem. Let X,Y ⇢ Pn
be projective varieties of dimensions r, s. If

r + s� n � 0, then X \ Y 6= ;.
Proof. Let C(X), C(Y ) be the a�ne cones associated to X and Y . Then C(X) \
C(Y ) is certainly non–empty, because it contains the origin O(0, 0, . . . , 0). Assume
we know that C(X) has dimension r + 1 and C(Y ) has dimension s + 1: then
by Theorem 11.1 all irreducible components Z of C(X) \ C(Y ) have dimension
� (r+1)+ (s+1)� (n+1) = r+ s�n+1 � 1, hence Z contains points di↵erent
from O. These points give rise to points of Pn belonging to X \ Y . It remains to
show:

11.3. Proposition. Let Y ⇢ Pn
be a projective variety.

Then dimY = dimC(Y ) � 1. If S(Y ) denotes the homogeneous coordinate

ring, hence also dimY = dimS(Y )� 1.
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Proof. Let p : An+1 \ {O} ! Pn be the canonical morphism. Let us recall that
C(Y ) = p�1(Y ) [ {O}. Assume that Y0 := Y \U0 6= ; and consider also C(Y0) =
p�1(Y0) [ {O}. Then we have:

C(Y0) = {(�,�a1, . . . ,�an) | � 2 K, (a1, . . . , an) 2 Y0}.

So we can define a birational map between C(Y0) and Y0 ⇥ A1 as follows:

(y0, y1, . . . , yn) 2 C(Y0) ! ((y1/y0, . . . , yn/y0), y0) 2 Y0 ⇥ A1,

((a1, . . . , an),�) 2 Y0 ⇥ A1 ! (�,�a1, . . . ,�an) 2 C(Y0).

Therefore dimC(Y0) = dim(Y0 ⇥ A1) = dimY0 + 1. To conclude, it is enough to
remark that dimY = dimY0 and dimC(Y ) = dimC(Y0) = dimS(Y ). ⇤

We observe that also C(Y ) and Y ⇥ P1 are birationally equivalent.

11.4. Corollaries.
1. If X,Y ⇢ P2

are projective curves over an algebraically closed field, then

X \ Y 6= ;.
2. P1 ⇥ P1

is not isomorphic to P2
.

Proof. 1. is a straightforward application of Theorem 11.2. To prove 2., assume
by contradiction that � : P1 ⇥ P1 ! P2 is an isomorphism. If L,L0 are skew lines
on P1 ⇥ P1, then �(L), �(L0) are rational disjoint curves of P2, which contradicts
1.

If X,Y ⇢ Pn are varieties of dimensions r, s, then r + s � n is called the
expected dimension of X \ Y . If all irreducible components Z of X \ Y have the
expected dimension, then we say that the intersection X \ Y is proper or that X
and Y intersect properly.

For example, two plane projective curves X,Y intersect properly if they don’t
have any common irreducible component. In this case, it is possible to predict the
number of points of intersections. Precisely, it is possible to associate to every
point P 2 X \ Y a number i(P ), called the multiplicity of intersection of X and

Y at P , in such a way that
P

P2X\Y i(P ) = dd0, where d is the degree of X and
d0 is the degree of Y . This result is known as Theorem of Bézout, and is the first
result of the branch of algebraic geometry called Intersection Theory. For a proof
of the Theorem of Bézout, see for instance the classical book of Walker [8], or the
book of Fulton on Algebraic Curves [5].

Let X be a closed subvariety of Pn (resp. of An) of codimension r. X is called
a complete intersection if Ih(X) (resp. I(X)) is generated by r polynomials.

Hence, ifX is a complete intersection of codimension r, thenX is certainly the
intersection of r hypersurfaces. Conversely, if X is intersection of r hypersurfaces,
then, by Theorem 11.1, using induction, we deduce that dimX � n � r; even
assuming equality, we cannot conclude that X is a complete intersection, but
simply that I(X) is the radical of an ideal generated by r polynomials.
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11.5. Example. Let X ⇢ P3 be the skew cubic. The homogeneous ideal of X is
generated by the three polynomials F1, F2, F3, the 2⇥ 2–minors of the matrix

M =

✓
x0 x1 x2

x1 x2 x3

◆
,

which are linearly independent polynomials of degree 2. Note that Ih(X) does not
contain any linear polynomial, because X is not contained in any hyperplane, and
that the homogeneous component of minimal degree 2 of Ih(X) is a vector space
of dimension 3. Hence Ih(X) cannot be generated by two polynomials, i.e. X is
not a complete intersection.

Nevertheless, X is the intersection of the surfaces VP (F ), VP (G), where

F = F1 =

����
x0 x1

x1 x2

���� and G =

������

x0 x1 x2

x1 x2 x3

x2 x3 x0

������
.

Clearly F,G 2 Ih(X) so X ⇢ VP (F ) \ VP (G). Conversely, observe that G =
x0F � x3(x0x3 � x1x2) + x2(x1x3 � x2

2). If P [x0, . . . , x3] 2 VP (F ) \ VP (G), then
P is a zero of x0x2

3 � 2x1x2x3 + x3
2, and therefore also of

x2(x0x
2
3 � 2x1x2x3 + x3

2) = x2
1x

2
3 � 2x1x

2
2x3 + x4

2 = (x1x3 � x2
2)

2 = F 2
3 .

Hence P is a zero also of F3 = x1x3�x2
2. So P annihilates x3(x0x3�x1x2) = x3F2.

If P satisfies the equation x3 = 0, then it satisfies also x2 = 0 and x1 = 0, therefore
P = [1, 0, 0, 0] 2 X. If x3 6= 0, then P 2 VP (F1, F2, F3) = X.

The geometric description of this phenomenon is that the skew cubic X is the
set-theoretic intersection of a quadric and a cubic, which are tangent along X, so
their intersection is X counted with multiplicity 2.

This example motivates the following definition: X is a set–theoretic complete

intersection if codimX = r and the ideal ofX is the radical of an ideal generated by
r polynomials. It is an open problem if all irreducible curves of P3 are set–theoretic
complete intersections. For more details, see [4].

Exercises to §11.
1. Let X ⇢ P2 be the union of three points not lying on a line. Prove that

the homogeneous ideal of X cannot be generated by two polynomials.

12. Complete varieties.

We work over an algebraically closed field K.
12.1. Definition. Let X be a quasi–projective variety. X is complete if, for
any quasi–projective variety Y , the natural projection on the second factor p2 :
X ⇥ Y ! Y is a closed map. (Note that both projections p1, p2 are morphisms:
see Exercise 4 to §10.)
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Example. The a�ne line A1 is not complete: let X = Y = A1, p2 :
A1 ⇥ A1 = A2 ! A1 is the map such that (x1, x2) ! x2. Then Z := V (x1x2 � 1)
is closed in A2 but p2(Z) = A1 \ {O} is not closed.

12.2. Proposition. (i) If f : X ! Y is a regular map and X is complete, then

f(X) is a closed complete subvariety of Y .

(ii) If X is complete, then all closed subvarieties of X are complete.

Proof. (i) Let �f ⇢ X⇥Y be the graph of f : �f = {(x, f(x)) | x 2 X}. It is clear
that f(X) = p2(�f ), so to prove that f(X) is closed it is enough to check that �f is
closed inX⇥Y . Let us consider the diagonal of Y : �Y = {(y, y) | y 2 Y } ⇢ Y ⇥Y .
If Y ⇢ Pn, then�Y = �Pn\(Y ⇥Y ), so it is closed because�Pn is the closed subset
defined in ⌃n,n by the equations wij � wji = 0, i, j = 0, . . . , n. There is a natural
map f ⇥1Y : X⇥Y ! Y ⇥Y , (x, y) ! (f(x), y), such that (f ⇥1Y )�1(�Y ) = �f .
It is easy to see that f ⇥ 1Y is regular, so �f is closed, so also f(X) is closed.

Let now Z be any variety and consider p2 : f(X) ⇥ Z ! Z and the regular
map f ⇥ 1Z : X ⇥ Z ! f(X)⇥ Z. There is a commutative diagram:

X ⇥ Z
p0
2�! Z

# f⇥1Z % p2

f(X)⇥ Z

If T ⇢ f(X)⇥ Z, then (f ⇥ 1Z)�1(T ) is closed and p2(T ) = p02((f ⇥ 1Z)�1(T )) is
closed because X is complete. We conclude that f(X) is complete.

(ii) Let T ⇢ X be a closed subvariety and Y be any variety. We have to prove
that p2 : T ⇥ Y ! Y is closed. If Z ⇢ T ⇥ Y is closed, then Z is closed also in
X ⇥ Y , hence p2(Z) is closed because X is complete. ⇤

12.3. Corollaries.
1. If X is a complete variety, then O(X) ' K.

2. If X is an a�ne complete variety, then X is a point.

Proof. 1. If f 2 O(X), f can be interpreted as a regular map f : X ! A1. By
Proposition 12.2, (i), f(X) is a closed complete subvariety of A1, which is not
complete. Hence f(X) has dimension < 1 and is irreducible, hence it is a point,
so f 2 K.

2. By 1., O(X) ' K. But O(X) ' K[x1, . . . , xn]/I(X), hence I(X) is
maximal. By the Nullstellensatz, X is a point. ⇤

12.4. Theorem. Let X be a projective variety. Then X is complete.

Proof. (sketch, see Šafarevič [7].)
1. It is enough to prove that p2 : Pn ⇥ Am ! Am is closed, for all n,m. This

can be observed by using the local character of closedness and the a�ne open
coverings of quasi–projective varieties.



Introduction to algebraic geometry 71

2. If x0, . . . , xn are homogeneous coordinates on Pn and y1, . . . , ym are coor-
dinates on Am, then any closed subvariety of Pn ⇥Am can be characterised as the
set of common zeroes of a set of polynomials in the variables x0, . . . , xn, y1, . . . , ym,
homogeneous in the first group of variables x0, . . . , xn.

3. Let Z ⇢ Pn ⇥ Am be closed. Then Z is the set of solutions of a system of
equations

{Gi(x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , t

where Gi is homogeneous in the x’s. A point P (y1, . . . , ym) is in p2(Z) if and only
if the system

{Gi(x0, . . . , xn; y0, . . . , ym) = 0, i = 1, . . . , t

has a solution in Pn, i.e. if the ideal of K[x0, . . . , xn] generated by G1(x; y),. . . ,
Gt(x; y) has at least one zero in Pn. Hence

p2(Z) = {(y1, . . . , ym)| 8 d � 1 hG1(x; y), . . . , Gt(x; y)i 6� K[x0, . . . , xn]d} =

=
\

d�1

{(y1, . . . , ym)| hG1(x; y), . . . , Gt(x; y)i 6� K[x0, . . . , xn]d}.

Let {M↵}↵=1,...,(n+d
d ) be the set of the monomials of degree d in K[x0, . . . , xn]; let

di = deg Gi(x; y); let {N�
i } be the set of the monomials of degree d�di; let finally

Td = {(y1, . . . , ym)| hG1(x; y), . . . , Gt(x; y)i 6� K[x0, . . . , xn]d}.
Then P (y1, . . . , ym) 62 Td if and only if M↵ =

P
i Gi(x; y)Fi,↵(x0, . . . , xn), for

all ↵ and for suitable polynomials Fi,↵ homogeneous of degree d� di. So P 62 Td

if and only if, for all index ↵, M↵ is a linear combination of the polynomials
{Gi(x; y)N

�
i }, i.e. the matrix A of the coe�cients of the polynomials Gi(x; y)N

�
i

with respect to the basis {M↵} has maximal rank
�
n+d
d

�
. So Td is the set of zeroes

of the minors of a fixed order of the matrix A, hence it is closed. ⇤

12.5. Corollary. Let X be a projective variety. Then O(X) ' K.

12.6. Corollary. Let X be a projective variety, � : X ! Y ⇢ Pn
be any regular

map. Then �(X) is a projective variety. In particular, if X ' Y , then Y is

projective.

13. The tangent space.

We define the tangent space TX,p at a point P of an a�ne variety X as the union
of the lines passing through P and touching X at P . Then we will find a “local”
characterization of TX,p, only depending on the local ring OX,p: this will allow to
define the tangent space at a point of any quasi–projective variety.

Assume first that X ⇢ An is closed and P = (0, . . . , 0). Let L be a line
through P : if A(a1, . . . , an) is another point of L, then a general point of L has


