
Irregular Waves

Methods of Analysis:

  1) Spectral Methods: based on Fourier Transform of
the sea surface

  2) Wave-by-wave (Wave Train) Analysis: more
simplified analysis of the time history of the sea state
at a point



Wave-by-Wave (Wave Train):

Identify local maxima and minima.

Section the record into discrete waves.

Waves are determined by zero up crossings or down crossings.



Definition of Wave Parameters:

Hc, Tc: Characteristic wave height and period.

Hmax, Hmean: Maximum and mean wave heights

Hrms: root-mean-square height.

Hs: significant wave height, average of the 1/3 largest waves in the record.
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Wave spectra and statistics 
 
A wave spectrum is the distribution of wave energy as a 
function of frequency.  It describes the total energy transmitted 
by a wave-field at a given time.  Formally – 
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where ω is the frequency of the waves (defined previously) and 

( )τR  is the autocorrelation function of the water-surface time 
series –  
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where τ is the time lag between samples.  
 
 
Wave spectra are strongly influenced by the wave-producing 
wind and its statistical/spatial characteristics.  The spatial 
variability is primarily encapsulated into the fetch.  Fetch is the 
length over which the wind blows to generate the waves.  
Virtually all models assume a constant wind speed over the 
fetch.  Unfortunately, this is rarely the case. 
 
 
Stochastic wave distributions 
 
Another way to assess wave conditions is to describe the water 
depth (or the perturbation from the mean water level, η) at one 



point for all time.  To do so, the mathematics of probability 
density functions becomes important.   
 
The most common distribution used is the Rayleigh distribution: 
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where η is the perturbation from the mean water surface and σ is 
the standard deviation of water surface.  The standard deviation 
is defined by 
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Another popular model is the Weibull distribution.  The Weibull 
distribution was developed primarily to describe water flow (and 
stage) in rivers.  It is 
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where α and β are constants to be determined.  Massel uses 

75.0=α  and 75.0=β  for shallow-water situations. 
 
Occasionally, a log-normal distribution is also assumed. 
 
 

renzomosetti
Nota
exp(-



 
Common wave-field descriptors 
 
To describe the intensity of the wave-field, it is useful to define 
moments.  Moments are defined slightly differently in wave 
analysis than for turbulent flows.  In this case, 
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For instance, you can show that the standard deviation of the 
water surface 0m=σ . 
 
There are several quantities used to describe the strength of a 
wave field.  The most common is the significant wave height 
Hs. Hs is the average height of the largest 1/3 of the waves.  
However, it occasionally given the definition 
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The other common wave-field descriptor is the root-mean-
square wave height Hrms.  Since the root-mean-square is 
equivalent to the standard deviation (of a zero-mean process), 
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Typical statistical quantities can also be expressed in terms of 
the zero-moment, if we assume a Rayleigh distribution… 
 



Mean 02 mHH π== , Median 02 mH π= , Mode 02 mH =  
 
Of particular interest to sedimentologists is the maximum wave 
height Hmax for a given H . 
 
The problem is that the Rayleigh distribution is ‘flat’.   
 
 
Assuming a Rayleigh distribution (from Massel) – 
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To counteract this problem, Glukhovskiy (1966) extended the 
Rayleigh distribution to shallow water and cast the pdf described 
in (3) to an exceedence pdf.  His formulation is 
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where hH=ς . 
 
 
Statistics of wave period 
 
The temporal structure of waves (i.e., the period) is more 
difficult to characterize.  There are three different definitions, 
which have three different results.  They are: 
 



Average period between increasing zero-crossings 
202 mmTz π=  

 
Average wave period 102 mmπ=T  
 
Average period between crests 422 mmz π=T  
 
 
Wind generation of waves 
 
To identify some important factors, we perform a dimensional 
analysis – 
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where Hs and Ts are the significant wave height and period, X is 
the fetch over which U blows (the most common wind velocity 
used is obtained at 10 m above the surface), t is time, h is the 
water depth and g is the gravitational acceleration. 
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Common models  
 



SMB – Sverdrup, Munk and Bretschneider 
 
This model was developed during and after WWII from data in 
the North Atlantic.  SMB uses the dimensional analysis above to 
derive empirical relationships between the dependent and 
independent variables.  
 
The SMB model is as follows – 
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K = 6.5882, A = 0.0161, B = 0.3692, C = 2.2024, D = 0.8798 
 
 
Fully-developed seas (FDS) occur when the fetch no longer 
controls the development of the waves.  In other words, it is at 
the point when there is no net transport of energy from the wind 
to the waves.   
 



Of course, the water depth term is negligible (the data was 
obtained in deep water – mid-North Atlantic). 
 
 
However, many applications (including sediment transport) 
require more than Hs.  As a result, a second-generation of 
models was developed that included the entire spectrum.  
 
 
JONSWAP – Joint North Sea Wave Project 
 
It was noted (first by Phillips, 1958) that at higher frequencies 
than the peak frequency, the energy in a given wave-field 
‘saturated’.   This saturation produced relatively equivalent 
energies for a given frequency regardless of virtually all other 
parameters.  
 
 
Considerable data taken off the western shore of Denmark was 
used to produce a model of the wave spectrum (Hasselmann, 
1973).   
 
The model is  
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f is the frequency, fp is the peak frequency (frequency at which 
S(f) is a maximum), α is the Phillips constant (sometimes called 
the equilibrium-range parameter), γ is the peak-enhancement 
factor (usually taken to be 3.3), and 07.0=β  for  or pff <

09.0=β  for . pff >
 
There is a slight dependence on the fetch in fp and α.  
Hasselmann (1973, 1976) used the nondimensional quantities 
derived above to create two empirical relations.  They are 
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Donelan 
 
Donelan et al. (1985) proposed a popular alternative which 
combines the relatively weak effects due to fetch into a single 
formulation.  The formulation also accounts for directionality of 
the wind.  
 



The model still uses Equation (15) as its basis, though they 
suggest replacing f-5 in the linear term ( )fE  with f-4fp

-1.  The 
differences lie in the treatment of α, γ, and fp.  Donelan et al. 
(1985) suggest 
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where pp fgC π2=  and θ is the angle between the wind and the 
waves.  The peak-enhancement parameter also changes – 
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Finally, the directionally dependent, non-dimensional fetch 
relation is 
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where Xθ is the fetch in the direction of propagation of the peak 
waves.  
 
 
Donelan, like SMB and conventional JONSWAP, does not 
account for water depth.  However, these models are 
EXTREMELY popular and are often used in shallow-water 



situations (incorrectly?).  For a good review of the pluses and 
minuses of these deep-water models, see: 
 
Schwab, D. J., et al. 1984. Application of a simple numerical 
wave model to Lake Erie. Journal of Geophysical Research, v. 
89, p. 3586-3592. 
 
 
TMA (Bouws et al., 1985) 
 
To correct for depth-dependent effects, Bouws et al. (1985) also 
manipulated the linear term ( )fE  in (15).  They wanted it to 
reflect the loss of energy due to enhanced dissipation of shallow 
water.  
 
They replace ( )fE  with ( )HfEk , , where  
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where the factor kφ  is defined by 
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and ghfH πω 2= .  To solve for the partial derivatives, consult 
Kitaigorodskii et al. (1975).  



 
Kitaigorodskii, S. A. et al. 1975. On Phillips theory of 
equilibrium range in the spectra of wind-generated gravity 
waves. Journal of Physical Oceanography, v. 5, p. 410-420. 
 
Buows et al. (1985), however, provide the graphical solution – 
 

 
 
Which Komar uses to make the point that water depth is 
important. 

 

 
 
 
Third-generation wind-wave models 
 



The second-generation models discussed above are all fetch-
limited.  Recent research has focused on developing numerical 
algorithms capable of describing wave growth in two-
dimensions.  A number of ‘canned’ codes are available that do 
this.  The WAM (WAve Modeling group) model is one of the 
most popular of these models.  It is described in: 
 
Komen, G. J. et al. 1994.  Dynamics and modeling of ocean 
waves. Cambridge University Press.  
 
These models are extremely good at predicting both the 
temporal and spectral (in wavenumber space) characteristics of 
wave fields in response to a given wind forcing.  However, they 
require substantial input and are probably too complex for most 
geological applications.  
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