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Challenges

Safe RL
Complex Tasks
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Safe Reinforcement Learning
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Complex Tasks
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Reward Hacking

A policy that achieves high returns but against the designer’s intentions

https://www.youtube.com/watch?v=92qDfT8pENs



https://www.youtube.com/watch?v=92qDfT8pENs

Reward function is not enough



Description using a language can help..

To define task better
To learn more efficiently and precisly

To transfer learning between tasks

To be “safe”



LTL Syntax

LTL formulas are built from
propositions and other smaller
LTL formulas using:

Boolean connectives
Temporal Operators

Only shown A and —, but can
define V, =, = for convenience

Syntax of LTL
= 14, p is a prop in AP

-1 Negation

QNQ Conjunction
X NeXt Step
Fo Some Future Step
Go Globally in all steps

o U In all steps Until in

some step




Example specifications in LTL

Suppose you are designing a robot that has to do a number of missions
(.

™ Whenever the robot visits the
5/ kitchen, it should visit the

/ [y bedroom after.
/ 4 Study (s) G(k, = Fd,)

Kitchen - Robot should never go to the
(k) bathroom.
Living Room (¥) G-b,

The robot should keep working

I_l / Bedroom (d) until its battery becomes low
~

working U low_battery

Bathroom (b)

TV




STL Syntax

Syntax of STL
Q = f(x)~0 | |f:D - Risafunction over the signalx: T — D,
~€{s,<>,2,=,#)
-1 Negation
P NQ Conjunction
Fiap® At some Future step in the interval [a, D]
Giop® Globally in all times in the interval [a, b]
® Uigp @ In all steps Until in interval [a, b]




Example Specification in STL

(15,25) (\
i &2 Whenever the robot visits the
Passage (p) 7 kitchen, it should visit the bedroom
/ Study (s) within the next 15 mins.
e L - G ((P(®) € By) = Fio15/(p(®) € By))
(k)
Living Room (¢) B..: Box describing room r

(0,5)  — /|  Bedroom (d) p(t): Position of robot at time ¢
\ -

Vv Robot should not go to the bathroom

in the first 60 mins.
p(t) € By : (0 < py(t) <15) A (5 <p,(t) < 25) Gio,601(P(t) & Bpatn)



Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

multi-task-RL
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Abstract

Reinforcement learning algorithms discover policies that
maximize reward, but do not necessarily guarantee safety dur-
ing learning or execution phases. We introduce a new ap-
proach to learn optimal policies while enforcing properties
expressed in temporal logic. To this end, given the temporal
logic specification that is to be obeyed by the learning system,
we propose to synthesize a reactive system called a shield.
The shield monitors the actions from the learner and corrects
them only if the chosen action causes a violation of the spec-
ification. We discuss which requirements a shield must meet
to preserve the convergence guarantees of the learner. Finally,
we demonstrate the versatility of our approach on several
challenging reinforcement learning scenarios.

N reward ¢ 3
[ Environment 5| Learning Agent |«
- 7| observation - J
actions
’ A4 N
1 Shield
safe action I J

Figure 1: Shielded reinforcement learning

its operation whenever absolutely needed in order to ensure
safety?”

In this paper, we introduce shielded learning, a frame-
work that allows applving machine learnine to control sys-



Safe RL via Shield

How can we let a learning agent do whatever it is doing, and also monitor and interfere with
its operation whenever absolutely needed in order to ensure safety?

The shield is computed upfront from the safety part of the given system specification
and an abstraction of the agent’s environment dynamics

Minimum interference: monitors the actions selected by the learning agent and
corrects them if and only if the chosen action is unsafe.

Boundary helps to separate the concerns, e.g., safety and correctness on one side and
convergence and optimality on the other

Compatible with mechanisms such as function approximation, employed by learning
algorithms in order to improve their scalability



Safe RL via Shield

Safety fragment of LTL
(something bad should never happen, e.g. no safety G(r - Fg), every request is eventually
granted)

A faithful, yet precise enough, abstraction of the physical environment is required
Independent of the state space components of the system to be controlled

The shield is the product between specification automaton and the MDP abstraction



Safe RL via Shield

If the property is violated there are two approaches:

Assign a punishment : negative reward

Assign the reward: positive reward

Then the shield selects an action in a “rank” that is safe



Grid world Example

With tabular Q-learning with an e-greedy explorer
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Figure 6: 9x9 grid world.

Figure 7: The accumulated reward per episode for the 9x9
grid world example.



The PacMan Example

Approximate Q-learning agent

1,000 [ A s VA s Figure 12: The 5x18 grid world of the pacman example.
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Figure 13: The accumulated reward per episode for the pac-
man example.



Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

multi-task-RL



General |dea

Reward Shaping problem:

Design R(s,a ) s.t. lcan find ™ s.t.V x, m* (x) the "satisfaction” of x is
maximised

Why important?
Poorly design -> poorly convergence
Learning unsafe or unrealistic action



LTL constrained to discrete state and action

Probably Approximately Correct MDP Learning
and Control With Temporal Logic Constraints

Jie Fu and Ufuk Topcu

Department of Electrical and Systems Engineering

University of Pennsylvania
Philadelphia, Pennsylvania 19104
Email: jief, utopcu@ seas.upenn.edu

Abstract—We consider synthesis of controllers that maximize
the probability of satisfying given temporal logic specifications
in unknown, stochastic environments. We model the interaction
between the system and its environment as a Markov decision
process (MDP) with initially unknown transition probabilities.
The solution we develop builds on the so-called model-based
probably approximately correct Markov decision process (PAC-
MDP) method. The algorithm attains an =-approximately optimal
policy with probability 1 —4§ using samples (i.e. observations), time
and space that grow polynomially with the size of the MDP, the
size of the automaton expressing the temporal logic specification,
}. % and a finite time horizon. In this approach, the system
maintains a model of the initially unknown MDP, and constructs
a product MDP based on its learned model and the specification
automaton that expresses the temporal logic constraints. During
execution, the policy is iteratively updated using observation of
the transitions taken by the system. The iteration terminates in
finitely many execution steps. With high probability, the resulting
policy is such that, for any state, the difference between the
probability of satisfying the specification under this policy and
the optimal one is within a predefined bound.

arrived positions differ
of different grounds.
terrain can be modele
probabilities are unkno
observations of robot’
number of samples.
may not be affordable
amount of samples, we
MDP and reason abou
respect to the underl
policies synthesized us
We develop an alg
updates the controller
for an unknown MDP,
method [4, 5] to maxin
temporal logic specific
tion probabilities. In th
a model of the MDP

A Learning Based Approach to Control Synthesis of Markov Decision
Processes for Linear Temporal Logic Specifications

Dorsa Sadigh, Eric S. Kim, Samuel Coogan, S. Shankar Sastry, Sanjit A. Seshia

Abstract—We propose to synthesize a control policy for a
Markov decision process (MDP) such that the resulting traces
of the MDP satisfy a linear temporal logic (LTL) property.
We construct a product MDP that incorporates a deterministic
Rabin automaton generated from the desired LTL property.
The reward function of the product MDP is defined from the
acceptance condition of the Rabin automaton. This construction
allows us to apply techniques from learning theory to the
problem of synthesis for LTL specifications even when the
transition probabilities are not known a priori. We prove that
our method is guaranteed to find a controller that satisfies the
LTL property with probability one if such a policy exists, and
we suggest empirically that our method produces reasonable
control strategies even when the LTL property cannot be
satisfied with probability one.

practical contexts where we start from a partial model with
unspecified probabilities.

Our approach is based on finding a policy that maximizes
the expected utility of an auxiliary MDP constructed from
the original MDP and a desired LTL specification. As in
the above mentioned existing work, we convert the LTL
specification to a deterministic Rabin automaton (DRA) [11],
[12], and construct a product MDP such that the states of the
product MDP are pairs representing states of the original
MDP in addition to states of the DRA that encodes the
desired LTL specification. The novelty of our approach is
that we then define a state based reward function on this
product MDP based on the Rabin acceptance condition of



LTL constrained to discrete state and action

For MDPs with unknown transition probability
LTL -> Deterministic Rabin Automata (DRA)
Translation breakes the history- dependence

select the reward function on the product MDP so it corresponds to the
Rabin acceptance condition of the LTL specification.



LTL constrained to discrete state and action

select the reward function on the product MDP so it corresponds to the Rabin
acceptance condition of the LTL specification.

Sp = (s,q) < Sp wa if speg;
Wh(sp) = wp if sp € B, (4)
0 if sp € S\(G;UB;)

where wg > 0 is a positive reward, wg < 0 is a
negative reward.

Prove convergence if policy exist s.t. it satisfies property with probability 1

1) Learn the transition probabilities and 2) Optimize the expected utility.
E.g. with a modified active temporal difference learning algorithm



STL and discrete space

Q-Learning for Robust Satisfaction of Signal Temporal Logic
Specifications

Derya Aksaray, Austin Jones, Zhaodan Kong, Mac Schwager, and Calin Belta

Abstract— 1In this paper, we address the problem of learning
optimal policies for satisfying signal temporal logic (STL)
specifications by agents with unknown stochastic dynamics.
The system is modeled as a Markov decision process, in
which the states represent partitions of a continuous space
and the transition probabilities are unknown. We formulate
two synthesis problems where the desired STL specification is
enforced by maximizing 1) the probability of satisfaction, and 2)
the expected robustness degree, i.e., a measure quantifying the
quality of satisfaction. We discuss that Q-learning is not directly
applicable to these problems because, based on the quantitative
semantics of STL, the probability of satisfaction and expected
robustness degree are not in the standard objective form of Q-
learning (i.e., the sum of instantaneous rewards). To resolve
this issue, we propose an approximation of STL synthesis
problems that can be solved via Q-learning, and we derive
some performance bounds for the policies obtained by the
approximate approach. Finally, we present simulation results
to demonstrate the performance of the proposed method.

to describe tasks involving bounds on physical parameters
and time intervals [8]. An example STL specification is
“Within ; seconds, a region in which y is less than p)
is reached, and regions in which y is larger than p, are
avoided for 15 seconds.” STL is also endowed with a metric
called robustness degree that quantifies how strongly a given
trajectory satisfies an STL formula as a real number rather
than just providing a yes or no answer [10], [8]. This measure
enables the use of continuous optimization methods to solve
inference (e.g., [14], [15], [18]) or formal synthesis problems
(e.g., [22]) involving STL.

In this paper, we formulate two problems that enforce a
desired STL specification by maximizing 1) the probability
of satisfaction and 2) the expected robustness degree. One
of the difficulties in solving these problems is the history-
dependence of the satisfaction. For instance, if the specifi-

PR . " a



STL and discrete space

Partition of a Continuous Space
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Fig. 2. (a) Discretized state-space, |



Problem: history- dependence of the satisfaction

Fragment of STL such that the progress towards satisfaction is checked with
a sufficient number of (i.e., ) state measurements.

0 = f(s) <d|=o|oNQ|oV Q|F,50|G,n0,

7y = argmax Pr”[so.7
U

D)

m, = argmax E” [r(so.7,DP)]
T



Problem: history- dependence of the satisfaction

hrz(y)

v + 1

T —MDP where 7 =

Each state corresponds to a
T-length trajectory

Probability remains Markovian
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Fig. 2. (a) Discretized state-space, (b) Representation of o] over 2 —MDP.



Problem: robustness shape

max E*| max_(r(s
max E*[r(so.7,®)] =< " T lsisT
& max E”| min _(r(s
T “T—1<t<T
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if & = Fio 79
lf (I) — G[O,T]d)

log-sum-exp approximation to adapt the Robustness of Q-learning

1
p

n
max(xi,...,x,) ~ —log Z P,
i=1



Finally...
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Experiments
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the robustness degree gives “partial credit”
0 for trajectories that are close to satisfaction

For the prop satisfaction, instead, Q-
learning algorithm is essentially performing
a random search

(b) (c)

Fig. 5. (a) The initial state and the desired regions in case study 2 for
which a sample trajectory by (b) 7}, and (¢) 7).



STL and continuous space

2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

September 24-28, 2017, Vancouver, BC, Canada

Reinforcement Learning With Temporal Logic Rewards

Xiao Li, Cristian-loan Vasile and Calin Belta.

Abstract— Reinforcement learning (RL) depends critically on
the choice of reward functions used to capture the desired be-
havior and constraints of a robot. Usually, these are handcrafted
by a expert designer and represent heuristics for relatively
simple tasks. Real world applications typically involve more
complex tasks with rich temporal and logical structure. In this
paper we take advantage of the expressive power of temporal
logic (TL) to specify complex rules the robot should follow,
and incorporate domain knowledge into learning. We propose
Truncated Linear Temporal Logic (TLTL) as a specification
language,We propose Truncated Linear Temporal Logic (TLTL)
as a specification language,that is arguably well suited for the
robotics applications, We show in simulated trials that learning
is faster and policies obtained using the proposed approach
outperform the ones learned using heuristic rewards in terms
of the robustness degree, i.e., how well the tasks are satisfied.
Furthermore, we demonstrate the proposed RL approach in a
toast-placing task learned by a Baxter robot.

Topes

to Q-learning on 7-MDPs in discrete spaces. Author
and@has also taken advantage of automata-based 1
to synthesize control policies that satisfy LTL specif
for MDPs with unknown transition probability.Thes
ods are constrained to discrete state and action spac
a somewhat limited set of temporal operators. To f
of our knowledge, this paper is the first to apply
reinforcement learning on continuous state and action
and demonstrates its abilities in experimentation.
We compare the convergence properties and the
of learned policies of RL algorithms using tempor
(i.e., robustness degree) and heuristic reward funct
addition, we compare the results of a simple TL al
against a more elaborate RL algorithm with heur
wards. In both cases better quality policies were



Truncated Linear
Temporal Logic (TLTL)

Specifically for robots
Unbounded
Atomic propositions

Evaluated against finite time sequences
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STL and continuous space

Parametrized policy (s, a|f0)

0" = argmaxg E,mg)|R(7)],
where p™8 (1) is trajectory distribution from following policy it

Relative Entropy Policy Search (REPS) :
constrained optimization problem that can be solved by Lagrange multipliers
method

Tlinear-Gaussian policies and weighted maximum-likelihood estimation to
update the policy parameters



Experiments
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Experiments
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2018 Annual American Control Conference (ACC)
June 27-29, 2018. Wisconsin Center, Milwaukee, USA

Smooth Robustness and continuous space

A Policy Search Method For Temporal Logic Specified Reinforcement
Learning Tasks

Xiao Li, Yao Ma and Calin Belta

Abstract— Reward engineering is an important aspect of
reinforcement learning. Whether or not the users’ intentions
can be correctly encapsulated in the reward function can
significantly impact the learning outcome. Current methods
rely on manually crafted reward functions that often requires
parameter tuning to obtain the desired behavior. This operation
can be expensive when exploration requires systems to interact
with the physical world. In this paper, we explore the use of
temporal logic (TL) to specify tasks in reinforcement learning.
TL formula can be translated to a real-valued function that
measures its level of satisfaction against a trajectory. We take
advantage of this function and propose femporal logic policy
search (TLPS), a model-free learning technique that finds a
policy that satisfies the TL specification. A set of simulated
experiments are conducted to evaluate the proposed approach.

Temporal logics (TL) have been adopted as specification
languages for a wide variety of control tasks. Authors of [6]
use linear temporal logic (LTL) to specify a persistent

—surveillance-task-carried out by aerial robots. Similarly, [7]
and [8] applied LTL in traffic network control. Application of
TL in reinforcement learning has been less investigated. [9]
combined signal temporal logic (STL) with Q-learning while
also adopting the log-sum-exp approximation of robustness.
However, their focus is in the discrete state and action spaces,
and ensured satisfiability by expanding the state space to a
history dependent state space. This does not scale well with
large or continuous state-action spaces which is often the
case for control tasks.



Several Works with different motivations

LTL constrained, Reward function remained the same
Reward shaping using probability of average robusntess satisfaction

Multi-task-RL



Multi-task-RL

Teaching Multiple Tasks to an RL Agent using LTL

Rodrigo Toro Icarte
University of Toronto
Department of Computer Science & Vector Institute
rntoro@cs.toronto.edu

Richard Valenzano
Element Al
rick.valenzano@elementai.com

ABSTRACT

This paper examines the problem of how to teach multiple tasks
to a Reinforcement Learning (RL) agent. To this end, we use Linear
Temporal Logic (LTL) as a language for specifying multiple tasks in
a manner that supports the composition of learned skills. We also
propose a novel algorithm that exploits LTL progression and off-
policy RL to speed up learning without compromising convergence
guarantees, and show that our method outperforms the state-of-
the-art approach on randomly generated Minecraft-like grids.

Toryn Q. Klassen
University of Toronto
Department of Computer Science
toryn@cs.toronto.edu

Sheila A. Mcllraith

University of Toronto
Department of Computer Science
sheila@cs.toronto.edu

Linear Temporal Logic (LTL) and then defining reward functions
that provide positive reward for their successful completion. LTL
is a propositional, modal temporal logic first developed for the
verification of reactive systems [35]. It augments propositional logic
with modalities such as ¢ (eventually), O (always), and U (until) in
support of expressing statements such as “Always if clothes are on
the floor, put them in the hamper” or “Eventually make dinner.” Such
statements can be combined via logical connectives and nesting of
modal operators to provide task specifications. The syntax is natural
and comnelling and. as a formal language. it has a well-defined



Decompose tasks into subtasks with LTL progression

LTL progression
Given an LTL formula ¢ and state s, we can progress ¢ using s:
m prog(s,p) = true if p € L(s), where p € P
m prog(s, p) = false if p & L(s), where p € P
m prog(s, ) = — prog(s, )
m prog(s, ¢1 A 2) = prog(s, 1) A prog(s, ¢2)
m prog(s,Op) = ¢
m prog(s, O) = prog(s, ) V O¢
m prog(s, ¢1 U p2) = prog(s, p2) V (prog(s, ¥1) A p1U ¢2)

Task with finite-episode -> restriction to co-safe properties



