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u Safe RL

u Complex Tasks

u Reward Hacking

Challenges
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Safe Reinforcement Learning
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Complex Tasks
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Reward Hacking
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A policy that achieves high returns but against the designer’s intentions 

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch?v=92qDfT8pENs


Reward function is not enough
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u To define task better 

u To learn more efficiently and precisly

u To transfer learning between tasks

u To be “safe” 

Description using a language can help..
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u LTL formulas are built from 
propositions and other smaller 
LTL formulas using:
�Boolean connectives
�Temporal Operators

u Only shown ∧ and ¬, but can 
define ∨,⇒,≡ for convenience

LTL Syntax
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Syntax of LTL
' ∷= * | * is a prop in AP

¬' | Negation

' ∧ ' | Conjunction

+' | NeXt Step

,' | Some Future Step

-' | Globally in all steps

' . ' | In all steps Until in 
some step



u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL
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Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the 
kitchen, it should visit the 
bedroom after.

((") ⇒ + $))
u Robot should never go to the 

bathroom.
(¬&)

u The robot should keep working 
until its battery becomes low
-./"012 3 4.-_&6778/9

TV
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STL Syntax
Syntax of STL

! ∷= $ % ~0 | $:) → ℝ is a function over the signal %: , → ),

∼ ∈ ≤,<,>,≥,=,≠
¬! | Negation

! ∧ ! | Conjunction

7 8,9 ! | At some Future step in the interval [;, <]
> 8,9 ! | Globally in all times in the interval [;, <]

! ?[8,9] ! | In all steps Until in interval [;, <]



Example Specification in STL
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u Whenever the robot visits the 
kitchen, it should visit the bedroom 
within the next 15 mins.

! " # ∈ %& ⇒ ( ),+, " # ∈ %-

u Robot should not go to the bathroom 
in the first 60 mins.

! ),.) " # ∉ %-012

%3: Box describing room 4

"(#): Position of robot at time #

Kitchen
(7)

Bedroom (8)

Living Room (ℓ)

Bathroom (:)

Study (;)

TV

Passage (")

(0,5)

(15,25)

" # ∈ %& ∶ 0 < "? # < 15 ∧ 5 < "C # < 25



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL
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Safe RL via Shield
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u The shield is computed upfront from the safety part of the given system specification 
and an abstraction of the agent’s environment dynamics 

u Minimum interference: monitors the actions selected by the learning agent and 
corrects them if and only if the chosen action is unsafe.

u Boundary helps to separate the concerns, e.g., safety and correctness on one side and 
convergence and optimality on the other 

u Compatible with mechanisms such as function approximation, employed by learning 
algorithms in order to improve their scalability 

How can we let a learning agent do whatever it is doing, and also monitor and interfere with 
its operation whenever absolutely needed in order to ensure safety? 



Safe RL via Shield

16

u Safety fragment of LTL 
(something bad should never happen, e.g. no safety G(r → Fg), every request is eventually 
granted)

u A faithful, yet precise enough, abstraction of the physical environment is required

u Independent of the state space components of the system to be controlled 

u The shield is the product between specification automaton and the MDP abstraction 



Safe RL via Shield
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If the property is violated there are two approaches:

u Assign a punishment : negative reward
u Assign the reward: positive reward

Then the  shield selects an action in a “rank” that is safe



Grid world Example
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With tabular Q-learning with an ε-greedy explorer 



The PacMan Example
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Approximate Q-learning agent



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL



General Idea 
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Reward Shaping problem: 
Design ! ", $ s.t. I can find %∗ ". (. ∀ *, %∗ * the ”satisfaction” of x is 
maximised

Why important?
u Poorly design -> poorly convergence
u Learning unsafe or unrealistic action



LTL constrained to discrete state and action
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LTL constrained to discrete state and action
u For MDPs with unknown transition probability

u LTL -> Deterministic Rabin Automata (DRA)

u Translation breakes the history- dependence

u select the reward function on the product MDP so it corresponds to the 
Rabin acceptance condition of the LTL specification. 
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LTL constrained to discrete state and action
u select the reward function on the product MDP so it corresponds to the Rabin 

acceptance condition of the LTL specification. 

u Prove convergence if policy exist s.t. it satisfies property with probability 1

u 1) Learn the transition probabilities and 2) Optimize the expected utility. 
E.g.  with a modified active temporal difference learning algorithm 



STL and discrete space
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STL and discrete space
u Partition of a Continuous Space

u Uknown stochastic dynamics
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Problem: history- dependence of the satisfaction 

u Fragment of STL such that the progress towards satisfaction is checked with 
a sufficient number of (i.e., τ) state measurements. 
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Problem: history- dependence of the satisfaction 

u ! −MDP   where ! = $%& '
() + 1 for     ,[.,0]2, 3[.,0]2

u Each state corresponds to a 
!-length  trajectory

u Probability remains Markovian
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Problem: robustness shape

u log-sum-exp approximation to adapt the Robustness of Q-learning
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Finally…

The immediate reward is :
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Experiments

|S|= 19 and |S#| = 676

the robustness degree gives “partial credit” 
for trajectories that are close to satisfaction 

For the prop satisfaction,  instead, Q-
learning algorithm is essentially performing 
a random search 



STL and continuous space
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Truncated Linear 
Temporal Logic (TLTL)

• Specifically for robots

• Unbounded

• Atomic propositions

• Evaluated against finite time sequences 
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STL and continuous space
u Parametrized policy !(#, %|')

u '∗ = %+,-%./ 0123(4)[6(7)] , 
where 9:3(7) is trajectory distribution from following policy π 

u Relative Entropy Policy Search (REPS) : 
constrained optimization problem that can be solved by Lagrange multipliers
method

u Tlinear-Gaussian policies and weighted maximum-likelihood estimation to 
update the policy parameters
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Experiments
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Experiments
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Smooth Robustness and continuous space 



Several Works with different motivations
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u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u Multi-task-RL



Multi-task-RL
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Decompose tasks into subtasks with LTL progression

41Task with finite-episode -> restriction to co-safe properties


