
RL + TL for Cyber Physical Systems

Laura Nenzi

Reinforcement Learning

2

Agent

Environment

SenseAction
Reward/
Penalty

u Safe RL

u Complex Tasks

u Reward Hacking

Challenges

3

Safe Reinforcement Learning

4

Complex Tasks

5

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

Reward Hacking

6

A policy that achieves high returns but against the designer’s intentions

https://www.youtube.com/watch?v=92qDfT8pENs

https://www.youtube.com/watch?v=92qDfT8pENs

Reward function is not enough

7

u To define task better

u To learn more efficiently and precisly

u To transfer learning between tasks

u To be “safe”

Description using a language can help..

8

u LTL formulas are built from
propositions and other smaller
LTL formulas using:
�Boolean connectives
�Temporal Operators

u Only shown ∧ and ¬, but can
define ∨,⇒,≡ for convenience

LTL Syntax

9

Syntax of LTL
' ∷= * | * is a prop in AP

¬' | Negation

' ∧ ' | Conjunction

+' | NeXt Step

,' | Some Future Step

-' | Globally in all steps

' . ' | In all steps Until in
some step

u Suppose you are designing a robot that has to do a number of missions

Example specifications in LTL

10

Kitchen
(")

Bedroom ($)

Living Room (ℓ)

Bathroom (&)

Study (')

u Whenever the robot visits the
kitchen, it should visit the
bedroom after.

((") ⇒ + $))
u Robot should never go to the

bathroom.
(¬&)

u The robot should keep working
until its battery becomes low
-./"012 3 4.-_&6778/9

TV

11

STL Syntax
Syntax of STL

! ∷= $ % ~0 | $:) → ℝ is a function over the signal %: , →),

∼ ∈ ≤,<,>,≥,=,≠
¬! | Negation

! ∧ ! | Conjunction

7 8,9 ! | At some Future step in the interval [;, <]
> 8,9 ! | Globally in all times in the interval [;, <]

! ?[8,9] ! | In all steps Until in interval [;, <]

Example Specification in STL

12

u Whenever the robot visits the
kitchen, it should visit the bedroom
within the next 15 mins.

! " # ∈ %& ⇒ (),+, " # ∈ %-

u Robot should not go to the bathroom
in the first 60 mins.

!),.) " # ∉ %-012

%3: Box describing room 4

"(#): Position of robot at time #

Kitchen
(7)

Bedroom (8)

Living Room (ℓ)

Bathroom (:)

Study (;)

TV

Passage (")

(0,5)

(15,25)

" # ∈ %& ∶ 0 < "? # < 15 ∧ 5 < "C # < 25

Several Works with different motivations

13

u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL

14

Safe RL via Shield

15

u The shield is computed upfront from the safety part of the given system specification
and an abstraction of the agent’s environment dynamics

u Minimum interference: monitors the actions selected by the learning agent and
corrects them if and only if the chosen action is unsafe.

u Boundary helps to separate the concerns, e.g., safety and correctness on one side and
convergence and optimality on the other

u Compatible with mechanisms such as function approximation, employed by learning
algorithms in order to improve their scalability

How can we let a learning agent do whatever it is doing, and also monitor and interfere with
its operation whenever absolutely needed in order to ensure safety?

Safe RL via Shield

16

u Safety fragment of LTL
(something bad should never happen, e.g. no safety G(r → Fg), every request is eventually
granted)

u A faithful, yet precise enough, abstraction of the physical environment is required

u Independent of the state space components of the system to be controlled

u The shield is the product between specification automaton and the MDP abstraction

Safe RL via Shield

17

If the property is violated there are two approaches:

u Assign a punishment : negative reward
u Assign the reward: positive reward

Then the shield selects an action in a “rank” that is safe

Grid world Example

18

With tabular Q-learning with an ε-greedy explorer

The PacMan Example

19

Approximate Q-learning agent

Several Works with different motivations

20

u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u multi-task-RL

General Idea

21

Reward Shaping problem:
Design ! ", $ s.t. I can find %∗ ". (. ∀ *, %∗ * the ”satisfaction” of x is
maximised

Why important?
u Poorly design -> poorly convergence
u Learning unsafe or unrealistic action

LTL constrained to discrete state and action

22

23

LTL constrained to discrete state and action
u For MDPs with unknown transition probability

u LTL -> Deterministic Rabin Automata (DRA)

u Translation breakes the history- dependence

u select the reward function on the product MDP so it corresponds to the
Rabin acceptance condition of the LTL specification.

24

LTL constrained to discrete state and action
u select the reward function on the product MDP so it corresponds to the Rabin

acceptance condition of the LTL specification.

u Prove convergence if policy exist s.t. it satisfies property with probability 1

u 1) Learn the transition probabilities and 2) Optimize the expected utility.
E.g. with a modified active temporal difference learning algorithm

STL and discrete space

25

26

STL and discrete space
u Partition of a Continuous Space

u Uknown stochastic dynamics

27

Problem: history- dependence of the satisfaction

u Fragment of STL such that the progress towards satisfaction is checked with
a sufficient number of (i.e., τ) state measurements.

28

Problem: history- dependence of the satisfaction

u ! −MDP where ! = $%& '
() + 1 for ,[.,0]2, 3[.,0]2

u Each state corresponds to a
!-length trajectory

u Probability remains Markovian

29

Problem: robustness shape

u log-sum-exp approximation to adapt the Robustness of Q-learning

30

Finally…

The immediate reward is :

31

Experiments

|S|= 19 and |S#| = 676

the robustness degree gives “partial credit”
for trajectories that are close to satisfaction

For the prop satisfaction, instead, Q-
learning algorithm is essentially performing
a random search

STL and continuous space

32

33

Truncated Linear
Temporal Logic (TLTL)

• Specifically for robots

• Unbounded

• Atomic propositions

• Evaluated against finite time sequences

34

STL and continuous space
u Parametrized policy !(#, %|')

u '∗ = %+,-%./ 0123(4)[6(7)] ,
where 9:3(7) is trajectory distribution from following policy π

u Relative Entropy Policy Search (REPS) :
constrained optimization problem that can be solved by Lagrange multipliers
method

u Tlinear-Gaussian policies and weighted maximum-likelihood estimation to
update the policy parameters

35

Experiments

36

Experiments

37

Smooth Robustness and continuous space

Several Works with different motivations

39

u LTL constrained, Reward function remained the same

u Reward shaping using probability of average robusntess satisfaction

u Multi-task-RL

Multi-task-RL

40

Decompose tasks into subtasks with LTL progression

41Task with finite-episode -> restriction to co-safe properties

