Exercises QFT II - 2018/2019

Problem Sheet 11

Problem 21 - Non-abelian gauge theories

Solve the following problems:

- 1. Consider the Lie group SU(N) of $N \times N$ unitary matrices with det = 1. Show that you can parametrize this space by $N^2 - 1$ parameters. To do this, derive the corresponding Lie Algebra and find out the generators. Show that the maximum number of mutually commuting generators is N - 1.
- 2. Given a Lie algebra \mathcal{G} with $D = \dim \mathcal{G}$ defined by

$$[T^a, T^b] = i f^{abc} T^c \qquad a, b, c = 1, ..., D.$$
(1)

The f^{abc} can be regarded as the coefficients of $D \ D \times D$ matrices \mathbf{f}^a (i.e. $(\mathbf{f}^a)^{bc} \equiv f^{abc}$). Using the Jacobi identity, show that these matrices \mathbf{f}^a obey the same commutation relations as the abstract generators T^a (when a proper factor of -1 is provided).

3. Consider the Lagrangian

$$\mathcal{L} = \partial_{\mu} \Phi^{\dagger} \cdot \partial^{\mu} \Phi - m \Phi^{\dagger} \cdot \Phi \tag{2}$$

where Φ is a field in the fundamental representation of SU(N). Show that \mathcal{L} is invariant under the SU(N) transformations $\Phi \mapsto U \cdot \Phi$ (with $U \in SU(N)$ a constant matrix). Rewrite everything in components.

4. Consider the field φ in the Adjoint representation of SU(N). Show that its covariant derivative is given by

$$\mathbf{D}_{\mu}\varphi = \partial_{\mu}\varphi + [\mathbb{A},\varphi] \tag{3}$$

i.e. show that $\mathbf{D}_{\mu}\varphi$ transforms in the same way as φ .

Problem 22 - Fermion two-point function in non-abelian gauge theories

Consider a gauge theory with non-abelian group G and a fermion ψ in the representation R of this group¹:

$$\mathcal{L} = -\frac{1}{4}F^a_{\mu\nu}F^{a\mu\nu} + \bar{\psi}\left[i\gamma^{\mu}(\partial_{\mu} + iA^a_{\mu}t^a_R) - m\right]\psi \tag{4}$$

- 1. Write down the Feynman rules that are necessary for computing the graph in Figure 1 (take the gauge boson propagator in the Feynman gauge).
- 2. Write down the integral corresponding to the graph in Figure 1.
- 3. Compute the divergent part.

[Remember that $\sum_{a} t_{R}^{a} t_{R}^{a} = C_{2}(R) \mathbf{1}_{\dim R}$.]

Figure 1: One-loop fermionic two-point function.

¹Remember that this means that ψ is a vector belonging to the vector space where the matrices t_R^a act. Each component of this vector is a Dirac spinor.