
Exercise Lecture XI

1) Variational Monte Carlo (VMC)

2) Simulated annealing

1. Quantum oscillator in 1D: variational approach(see Fig. 1 )
Consider the hamiltonian of the quantum harmonic oscillator H = p2/2 + x2/2 (having
choosen m = k = h̄ = 1). We want to solve it numerically with VMC. To this purpose
consider two different choices for the trial wavefunction:

ψ(x) =

{
B(a2 − x2), for |x| < a;
0, for |x| > a.

(1.a)

or:
ψ(x) = Ae−βx

2

(1.b)

with a and β variational parameters, A and B proper normalization constants.

(a) Calculate

< E >=< EL >=
1

M

M∑
i=1

EL(xi),

with

EL(x) =
Hψ(x)

ψ(x)
(local energy)

and with the xi distributed according ψ(x)2. Using the trial wavefunction (1.b), remind
the exercise concerning the Metropolis sampling of a gaussian function, Lecture VII; see
the code metropolis gaussian.f90. See metropolis parabola.f90 for (1.a).

(b) Verify numerically and analytically that the variational solution gives in the two cases:

(1.a): a = (35/2)1/4 ≈ 2.0453; < E >= 0.6

(1.b): β = 1
2 ; < E >= 0.5

(In this case the exact analytic solution is known, E0 = 0.5; however, in case (1.a)
the minimum of < E > as a function of a is rather flat: use steps of 0.01 for a and
n = 100000 Metropolis accumulation steps to appreciate the minimum)

(c) Instead of solving the problem by minimizing < EL >, solve it minimizing the variance:

σ2 =< E2
L > − < EL >

2;

you should observe that in the case (1.a) the minimum of the variance is positive,
whereas in the case (1.b) is zero.
(Important: note the usefulness of the “zero variance property”; the EXACT minimum
of σ2 is 0 is the class of the trial wavefunctions contains the exact result, whereas in
general the minimium of < E > is not known!)
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2. Anharmonic quantum oscillator 1D (see Fig. 2)

(a) Consider also an anharmonic part in the potential, i.e. V (x) = x2/2 + bx4. Set for
instance b = 1/8, make a plot of V (x). Use the first order perturbation theory to
calculate the changes at the lowest order in energy of the ground state due to the
anharmonic term. Choose a reasonable form for the trial wavefunction, e.g. (1.b), and
calculate < E > with VMC. Compare the result obtained with the one obtained using
the perturbation theory.

3. Hydrogen atom. (Optional)

(a) We want to find numerically the ground state of the H atom. We want to find numerically
the ground state. The hamiltonian is: H = p2/(2m)−e2/r; It is convenient to use atomic
units (h = 1, me = 1/2, e2=2, and therefore to measure all length in terms of Bohr
radius, a0 = h̄2/(me2), the energies in Rydberg, Ry = me4/(2h̄2). Consider the trial
wavefunction ψ(r) = ψ(r) = e−r/a, where a is a variational parameter. calculate the
optimal value of ak and the corresponding energy.
Hints:
1) you may reduce the problem (spherical part) to a 1D problem. Pay attention that

< EL >=

∫
ψ2(r)EL(r)dr

ψ2(r)dr
=

∫
ψ2(r)EL(r)4πr2dr∫
ψ2(r)4πr2dr

and therefore the sampling probability is r2ψ2(r) and not just ψ2(r).
2) Pay attention close to the origin!

(b) Approach the problem keeping a 3D formulation, considering the isotropy of the trial
move (The displacement is a vector!)

4. Simulated annealing
Simulated annealing is a stochastic method for global energy minimization, considering the
system starting from a sufficiently high temperature; at each temperature it goes towards
equilibrium according to the Boltzmann factor (see the application of the Metropolis algo-
rithm in the canonical ensemble); then the temperature is slightly reduced and the equili-
bration procedure is repeated, and so on, until a global equilibrium state is reached at T=0.
The method can be efficiently used for function minimization, even if the function is not
representing an energy. In program simulated annealing.f90 it is implemented for the
minimization of f(x) = (x+ 0.2) ∗x+ cos(14.5 ∗x− 0.3). Initial temperature, initial position
and scaling factor for the temperature are input quantities. Test the program by choosing
different initial parameters and scaling factor for the temperature.
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!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! metropolis_gaussian.f90

!

! METROPOLIS sampling of several physical observables for the

! hamiltonian: h = -1/2 \nabla^2 + 1/2 x^2),

! comparison exact expected results with numerical results

! on psi^2(x), with psi(x) = exp(-x^2/(4\sigma^2))

! \sigma=1 => psi^2(x) = costant * standard gaussian

! P(x) = exp(-x**2/(2*sigma**2))/sqrt(2*pi*sigma**2)

!cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

program metropolis_gaussian

implicit none

integer, parameter :: dp=selected_real_kind(13)

integer :: i,n

real(kind=dp):: sigma,etot,ekin,epot,rnd,ekinL,epotL,etot2

real (kind=dp) :: pigr,pi2b,var,beta,var_th

real(kind=dp):: x,x1,x2,xp,delta,expx,expxp,p,acc

character(len=13), save :: format1 = "(a7,2x,2f9.5)"

open(unit=7,file=’e_var_gauss.dat’,position=’append’)

pigr = 2*asin(1.0_dp)

acc = 0.0_dp

x1 = 0.0_dp

x2 = 0.0_dp

ekin = 0.0_dp

epot = 0.0_dp

etot2= 0.0_dp

print*, "n, sigma (remember: beta = 1 / (4*sigma**2)), x0, delta"

read*, n,sigma,x,delta

beta = 1 / (4*sigma**2)

! call random_seed(put=seed)

do i=1,n

ekinL = - 0.5_dp * ((x/(2*sigma**2))**2 - 1/(2*sigma**2))

epotL = 0.5_dp * x**2

ekin = ekin + ekinL

epot = epot + epotL

etot = ekin + epot

etot2 = etot2 + (ekinL + epotL)**2

x1 = x1 + x

x2 = x2 + x**2

!ccccccccccccccccccccccccccccccc

expx = - x**2 /(2*sigma**2) !

call random_number(rnd) !

xp = x + delta * (rnd-0.5_dp) !
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expxp = - xp**2 /(2*sigma**2) ! metropolis

p = exp (expxp-expx) ! algorithm

call random_number(rnd) !

if (p > rnd) then !

x = xp !

!ccccccccccccccccccccccccccccccc

acc=acc+1.0_dp

endif

enddo

var_th = 1._dp/(32*beta**2)+beta**2/2-1._dp/4

write(unit=*,fmt=*)"acceptance ratio = ",acc/n

write(unit=*,fmt=*)"# Results (simulation vs. exact results):"

write(unit=*,fmt=format1)"etot = ",etot/n,1.0_dp/(8.0_dp*sigma**2)&

+0.5_dp*sigma**2

write(unit=*,fmt=format1)"ekin = ",ekin/n,1.0_dp/(8.0_dp*sigma**2)

write(unit=*,fmt=format1)"epot = ",epot/n,0.5_dp*sigma**2

write(unit=*,fmt=format1)"evar = ",etot2/n-(etot/n)**2,var_th

write(unit=*,fmt=format1)"<x> = ",x1/n,0.0_dp

write(unit=*,fmt=format1)"<x^2>= ",x2/n,sigma**2

write(7,*)sigma,etot/n,sqrt(abs(etot2/n-(etot/n)**2)),etot2/n-(etot/n)**2

close(7)

end program metropolis_gaussian
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!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

! simulated_annealing.f90

! for function minimization; adapted from U. Schmitt, 2003-01-15

!ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

PROGRAM anneal

IMPLICIT NONE

INTEGER :: istep, nsteps

REAL, PARAMETER :: scale=0.5 ! should be chosen for specific function

REAL :: func, fx, fx_min, fx_new, temp, tfactor, x, x_min, x_new

REAL, DIMENSION(2) :: rand ! random numbers

x = 1.0; fx = func(x); fx_min = fx ! starting point for search

PRINT *, ’Starting from x = ’, x, ’, f(x) = ’, fx

PRINT *, ’initial (high) temperature (e.g., 10)?’ ! annealing schedule

READ *, temp

PRINT *, ’annealing temperature reduction factor (e.g., 0.9)?’

READ *, tfactor

PRINT *, ’number of steps per block (equilibration, e.g., 1000)?’

READ *, nsteps

Do WHILE (temp > 1E-5) ! anneal cycle

DO istep = 1, nsteps

CALL RANDOM_NUMBER(rand) ! 2 random numbers

x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move

fx_new = func(x_new) ! new object function value

IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save

fx = fx_new

x = x_new

END IF

write(1,fmt=*)temp,x,fx

IF (fx < fx_min) THEN

fx_min = fx

x_min = x

PRINT ’(3ES13.5)’, temp, x_min, fx_min

END IF

END DO

temp = temp * tfactor ! decrease temperature

END DO

End PROGRAM anneal

REAL FUNCTION func(x) ! Function to minimize

Implicit NONE

REAL :: x

func = (x + 0.2)*x + cos(14.5*x - 0.3)

END FUNCTION
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Figure 1: Harmonic oscillator in 1D with VMC (ex. 1): Ground state Eigenvalue and
Eigenstate with two different trial wavefunctions.

Figure 2: Anharmonic oscillator in 1D with VMC (ex. 2): Ground state Eigenstate and
eigenvalue with two different trial wavefunctions, and comparison with the analytic solution ob-
tained within the first order perturbation theory.

6


