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A stochastic way of calculating expectation values of 
observables in many-body (in general) systems using a 
trial wavefunction which depends on PARAMETERS.

=> Which are the parameters that give

✔ the most reliable expectation value?

✔ the best trial wavefunction?

Variational Monte Carlo 

A method based on:
variational principle + Monte Carlo evaluation of integrals 
using importance sampling based on the Metropolis algorithm



Variational Monte Carlo 
1) Start from a trial wavefunction (wfc)

2) Calculate the expectation value of the many-body hamiltonian H  or in 

general of other observables O  on the wfc, transforming the integral into a 
form suitable for MC integration

3) Change parameters and recalculate the expectation value on the new wfc.

4) Iterate to reach the best estimate of the expectation value 

With VMC one can obtain exact properties only if the trial wavefunction is an 
exact wavefunction of the system; it is a variational method to find the 
ground state.
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Variational Monte Carlo 
1) Start from a trial wavefunction (wfc)

2) Calculate the expectation value of the many-body hamiltonian H  or in 

general of other observables O  on the wfc transforming the integral in a 
form suitable for MC integration

3) Change parameters and recalculate the expectation value on the new wfc.

4) Iterate to reach the best estimate of the expectation value 

With VMC one can obtain exact properties only if the trial wavefunction is an 
exact wavefunction of the system; it is a variational method to find the 
ground state.

done in Lecture VII for a single-particle 
problem (harmonic oscillator) 



Quantum averages - I

< O >ψ=

∫
ψ∗(R)Oψ(R)dR∫

|ψ(R)|2dR

(Ground) state average:

R: compact notation for 
the whole set of variables 

of the many-body wfc
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Quantum averages - I

< O >ψ=

∫
ψ∗(R)Oψ(R)dR∫

|ψ(R)|2dR

=

∫
[

|ψ(R)|2

< ψ|ψ >

] [

Oψ(R)

ψ(R)

]

dR ≡

∫

w(R)OL(R)dR

(Ground) state average:

probability 
(weighting 

factor) “local” operator

ψ(R)ψ−1(R)



Quantum averages - II
integrals in many variables {R} => 
suitable for importance sampling - Monte Carlo 
integration:

provided that the configurations     
are distributed with the probability 

i

< OL >=

∫
w(R)OL(R)dR ≈

1

M

M∑
i=1

OL(Ri)

error ~ 1/
√

M

w(Ri) =
|ψ(Ri)|2

⟨ψ|ψ⟩



Details for the calculation of quantum averages:
2) Calculate the expectation value of the many-body hamiltonian H  on the 

wfc transforming the integral into a form suitable for MC integration

2a) Equilibration phase:
a walker consisting of an initially random set of particle positions {R} is 
propagated according to the Metropolis algorithm, in order to equilibrate and 
start sampling             .  If the problem is many-body,  a new configuration can 
be obtained by moving just one particle and the others are unchanged.

2b) Accumulation phase:
New configurations are generated and energies and other observables are 
accumulated for statistical analysis.

|ψ({R})|2

VMC on one trial wfc - I



I. Equilibration phase:
1. Generate initial configuration using random positions for the particles.
2. For every particle⇤ in the configuration:

1. Propose a move from r to r’
2. Compute w = | (r0)/ (r)|2
3. Accept or reject move accordingly to Metropolis probability min(1, w)

3. Repeat configuration moves until equilibrated
2. Accumulation phase:

1. For every particle in the configuration:
1. Propose a move from r to r’
2. Compute w = | (r0)/ (r)|2
3. Accept or reject move accordingly to Metropolis probability min(1, w)
4. Accumulate the contribution to the local energy and other observables at r (if

move is rejected) or r’ (if move is accepted)
2. Repeat configuration moves until su�cient data are accumulated

In this algorithm, a new configuration is considered when one particle is moved, individually.

(⇤) If the problem is many-body, r and r’ are single-particle coordinates and therefore
di↵er from R.

Summarizing, for the discretized RW of N steps: Considering that t = N�t, defining D =
`2

2�t
, and measuring x in units of `, we get:

P (x, t) =

r
1

⇡Dt
exp

✓
� x2

4Dt

◆

which is

The fundamental solution of the continuum di↵usion equation of the previous slide, defining

D =
`2

2⌧
is:

P (x, t) =

r
1

4⇡Dt
exp

✓
� x2

4Dt

◆
.

The discretized solution of the RW problem:

PN (x) =

r
2

⇡N
exp

✓
� x2

2N

◆

considering t = N⌧ and the definition of D, can be rewritten as:

P (x, t) =

r
1

⇡Dt
exp

✓
� x2

4Dt

◆

1

VMC on one trial wfc - II



The variational principle - I

For the ground state:
if ψ(R) is a trial wavefunction and E0 is the exact
ground state eigenvalue, we have:

< E >ψ ≥ E0

and the ”=” holds if and only if the trial wavefunction
is the exact ground state wavefunction (ψ ≡ ψ0).



Basic idea for VMC:
calculate <O> over different trial wavefunctions

and choose the best...

The variational principle - II



1) Start from a trial wavefunction with a set of parameters α0

2) Calculate the expectation value of the operator O  with a MC integration:

3) Change the set of parameters α and recalculate from scratch the 
expectation value on the new wfc:

(O L(R) changes (contains the new parameters) but also the w (R) and hence  
the set of points {Ri} change)

4) Iterate to reach the best estimate of the expectation value 

VMC - standard procedure - II 

hOLi↵0 =

R
| ↵0(R)|2OL(R)dRR

| ↵0(R)|2dR
=

Z
w↵0(R)OL(R)dR ⇡

1

M

MX

i=1

OL(R
{↵0}
i ) (1)

w↵0(R) =
| ↵0(R)|2

h ↵0 | ↵0i
(2)

hOLi↵ =

R
| ↵(R)|2OL(R)dRR

| ↵(R)|2dR
=

Z
w↵(R)OL(R)dR ⇡

1

M

MX

i=1

OL(R
{↵}
i ) (3)

w↵(R) =
| ↵(R)|2

h ↵| ↵i
(4)

1

hOLi↵0 =

R
| ↵0(R)|2OL(R)dRR

| ↵0(R)|2dR
=

Z
w↵0(R)OL(R)dR ⇡

1

M

MX

i=1

OL(R
{↵0}
i ) (1)

w↵0(R) =
| ↵0(R)|2

h ↵0 | ↵0i
(2)

hOLi↵ =

R
| ↵(R)|2OL(R)dRR

| ↵(R)|2dR
=

Z
w↵(R)OL(R)dR ⇡

1

M

MX

i=1

OL(R
{↵}
i ) (3)

w↵(R) =
| ↵(R)|2

h ↵| ↵i
(4)
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VMC - standard procedure - II 

Two problems:

1) time consuming

2) stochastic errors can be comparable to    
differences between expectation values for different 
sets of parameters

solution?



“reweighting” technique
A better idea: use the same sampling for similar trial wfc,               . 

Start from      .    Define:

where the set {Ri} of M points is generated according to

(Check that:                                              ; if not, generate other points)A(α, α0) ≡
(
∑

i
rα(Ri))

2

∑
i
r2
α(Ri)

≈ M

rα(R) ≡
|ψα(R)|2

|ψα0
(R)|2

Remembering that : wα(R) =
|ψα(R)|2∫
|ψα(R)|2dR

, and similar for wα0
, we have :

hOLi↵0 =

R
| ↵0(R)|2OL(R)dRR

| ↵0(R)|2dR
=

Z
w↵0(R)OL(R)dR ⇡

1

M

MX

i=1

OL(R
{↵0}
i ) (1)

w↵0(R) =
| ↵0(R)|2

h ↵0 | ↵0i
(2)

↵0 (3)

hOLi↵ =

R
| ↵(R)|2OL(R)dRR

| ↵(R)|2dR
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Z
w↵(R)OL(R)dR ⇡

1

M

MX
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OL(R
{↵}
i ) (4)

w↵(R) =
| ↵(R)|2

h ↵| ↵i
(5)
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P
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=
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⇡

P
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“zero-variance” property
(when applicable, very useful!)

if a trial wavefunction is the exact one,
the variance of the numerical estimate of <O> (<H>)  

is zero:

σ2 ≡< ψ|(H− < H >)2|ψ >= 0

the criterion to find the best parameter set 
is precisely defined!

(remark: applicable also to excited states if 
the exact excited state wfc is contained in the trial wfc set)



• nodes of the trial wfc:  not a real problem, 
provided the trial moves are large enough to 
overcome nodes

•                 must be defined everywhere

•           must have the proper symmetry 
(bosons or fermions) and proper boundary 
conditions

H(R)ψ(R)

ψ(R)

possible problems/remarks



Trial wavefunction

The reliability of the VMC estimates 
are crucially dependent

on the quality of the trial wfc



Trial wavefunctions 
for many-body systems

3.3 Variational Monte Carlo http://www.physics.uc.edu/~pkent/thesis/pkthnode20.html
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The local energy, , equation 3.17 is one of the central quantities in QMC methods. It occurs

in both the variational and diffusion Monte Carlo algorithms and its properties are exploited to
optimise trial wavefunctions.

The local energy has the useful property that for an exact eigenstate of the Hamiltonian, the local
energy is constant. For a general trial wavefunction the local energy is not constant and the variance
of the local energy is a measure of how well the trial wavefunction approximates an eigenstate. The
spatially averaged variance of the local energy is therefore a quantity suitable for optimisation, and
methods exploiting this observation are presented in chapter 5.

Determination of the local energy is one of the most computationally costly operations performed in
QMC calculations. Application of the Hamiltonian to the trial wavefunction requires computation of
the second derivatives of the wavefunction and the calculation of the electron-electron and

electron-ion potentials. Efficient methods for the evaluation of  are given in chapter 4.

3.3.4 Trial wavefunctions

The choice of trial wavefunction is critical in VMC calculations. All observables are evaluated with

respect to the probability distribution . The trial wavefunction, , must well

approximate an exact eigenstate for all  in order that accurate results are obtained. Improved trial
wavefunctions also improve the importance sampling, reducing the cost of obtaining a certain
statistical accuracy.

Quantum Monte Carlo methods are able to exploit trial wavefunctions of arbitrary forms. Any
wavefunction that is physical and for which the value, gradient and laplacian of the wavefunction
may be efficiently computed can be used.

The power of Quantum Monte Carlo methods lies in the flexibility of the form of the trial

wavefunction. In early studies of bosonic He by McMillan [21] the wavefunction was taken to be
a Jastrow or two-body correlation function, [22] 

(3.19)

The function  was chosen to miminise the energy of the system under consideration, by choosing
 to increase the probability of particles being at a distance that minimises their interaction energy.

Variations on this idea have been successfully applied to fermionic systems by multiplying a
determinantal wavefunction by a two-body or higher body correlation functions. [23,24] Well 
chosen correlation functions include correlation effects more efficiently than CI-based approaches.

It is important that the trial wavefunction satisfies as many known properties of the exact
wavefunction as possible. A determinantal wavefunction is correctly anti-symmetric with respect to
the exchange of any two electrons. An additional local set of constraints which may be readily
imposed are for electron-electron and electron-nucleus coalescence. These constraints are the ``cusp
conditions''[25], and are a constraint on the derivatives of the wavefunction. For particle-particle
coalescence, it may be shown that [25] 

(3.20)
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det[θk(ri, σi)]

Slater determinant on
single-particle spin-orbitals

Typical form chosen for the many-body trial wfc:



on 
$/home/peressi/comp-phys/XI-QMC/  
[do: $cp /home/peressi/.../XI-QMC/* .]
or on moodle2

metropolis_gaussian.f90
(see also: metropolis_sampling.f90, Unit VII) 
metropolis_parabola.f90
metropolis_parabola_vs_a.f90
job_gaussian 
job_parabola

Programs & scripts: 



Exercises
1) Harmonic oscillator solved with VMC :

H = Ekin + Epot =
1

2
p2

+
1

2
x2

ψ(x) = Ae−βx2

Epot,L(x) ≡
Epotψ(x)

ψ(x)
=

1

2
x2

Ekin,L(x) ≡
Ekinψ(x)

ψ(x)
=

−
1

2

d2

dx2ψ(x)

ψ(x)
= −2β2x2 + β

⟨Epot,L⟩ =
1

8β
, ⟨Ekin,L⟩ =

1

2
β

1.a) Trial wfc.:

d ⟨Etot,L(β)⟩

dβ
= 0 =⇒ β =

1

2
, Etot =

1

2

(h̄ = 1, m = 1)

(a particularly simple 
example, where everything could be done also analytically,  used to test the numerical algorithm)

or Ae−x2/(4σ2)
with : β =

1

4σ2



variance:

σ
2

E = ⟨E2

tot,L⟩ + ⟨Etot,L⟩
2

=

=

〈

(

1

2
x2

− 2β2x2
+ β

)2
〉

+

(

1

8β
+

1

2
β

)2

=

=
1

32β2
+

1

2
β2

−

1

4

β =
1

2
⇒ σE = 0

-

-

For the exact ground state:
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were performed with N = 300 walkers and MCSteps = 10,000.
As might be expected, the average energy is minimum �E⇥ = 1/2, and
the variance is zero, at � = 1/2 which corresponds to the exact solution
for the harmonic oscillator ground state.
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(*) In this simple case, even a single walker is enough. 

Many independent walkers starting at different random points in the configuration space 
could be necessary for a better sampling in more complicate systems (a single walker might 
have trouble locating all of the peaks in the distribution; using a large number of randomly located 
walkers improves the probability that the distribution will be correctly generated)

(*)

Notice the zero-variance property for this problem:



Exercises
1) Harmonic oscillator solved with VMC:

H = Ekin + Epot =
1

2
p2

+
1

2
x2

1.b) Trial wfc.:

d⟨Etot,L(a)⟩

da
= 0 =⇒ a2 =

√

35

2
, Etot ≈ 0.6

H = p2/2 + x2/2 (with m = k = h̄ = 1)

 (x) =
⇢

B(a2
� x2), for |x| < a;

0, for |x| > a. Normalization:
R a
�a B2(a2

� x2)2dx = 1 =) B2 =
15

16a2

EL(x) =
H (x)
 (x)

=
✓

1
a2 � x2

+
1
2
x2

◆

hEtot,Li =
Z a

�a

| (x)|2

h | i
EL(x)dx =

Z a

�a
B2(a2

� x2)2
✓

1
a2 � x2

+
1
2
x2

◆
dx

=
Z a

�a
B2(a2

� x2)dx +
B2

2

Z a

�a
x2(a2

� x2)dx =
5

4a2
+

a2

14

1

(reasonable choice:
satisfies boundary conditions; correct symmetry; only one parameter)

(in this case the problem can be analytically solved:)

B2
=

15

16a
5

2

≊ 2.04a



Notice:  the zero-variance property does not hold for this class of trial wfc's!
and the energy minimum does not correspond to the variance minimum

parameter a

(min)



exact
wfc & <E>

other
wfc & <E>

x

V
(x

), 
 ψ

(x
), 

<
E>

   



Exercises
2) Anharmonic oscillator solved with VMC:

 Trial wfc.:

H = Ekin + Epot =
1

2
p2

+
1

2
x2

+
1

8
x4

ψ(x) = Ae−βx2

⟨Etot,L⟩ =

(

1

2
− 2β2

)

1

4β
+ β +

3

128β2

d⟨Etot,L⟩

dβ
= 0 =⇒ β

(

4β2 − 1
)

=
3

8
=⇒ β ≈ 0.63, Etot ≈ 0.5725

(better than 1st order perturbation theory)

(also in this case the problem can be analytically solved:)



wfc & <E>
VMC

pert.th.
wfc & E(1)

harmonic

ha
rm

on
ic

V
(x

), 
 ψ

(x
), 

<
E>

   



for sigma in 0.5  0.6  0.7  0.8  0.9  1.; do
cat > input << EOF
1000
$sigma
0.
5.
EOF

./a.out < input >> dati

job_parabola   Note: it must be executable!  
make it with: ($prompt)> chmod u+x job_parabola
run with:       ($prompt)> ./job_parabola            

managing input/output



3

It follows by the chain rule for partial di⇥erentiation that

(21)
⇧

⇧x
=

⇧r

⇧x

⇧

⇧r
+

⇧�

⇧x

⇧

⇧�
+

⇧⇥

⇧x

⇧

⇧⇥
= sin � cos ⇥

⇧

⇧r
+

cos � cos ⇥

r

⇧

⇧�
� sin ⇥

r sin �

⇧

⇧⇥
,

(22)
⇧

⇧y
=

⇧r

⇧y

⇧

⇧r
+

⇧�

⇧y

⇧

⇧�
+

⇧⇥

⇧y

⇧

⇧⇥
= sin � sin ⇥

⇧

⇧r
+

cos � sin ⇥

r

⇧

⇧�
+

cos ⇥

r sin �

⇧

⇧⇥
,

(23)
⇧

⇧z
=

⇧r

⇧z

⇧

⇧r
+

⇧�

⇧z

⇧

⇧�
+

⇧⇥

⇧z

⇧

⇧⇥
= cos �

⇧

⇧r
� sin �

r

⇧

⇧�
.

Hence

(24)
⇧

⇧x
± i

⇧

⇧y
= e±i�

�
sin �

⇧

⇧r
+

cos �

r

⇧

⇧�
± i

r sin �

⇧

⇧⇥

⇥
,

so, by the lemma,

⇧2

⇧x2
+

⇧2

⇧y2
=

�
⇧

⇧x
+ i

⇧

⇧y

⇥�
⇧

⇧x
� i

⇧

⇧y

⇥

= ei�

�
sin �

⇧

⇧r
+

cos �

r

⇧

⇧�
+

i

r sin �

⇧

⇧⇥

⇥
e°i�

�
sin �

⇧

⇧r
+

cos �

r

⇧

⇧�
� i

r sin �

⇧

⇧⇥

⇥

= sin2 �
⇧2

⇧r2
+ sin � cos �

�
1

r

⇧2

⇧r⇧�
� 1

r2

⇧

⇧�

⇥
� i

�
1

r

⇧2

⇧r⇧⇥
� 1

r2

⇧

⇧⇥

⇥

+
cos �

r

�
sin �

⇧2

⇧�⇧r
+ cos �

⇧

⇧r

⇥
+

cos �

r2
⇥(25)

⇥
�

cos �
⇧2

⇧�2
� sin �

⇧

⇧�

⇥
� i cos �

r2

�
1

sin �

⇧2

⇧�⇧⇥
� cos �

sin2 �

⇧

⇧⇥

⇥

+
i

r

�
⇧2

⇧⇥⇧r
� i

⇧

⇧r

⇥
+

i cot �

r2

�
⇧2

⇧⇥⇧�
� i

⇧

⇧�

⇥
+

1

r2 sin2 �

�
⇧2

⇧⇥2
� i

⇧

⇧⇥

⇥

= sin2 �
⇧2

⇧r2
+

cos2 �

r2

⇧2

⇧�2
+

1

r2 sin2 �

⇧2

⇧⇥2
+

2 sin � cos �

r

⇧2

⇧r⇧�

+
1 + cos2 �

r

⇧

⇧r
+

cot � � 2 sin � cos �

r2

⇧

⇧�
.

Also
⇧2

⇧z2
=

�
cos �

⇧

⇧r
� sin �

r

⇧

⇧�

⇥�
cos �

⇧

⇧r
� sin �

r

⇧

⇧�

⇥

= cos2 �
⇧2

⇧r2
� cos � sin �

�
1

r

⇧2

⇧r⇧�
� 1

r2

⇧

⇧�

⇥
(26)

�sin �

r

�
cos �

⇧2

⇧�⇧r
� sin �

⇧

⇧r

⇥
+

sin �

r2

�
sin �

⇧2

⇧�2
+ cos �

⇧

⇧�

⇥

= cos2 �
⇧2

⇧r2
+

sin2 �

r2

⇧2

⇧�2
� 2 sin � cos �

r

⇧2

⇧r⇧�
+

sin2 �

r

⇧

⇧r
+

2 sin � cos �

r2

⇧

⇧�
.

Adding the above two expressions and using the lemma, we finally obtain for � the expressions

� =
⇧2

⇧r2
+

2

r

⇧

⇧r
+

1

r2

�
⇧2

⇧�2
+ cot �

⇧

⇧�

⇥
+

1

r2 sin2 �

⇧2

⇧⇥2
(27)

=
1

r2

⇧

⇧r
r2 ⇧

⇧r
+

1

r2 sin �

⇧

⇧�
sin �

⇧

⇧�
+

1

r2 sin2 �

⇧2

⇧⇥2
.

Other exercises
3) Hydrogen atom solved with VMC:

we need the radial part of the laplacian 
operator in polar coordinates:



(not treated here)

* DIFFUSION MONTE CARLO 
a technique to project the ground state wavefunction of the system 
out of a trial wavefunction (provided that the two are not orthogonal).

* PATH INTEGRAL MONTE CARLO 
useful for quantum calculations at non-zero temperatures, based on Feynman’s 
imaginary time path integral description

other Quantum Monte 
Carlo methods



Metropolis method in the 
canonical ensemble and the 

simulated annealing



Metropolis and 
simulated annealing - I

•Stochastic search for global minimum. Monte 
Carlo optimization.

•The concept is based on the manner in which 
liquids freeze or metals recrystallize. Sufficiently 
high starting temperature and slow cooling are 
important to avoid freezing out in metastable 
states.



Metropolis and 
simulated annealing - II

•Thermodynamic system at temperature T, energy E. 

•Perturb configuration (generate a new one).
•Compute change in energy dE. If dE is negative the new 

configuration is accepted. If dE is positive it is accepted 
with a probability given by the Boltzmann factor :     
exp(-dE/kT). 

•The process is repeated many times for good sampling 
of configuration space.

•then the temperature is slightly lowered and the entire 
procedure repeated, and so on, until a frozen state is 
achieved at T = 0.

{
usual 

Metropolis 
procedure 

in the 
canonical 
ensemble



Example
minimization of 

f(x)=(x+0.2)*x+cos(14.5*x-0.3)
considered as an energy function and

using a fictitious temperature 

in simulated_annealing.f90:



DO WHILE (temp > 1E-5) ! anneal cycle

  DO istep = 1, nsteps
    CALL RANDOM_NUMBER(rand) ! generate 2 random numbers; dimension(2) :: rand
    x_new = x + scale*SQRT(temp)*(rand(1) - 0.5) ! stochastic move
    fx_new = func(x_new) ! new object function value
    IF (EXP(-(fx_new - fx)/temp) > rand(2)) THEN ! success, save
      fx = fx_new
      x = x_new
    END IF 
    IF (fx < fx_min) THEN
      fx_min = fx
      x_min = x
      PRINT '(3ES13.5)', temp, x_min, fx_min
    END IF
  END DO

  temp = temp * tfactor ! decrease temperature
END DO

Function to be minimized:  f(x) ;   Starting point:   x, fx=f(x)

initial (high) temperature:    temp
Annealing schedule: annealing temperature reduction factor: tfactor (<1)

number of steps per block: nsteps 
‘ad hoc’ parameter for trial move: scale



final T:    2.50315E-01 
final x:   -1.95067E-01 
final f(x):-1.00088E+00

initial T:  10 (KB units) 
initial x:      1.000000
initial f(x):   1.137208 


