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Formal Verification
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Open vs. Closed Systems
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u A closed system is one with no inputs

For verification, we obtain a closed system by composing the system and 
environment models



u Reachability analysis is the process of computing the set of reachable states 
for a system

u Model checking is an algorithmic method for determining if a system 
satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.

Reachability Analysis and Model Checking
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u A requirement describes a desirable property of the system behaviors.

u A Model satisfies its requirements if all system executions satisfy all the 
requirements.

u Two broad categories: 
- safety requirement: “nothing bad ever happens”, 

- liveness requirement: “something good eventually happens”

u Importance of this classification: these two classes of properties require 
fundamentally different classes of model checking algorithms 

Requirements/Property

5



u safety requirement:

“if something bad happens on an infinite run,   then it happens already on some 
finite prefix”

Counterexamples no reachable ERROR state 

u liveness requirement:

“no matter what happens along a finite run, something good could still happen 
later”
Infinite-length counterexamples, loop

Requirements/Property
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u It cannot happen that both processes are in their critical sections simultaneously

u Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most 
once before process P1 gets to enter.

u Whenever process P1 wants to enter the critical section, provided process P2 never stays in the 
critical section forever, P1 gets to enter eventually.

u The elevator will arrive within 30 seconds of being called

u Patient’s blood glucose never drops below 80 mg/dL
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Requirements example



u To verify a safe requirements p on a system M, one simply needs to 
enumerate all the reachable states and check that they all satisfy p.

u A safety requirement for a system classifies its states into safe and unsafe 
and asserts that an unsafe state is never encountered during an execution of 
the system. 

u Safety requirements can be formalized using transition systems

Safety Requirements
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u Transition System is a tuple  < S, I, A, " , AP, L >
� $: Set of State 
� % ⊆ $: set of initial state
� A: finite set of actions
� " : is a set of transition relation s →) s’
� AP: set of atomic proposition on S 
� L: $ → 2,- is a labeling function

(Label) Transition System
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� A path is an (infinite) sequence of states in the TS
e.g. σ = !" !#!$!$!$ …

� A trace is the corresponding sequence of labels
e.g. & &, ( (((

� A word is a sequence of actions
e.g. )****

Transition System
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u All kinds of components (synchronous, asynchronous, timed, hybrid, continuous 
components have an underlying transition system)

u State in the transition system underlying a component captures any given runtime 
configuration of the component

u If a component has finite input/output types and a finite number of “states” in its ESM, 
then it has a finite-state transition system

u Continuous components, Timed Processes, Hybrid Processes in general, have infinite 
number of states

Transition Systems and state
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u S = on, off ×int
u I = { off, x = 0 }
u ) has an infinite number of 

transitions:

* → *′

u E.g. -.., 0 → -0, 0 -0 0
→ -0, 1

Example of a TS
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0



TS describes all possible transitions
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(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42)

off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(on,42)

u Transitions indicated as 
dotted lines can’t really 
happen in the component

u But, the TS will describe then, 
as the states of the TS are 
over ,-, ,// ×int!



Reachable states of a modified switch TS
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

(off,0)

(on,0) (on,1)

(on,2)

(on,100)

(off,42) (on,42)

Reachable states 
and transitions

A state + of a transition system is reachable if there is an execution starting in some initial state 
that ends in +.



u A state ! of a transition system is reachable if there is an execution starting in some 
initial state that ends in !.

u Algorithm to compute reachable states from a given set of initial states (just BFS):

Reachability
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Procedure ComputeReach(TS) 
"#:= &'() , k:=1;
While "* ≠ "*,-

Temp := ∅
ForEach ! ∈ "*,-

If ( !, !1 ∈ 2 )  Temp :=  Temp ∪ !1
EndForEach
"* ≔ "*,- ∪ Temp, 5 ∶= 5 + 1

EndWhile
Return "*

EndProcedure



u Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of 
states

u Safety property can be specified by partitioning the states ! into a safe/unsafe set
� !"#$ ⊆ !, &'("#$ ⊆ !, !"#$ ∩ &'("#$ = ∅
� Any finite sequence that ends in a state , ∈ &'("#$ is a witness to undesirable behavior, 

or if all (infinite) sequences starting from an initial state never include a state from &'("#$, 
then the TS is safe.

u In other words, to get a proof of safety, do reachability computation, and if 
ComputeReach(TS) ∩ &'("#$ = ∅, then the TS is safe

Desirable behaviors of a TS
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u An invariant is a Boolean expression over the state variables of a TS
u A property ! is called an invariant of TS if every reachable state of TS 

satisfies !

Safety invariants 
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

Examples:
� ,-./ = -11
� x < 2
� ,-./ = -11 ⇒ (x = 0)
� (x ≤ 50)



u An invariant ! is a safety invariant if 
! ∩ #$%&'( = ∅

u Suppose, +&'( = |x 0 ≤ x ≤ 3 , and 
#$%&'( = +&'(

u Then, we can verify that 0 ≤ x ≤ 2 is a 
safety invariant for modified switch

Safety invariants 
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0



u Given TS and a property !, prove that all reachable states of TS satisfy !
u Base case: Show that all initial states satisfy !
u Inductive case: assume state " satisfies !, then show that if ", "$ ∈ & , then s′ must also satisfy !

Inductive Safety Proof
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0



u A property ! is an inductive invariant of a transition system TS if 
�Every initial state satisfies !
� If any state " satisfies !, and ", "$ ∈ & , then "$ satisfies !

u By definition, if ! is an inductive invariant, then all reachable states of TS 
satisfy !, and hence it is also an invariant 

Inductive Invariant
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u Consider transition system TS given by
�!"#$: x ↦ 0
�(: if (x < m) then x ≔ x + 1 (else x remains unchanged)

u Is 0: (0 ≤ x ≤ 3) an inductive invariant?
u Base case: x is zero, so 0 is trivially satisfied

Proving inductive invariants: I
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u Inductive case: 
�Pick an arbitrary state (i.e. arbitrary value for state variable x), say x ↦ k
�Now assume $ satisfies %, i.e. 0 ≤ k ≤ (
�Consider the transition, there are two cases:

�If k < (, then x = k + 1 after the transition, and k < m ⇒
k + 1 ≤ (

�If k = (, then x = k (because guard is not true), which is ≤ (.
� In either case, after the update 0 ≤ x ≤ (
�So % is an inductive invariant, and the proof is complete

Proving inductive invariants: I
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/012: x ↦ 0
3: if (x < m) then x ≔ x + 1



u Given TS and a property !, prove that all reachable states of TS satisfy !

u ComputeReach(TS), it actually gives an inductive definition of reachable 
states
�All states specified by " (initial state) are reachable using 0 transitions
� If a state # is reachable using $ transitions, and #, #& is a transition in ' , 

then s′ is reachable using $ + 1 transitions
�Reachable = Reachable using + transitions for some +

Proving that something is an invariant
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To establish that ! is an invariant of TS:
u Find another property " such that

�" ⇒ ! (i.e. every state satisfying " must satisfy !)
�" is an inductive invariant

�Show initial states satisfy "
�Assume an arbitrary state $ satisfies ", consider any state %′ such that 
$, $( ∈ * , then prove that $( satisfies "

How do we prove safety invariants?
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u !: |x 0 ≤ x ≤ 3
u Let’s try the inductive invariant: (: )*+, = *.. ⇒ x = 0 ∧ )*+, = *1 ⇒ (0 ≤ x ≤ 2)

Safety Proof for Switch
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off

on

(press==0)?
(press==1)?

(press==0) & (x<2) ?
→ x ≔ x + 1

int x ≔ 0

(press==1) or (x≥ 2) ?
→ x ≔ 0

u =1>?: x ↦ 0,)*+, ↦ *..
u Base case: (*.., 0) trivially satisfies (
u Inductive hypothesis: assume that a state B satisfies (
u Inductive step: prove that any B′ s.t. B, BD ∈ F satisfies (

� Case I: B = (*.., 0)
� B′ = (*.., 0) [trivial]
� B′ = (*1, 0) [satisfies second conjunct in (]

� Case II: B = (*1, 1)
� BD = (*1, 1 + 1) if 1 < 2, this implies that 1 + 1 ≤ 2, so BD satisfies (
� BD = (*.., 0) otherwise, this again implies that BD satisfies (

u So ( is an inductive invariant
u Further, ( ⇒ ! (note that every state satisfying ( will satisfy !)
u So ! is an invariant of the TS!



Synchronous  Product 

33checking of safety properties can hence be reduced to checking an invariant in the 
product 



u A safety monitor classifies system behaviors into good and bad

u Safety verification can be done using inductive invariants or analyzing 
reachable state space of the system
�A bug is an execution that drives the monitor into an error state

u Can we use a monitor to classify infinite behaviors into good or bad?

u Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi
in 1960

Monitors 
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Specification in LTL
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!(# → %&)

F#



u Theoretical result: Every LTL formula ! can be converted to a Büchi monitor/automaton "#
Büchi automaton
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u It is an automaton which accepts infinite paths 

u A Büchi automaton is tuple B =< ', ), ", *, + >
• S  finite set of states (like a TS) –
• I Í S is a set of initial states (like a TS) –
• A is a finite alphabet (like a TS) –
• * is a transition relation (like a TS) 
• F  is a set of accepting states 

u An infinite sequence of states (a path) is 
accepted iff it contains accepting states (from F) 
infinitely often



Example: accepted words
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What words are accepted by this automaton B? 

L(B) = pq+(pq+)* L(B) is called the language of B.

It is the set of words for which there exists an accepting run of the automaton.



LTL to Buchi
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Every LTL formula has a corresponding Buchi automaton that accepts all and only the 
infinite state traces that satisfy the formula

φ = G F p



LTL Model Checking
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LTL Model Checking
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LTL Model Checking

41



u Modeling protocols, decision layer components
�Synchronous and Asynchronous processes
�Understanding system-level safety using synchronous and asynchronous 

composition
�Verification using Model Checking, Inductive Invariants
�Liveness properties with LTL, CTL
�Model-based and Scenario-based Testing approaches

Design challenges → Course Concepts
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u Modeling Controllers, Path planning
�Timed and Hybrid Processes, Dynamical Systems
�Markov Decision Processes & Markov Chains
�Verification using Model Checking, Inductive invariants, Liveness checking 

with LTL, CTL, STL
�Testing using Falsification-based approaches
�Software synthesis using Temporal Logic-based approaches, reinforcement 

learning

Design challenges → Course Concepts
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u Reasoning about environments, physical processes to be controlled
�Dynamical systems models, hybrid processes
�Signal Temporal Logic as a way to express Cyber-Physical systems 

specifications
�Testing and Falsification approaches
�Reasoning about safety 

Design Challenges → Course Concepts
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u You want to develop a new CPS/IoT system with autonomy
u Analyze its environment: model it as a dynamical system or a stochastic 

system (e.g. PoMDPs)
u Analyze what models to use for the control algorithms

�Choices are: Traditional control schemes (PID/MPC), state-machines 
(synchronous vs. asynchronous based on communication type), 
AI/planning algorithms, hybrid control algorithms, or combinations of 
these

How does everything fit together?
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u Try to specify the closed-loop system as something you can simulate and see its 
behaviors
� Integrative modeling environment such as Simulink (plant models + software 

models)
� Specify requirements of how you expect the system to behave (STL, LTL, or your 

favorite spec. formalism)
�This step is a DO NOT MISS. It will provide documentation of your intent, and 

also a machine-checkable artifact
u Test the system a lot, and then test some more
u Apply formal reasoning wherever you can. Proofs are great if you can get them
u Safety doesn’t end at modeling stage; continue reasoning about safety after 

deployment (through monitoring etc.)

Safety is the key!!
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u Basics of Control
� PID, MPC, Nonlinear control, Observer design (Kalman 

filter)
u Basics of Planning

� Path planning, Reinforcement learning

u Models of computation
� Asynchronous, Synchronous, Timed, Hybrid Processes, 

Dynamical Systems, MDP
MODELING

AUTONOMY

u Specification Languages 
(LTL, CTL, STL)

u Falsification and Testing,
Parameter Synthesis

u Safety Invariants 
Reachability, Model 
Checking

SAFETY


