Cyber-Physical Systems

Laura Nenzi

Universita degli Studi di Trieste
Il Semestre 2018

Lecture 12: Verification

[Many Slides due to J. Deshmukh ]



Formal Verification

Property
o
YES
Syz’sem [proof]

Environment

E

Compose . Verify I

counterexample



Open vs. Closed Systems

A closed system is one with no inputs

in out out
AP p— Sc¢

(a) Open system (b) Closed system

For verification, we obtain a closed system by composing the system and
environment models



Reachability Analysis and Model Checking

Reachability analysis is the process of computing the set of reachable states
for a system

Model checking is an algorithmic method for determining if a system
satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.



Requirements/Property

A requirement describes a desirable property of the system behaviors.

A Model satisfies its requirements if all system executions satisfy all the
requirements.

Two broad categories:

- safety requirement: “nothing bad ever happens”,

- liveness requirement: “something good eventually happens”

Importance of this classification: these two classes of properties require
fundamentally different classes of model checking algorithms



Requirements/Property

safety requirement:

“if something bad happens on an infinite run, then it happens already on some
finite prefix”

Counterexamples no reachable ERROR state

liveness requirement:

I”no matter what happens along a finite run, something good could still happen
ater”

Infinite-length counterexamples, loop



Requirements example

It cannot happen that both processes are in their critical sections simultaneously

Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most
once before process P1 gets to enter.

Whenever process P1 wants to enter the critical section, provided process P2 never stays in the
critical section forever, P1 gets to enter eventually.

The elevator will arrive within 30 seconds of being called

Patient’s blood glucose never drops below 80 mg/dL



Safety Requirements

To verify a safe requirements p on a system M, one simply needs to
enumerate all the reachable states and check that they all satisfy p.

A safety requirement for a system classifies its states into safe and unsafe
and asserts that an unsafe state is never encountered during an execution of
the system.

Safety requirements can be formalized using transition systems



(Label) Transition System

Transition System is a tuple < S, I, A,[T], AP, L >
S: Set of State
I € S: set of initial state
A: finite set of actions
[T]: is a set of transition relations —»% s
AP: set of atomic propositionon S
L:S — 24P isalabeling function

I




Transition System

b
a g \\< b
"S1/p,
So/p 1/P,9 g

A path is an (infinite) sequence of states in the TS
€.g.0= SO 51525252

A trace is the corresponding sequence of labels
e.g. pip, q3qqq

A word is a sequence of actions
e.g. abbbb



Transition Systems and state

All kinds of componentsésync_hronous, asynchronous, timed, hybrid, continuous
components have an underlying transition system)

State in the transition system underlying a component captures any given runtime
configuration of the component

If a component has finite input/output types and a finite number of “states” in its ESM,
then it has a finite-state transition system

Continuous components, Timed Processes, Hybrid Processes in general, have infinite
number of states



Example of a TS

intx:=0

(press==1) or (x= 2) ?
- X =0

(press==0) & (x<2) ?
- X =x+1

S = {on, off} Xint
| ={off x=0}

[T] has an infinite number of
transitions:

S —S

E.g. (of f,0) — (on,0)
- (on, 1)

(on 0)



TS describes all possible transitions

intx:=0

Transitions indicated as
dotted lines can’t really
happen in the component

But, the TS will describe then,
as the states of the TS are
over {on, of f } Xint!

(press==0)?

(press==1) or (x= 2) ?
- X =0

(press==0) & (x<2) ?
-»Xx =x+1




Reachable states of a modified switch TS

(on,0)

(press==1) or (x=2) ?
->x =0
(press==0) & (x<2) ? Reachable states
—>x:=x+1 and transitions

’,
________

A state s of a transition system is reachable if there is an execution starting in some initial state
that ends in s.



Reachability

A state g of a transition system is reachable if there is an execution starting in some
initial state that ends in q.

Algorithm to compute reachable states from a given set of initial states (just BFS):

Procedure ComputeReach(TS)
Yy: = [Init]), k:=1;
While (Y, # Yi_1)
Temp :=0Q
ForEach g € V},_4
If ((q,q") € [T]) Temp := Temp U {q'}
EndForEach
Y =Y,_1UTemp, k := k+1
EndWhile
Return Y,
EndProcedure



Desirable behaviors of a TS

Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of
states

Safety property can be specified by partitioning the states S into a safe/unsafe set
Safe € S, Unsafe € S, Safe N Unsafe =0

Any finite sequence that ends in a state g € Unsafe is a witness to undesirable behavior,
or if all (infinite) sequences starting from an initial state never include a state from Unsafe,
then the TS is safe.

In other words, to get a proof of safety, do reachability computation, and if
ComputeReach(TS) N Unsafe = @, then the TS is safe



Safety invariants

An invariant is a Boolean expression over the state variables of a TS

A property @ is called an invariant of TS if every reachable state of TS
satisfies @

Examples: e
(mode = of f) N off (press==1)?
(X < 2) ress==u)r
(mode — Off) = (X — O) (press==1) or (x=2) ? on
(x < 50) >x =0

(press==0) & (x<2) ?
->x =x+1



Safety invariants

An invariant @ is a safety invariant if
@ NUnsafe =0

intx:=0

Suppose, Safe = {x|0 < x < 3}, and
Unsafe = Safe (press==0)?

(press==1) or (x=2) ?
- x =0

Then, we can verifythat 0 < x < 2isa
sdfety invariant for modified switch (press==0) & (x<2) ?

->xX =x+1



Inductive Safety Proof

Given TS and a property ¢, prove that all reachable states of TS satisfy ¢
Base case: Show that all initial states satisfy @

Inductive case: assume state s satisfies ¢, then show that if (s, s") € [T], then s’ must also satisfy ¢
intx:=0

(press==0)?

(press==1) or (x=2) ?
-»x =0

(press==0) & (x<2) ?
->x =x+1



Inductive Invariant

A property @ is an inductive invariant of a transition system TS if
Every initial state satisfies ¢
If any state s satisfies ¢, and (s,s’) € [T], then s’ satisfies ¢

By definition, if ¢ is an inductive invariant, then all reachable states of TS
satisfy @, and hence it is also an invariant



Proving inductive invariants: |

Consider transition system TS given by
Init:x - 0
T:if (x<m)thenx:=x+4 1 (else x remains unchanged)

Is : (0 < x < m) an inductive invariant?
Base case: X is zero, so @ is trivially satisfied



Proving inductive invariants: | mit:x o o0

_ T:if(x<m)thenx:=x+1
Inductive case:

Pick an arbitrary state (i.e. arbitrary value for state variable x), say x = k
Now assume k satisfies @, i.,e. 0 < k<m
Consider the transition, there are two cases:

If k < m, then x = k + 1 after the transition, and (k < m) =
(k+1)<m

If K = m, then x = k (because guard is not true), which is < m.
In either case, after the update 0 < x<m
So @ is an inductive invariant, and the proof is complete



Proving that something is an invariant

Given TS and a property ¢, prove that all reachable states of TS satisfy ¢

ComputeReach(TS), it actually gives an inductive definition of reachable
states

All states specified by I (initial state) are reachable using O transitions

If a state s is reachable using k transitions, and (s, s’) is a transition in [[T],
then s’ is reachable using k + 1 transitions

Reachable = Reachable using n transitions for some n



How do we prove safety invariants?

To establish that ¢ is an invariant of TS:

Find another property 1 such that
Y = @ (i.e. every state satisfying Y must satisfy @)
Y is an inductive invariant
Show initial states satisfy Y

Assume an arbitrary state s satisfies 1, consider any state g’ such that
(s,s") € [T], then prove that s’ satisfies 1



Safety Proof for Switch

@: {x|0 < x < 3}
Let’s try the inductive invariant: y: ((mode =off) > (x= O)) A ((mode =on)=>(0<x< 2))

Init:x = 0,mode » of f

Base case: (off,0) trivially satisfies i
Inductive hypothesis: assume that a state g satisfies 1

intx:=0

Inductive step: prove that any q’ s.t. (q,q") € [T] satisfies

Case l: g = (of f,0) (press==0)?
q' = (of f,0) [trivial]

q' = (on, 0) [satisfies second conjunct in V]
Case ll: g = (on,n)

q' = (on,n+ 1) if n < 2, this implies thatn + 1 < 2, so q' satisfies ¥ (press==1) or (x=2) ?

q' = (of f,0) otherwise, this again implies that g’ satisfies ¥ -»x =0
So v is an inductive invariant (press==0) & (x<2) ?
Further, ) = ¢ (note that every state satisfying Y will satisfy @) -»x=x+1

So @ is an invariant of the TS!



Synchronous Product

Vs

. S { red }
/ \ >
] { yel/OW} Z Sry
\M
N 59 J

—
|

)

ﬁred A —yellow

/\@

yellow N\ —red

B

< o
ye//ow/ q1)— /

—yellow

&W/

7 )

’{\ (8¢, Qo) T

i

(59, 01)) ({0, q0))

(Srys (1()>3

checking of safety properties can hence be reduced to checking an invariant in the

product



Monitors

A safety monitor classifies system behaviors into good and bad

Safety verification can be done using inductive invariants or analyzing
reachable state space of the system

A bug is an execution that drives the monitor into an error state

Can we use a monitor to classify infinite behaviors into good or bad?

Yes, using theoretical model of Blichi automata proposed by J. Richard Buchi
in 1960



Specification in LTL

b

a b
\@ Sq/p,q 5

C

(=

Fm

G(m - Xq)



BUchi automaton

Theoretical result: Every LTL formula ¢ can be converted to a Blichi monitor/automaton 4,,

It is an automaton which accepts infinite paths

A Blchi automatonistuple B =< §,1,4,6,F >
S finite set of states (like a TS) —
1S is a set of initial states (like a TS) —
A is a finite alphabet (like a TS) —
0 is a transition relation (like a TS) 9

F is a set of accepting states Q O q
p
RO

An infinite sequence of states (a path) is @ 9 @
accepted iff it contains accepting states (from F) w

infinitely often




Example: accepted words

What words are accepted by this automaton B?

L(B) = pg+(pg+)™* L(B) is called the language of B.

It is the set of words for which there exists an accepting run of the automaton.



LTL to Buchi

Every LTL formula has a corresponding Buchi automaton that accepts all and only the
infinite state traces that satisfy the formula

C ), O




LTL Model Checking

« TS M: input set A = {a,b,c} and AP={p,q}
e« Formulago=GFp

* Traces of M = infinite label sequences (e.g.
o,=({a}.{p}.{p.q})" and c,={q}")




LTL Model Checking

* B, accepts exactly those traces that
satisfy ¢

* B., accepts exactly those traces that

falsify ¢
* ~¢ = ~(GFp)=F~(Fp)=F(G~p)

true ~p




LTL Model Checking

 |f TS generates a trace that is accepted by
B_, , this means, by construction, that the
trace violates @, and so that the TS is
incorrect (relative to @)

Accepting trace = cycle

that contains an accepting
state
O



Design challenges — Course Concepts

Modeling protocols, decision layer components
Synchronous and Asynchronous processes

Understanding system-level safety using synchronous and asynchronous
composition

Verification using Model Checking, Inductive Invariants
Liveness properties with LTL, CTL
Model-based and Scenario-based Testing approaches



Design challenges — Course Concepts

Modeling Controllers, Path planning
Timed and Hybrid Processes, Dynamical Systems
Markov Decision Processes & Markov Chains

Verification using Model Checking, Inductive invariants, Liveness checking
with LTL, CTL, STL

Testing using Falsification-based approaches

Software synthesis using Temporal Logic-based approaches, reinforcement
learning



Design Challenges = Course Concepts

Reasoning about environments, physical processes to be controlled

Dynamical systems models, hybrid processes

Signal Temporal Logic as a way to express Cyber-Physical systems
specifications

Testing and Falsification approaches

Reasoning about safety



How does everything fit together?

You want to develop a new CPS/IoT system with autonomy

Analyze its environment: model it as a dynamical system or a stochastic
system (e.g. POMDPs)

Analyze what models to use for the control algorithms

Choices are: Traditional control schemes (PID/MPC), state-machines
(synchronous vs. asynchronous based on communication type),
Al/planning algorithms, hybrid control algorithms, or combinations of
these



Safety is the key!!

Try to specify the closed-loop system as something you can simulate and see its
behaviors

Inte rlat)lve modeling environment such as Simulink (plant models + software
models

Specify requirements of how you expect the system to behave (STL, LTL, or your
favorite spec. formalism)

This step is a DO NOT MISS. It will provide documentation of your intent, and
also a machine-checkable artifact

Test the system a lot, and then test some more
Apply formal reasoning wherever you can. Proofs are great if you can get them

Safety doesn’t end at modeling stage; continue reasoning about safety after
deployment (through monitoring etc.)



Models of computation

Asynchronous, Synchronous, Timed, Hybrid Processes,
Dynamical Systems, MDP

MODELING

Basics of Control

PID, MPC, Nonlinear control, Observer design (Kalman
filter)

Basics of Planning AUTONOMY

Path planning, Reinforcement learning

Specification Languages
(LTL, CTL, STL)

Falsification and Testing,
Parameter Synthesis

Safety Invariants
Reachability, Model

Checking




