Cyber-Physical Systems

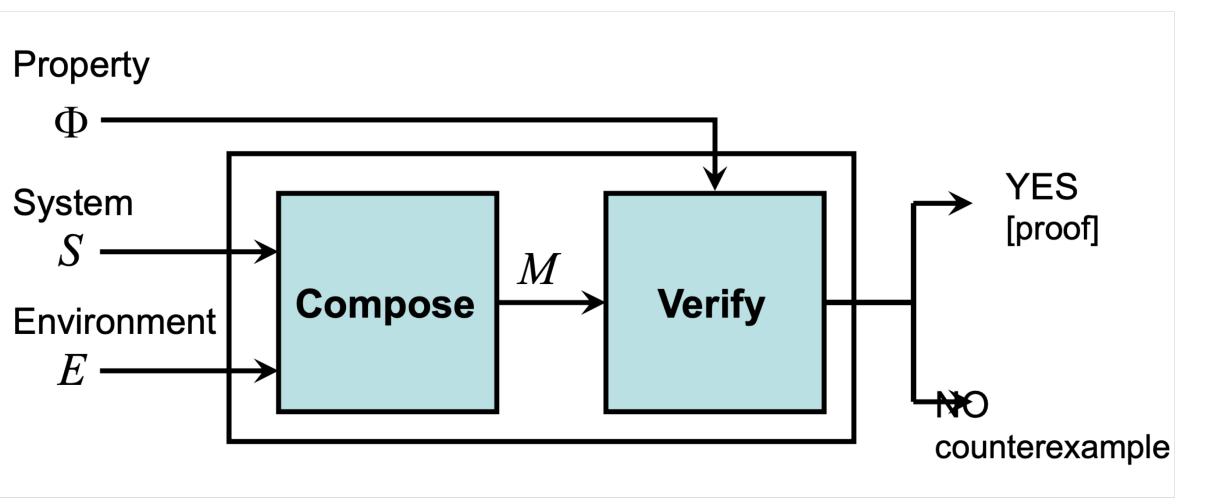
Laura Nenzi

Università degli Studi di Trieste Il Semestre 2018

Lecture 12: Verification

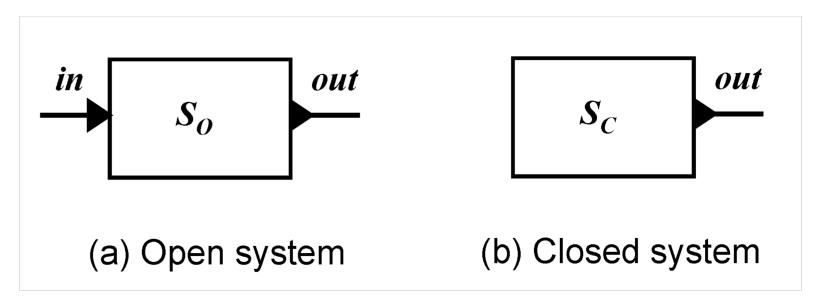
[Many Slides due to J. Deshmukh]

Formal Verification



Open vs. Closed Systems

A closed system is one with no inputs



For verification, we obtain a closed system by composing the system and environment models

Reachability Analysis and Model Checking

Reachability analysis is the process of computing the set of reachable states for a system

Model checking is an algorithmic method for determining if a system satisfies a formal specification expressed in temporal logic

Model checking typically performs reachability analysis.

Requirements/Property

- A requirement describes a desirable property of the system behaviors.
- A Model satisfies its requirements if *all* system executions satisfy all the requirements.
- Two broad categories:
 - safety requirement: "nothing bad ever happens",
 - **liveness** requirement: "something good eventually happens"
- Importance of this classification: these two classes of properties require fundamentally different classes of model checking algorithms

Requirements/Property

safety requirement:

"if something bad happens on an infinite run, then it happens already on some finite prefix"

Counterexamples no reachable ERROR state

liveness requirement:

"no matter what happens along a finite run, something good could still happen later"

Infinite-length counterexamples, loop

Requirements example

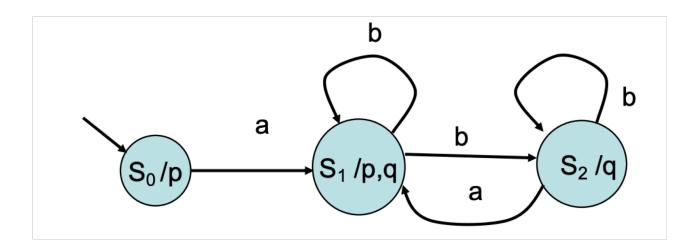
- It cannot happen that both processes are in their critical sections simultaneously
- Whenever process P1 wants to enter the critical section, then process P2 gets to enter at most once before process P1 gets to enter.
- Whenever process P1 wants to enter the critical section, provided process P2 never stays in the critical section forever, P1 gets to enter eventually.
- The elevator will arrive within 30 seconds of being called
- Patient's blood glucose never drops below 80 mg/dL

Safety Requirements

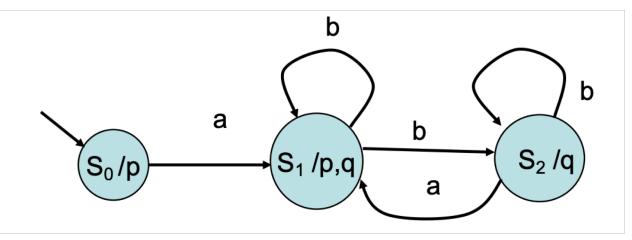
- To verify a safe requirements p on a system M, one simply needs to enumerate all the reachable states and check that they all satisfy p.
- A safety requirement for a system classifies its states into safe and unsafe and asserts that an unsafe state is never encountered during an execution of the system.
- Safety requirements can be formalized using transition systems

(Label) Transition System

- Transition System is a tuple $\langle S, I, A, [T], AP, L \rangle$
 - ► S: Set of State
 - ▶ $I \subseteq S$: set of initial state
 - A: finite set of actions
 - ▶ $\llbracket T \rrbracket$: is a set of transition relation s \rightarrow^a s'
 - AP: set of atomic proposition on S
 - ▶ L: $S \rightarrow 2^{AP}$ is a labeling function



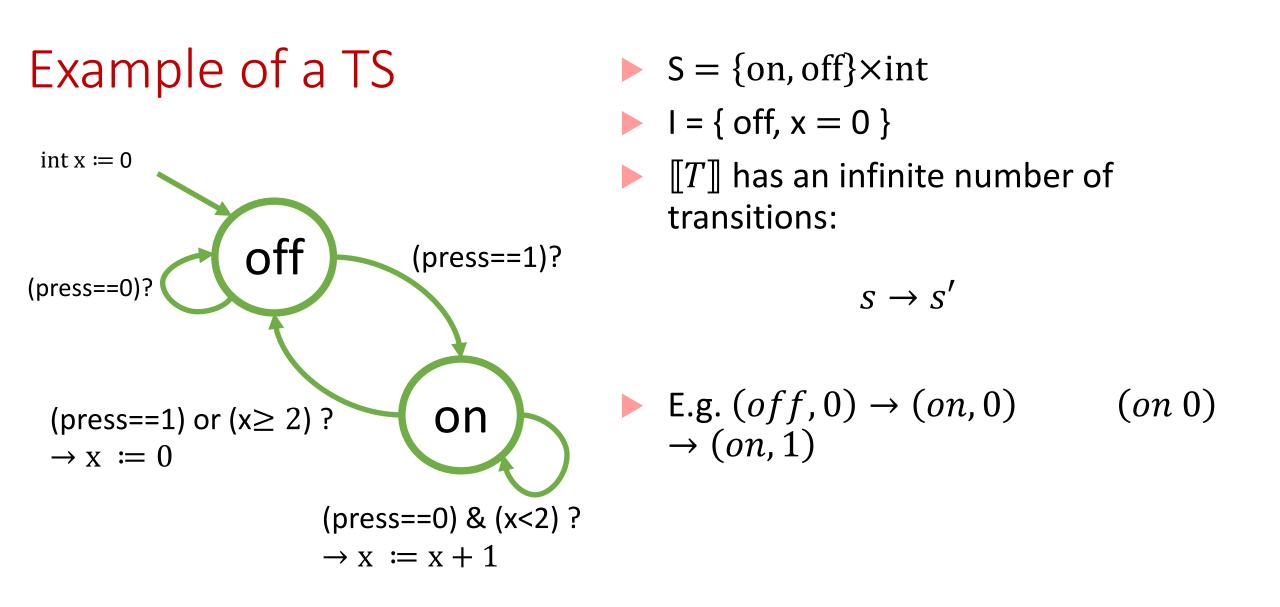
Transition System



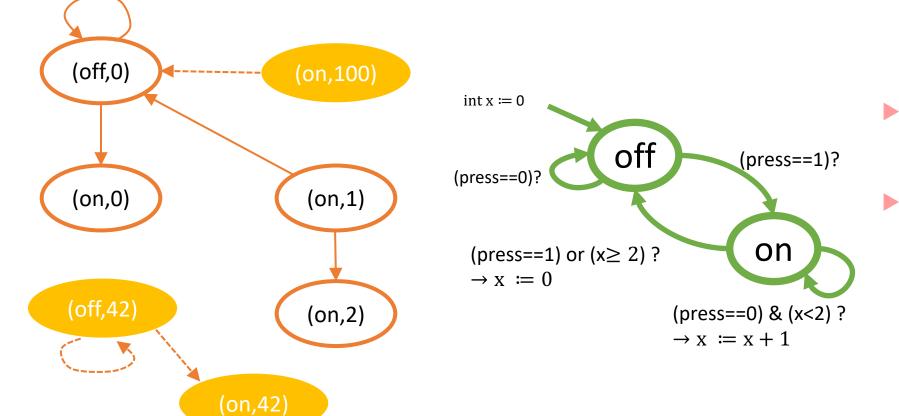
- A **path** is an (infinite) sequence of states in the TS e.g. $\sigma = S_0 S_1 S_2 S_2 S_2 \dots$
- A trace is the corresponding sequence of labels e.g. p{p,q}qqq
- A word is a sequence of actions e.g. *abbbb*

Transition Systems and state

- All kinds of components (synchronous, asynchronous, timed, hybrid, continuous components have an underlying transition system)
- State in the transition system underlying a component captures any given runtime configuration of the component
- If a component has finite input/output types and a finite number of "states" in its ESM, then it has a finite-state transition system
- Continuous components, Timed Processes, Hybrid Processes in general, have infinite number of states

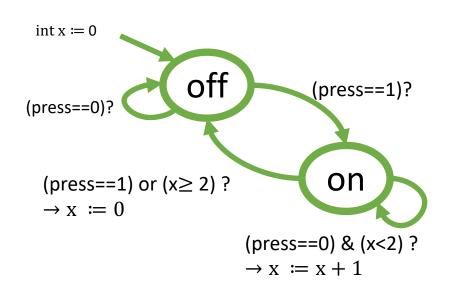


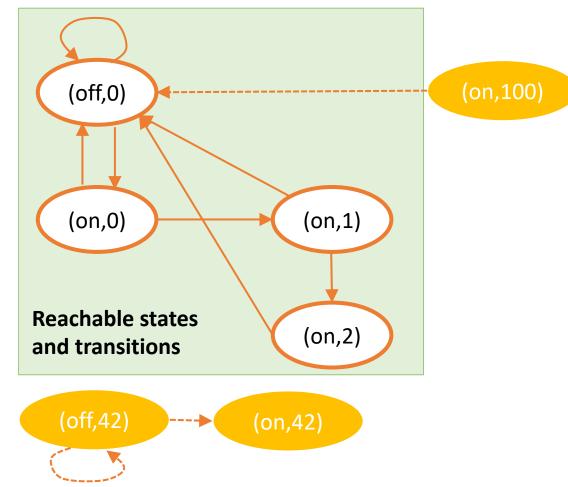
TS describes all possible transitions



- Transitions indicated as dotted lines can't really happen in the component
- But, the TS will describe then, as the states of the TS are over {*on*, *of f*}×int!

Reachable states of a modified switch TS





A state *s* of a transition system is *reachable* if there is an execution starting in some initial state that ends in *s*.

Reachability

- A state q of a transition system is *reachable* if there is an execution starting in some initial state that ends in q.
- Algorithm to compute reachable states from a given set of initial states (just BFS):

```
Procedure ComputeReach(TS)

Y_0: = [[Init]], k:=1;

While (Y_k \neq Y_{k-1})

Temp := Ø

ForEach q \in Y_{k-1}

If ((q, q') \in [[T]]) Temp := Temp \cup \{q'\}

EndForEach

Y_k := Y_{k-1} \cup Temp, k := k + 1

EndWhile

Return Y_k

EndProcedure
```

Desirable behaviors of a TS

Desirable behavior of a TS: defined in terms of acceptable (finite or infinite) sequences of states

- Safety property can be specified by partitioning the states S into a safe/unsafe set
 - ▶ $Safe \subseteq S$, $Unsafe \subseteq S$, $Safe \cap Unsafe = \emptyset$
 - ► Any finite sequence that ends in a state q ∈ Unsafe is a witness to undesirable behavior, or if all (infinite) sequences starting from an initial state never include a state from Unsafe, then the TS is safe.

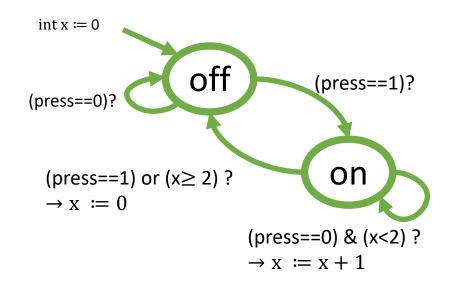
In other words, to get a proof of safety, do reachability computation, and if ComputeReach(TS) ∩ Unsafe = Ø, then the TS is safe

Safety invariants

- An *invariant* is a Boolean expression over the state variables of a TS
- A property φ is called an invariant of TS if every reachable state of TS satisfies φ

Examples:

- \blacktriangleright (mode = off)
- ▶ (x < 2)
- ▶ $(mode = off) \Rightarrow (x = 0)$
- ▶ (x ≤ 50)

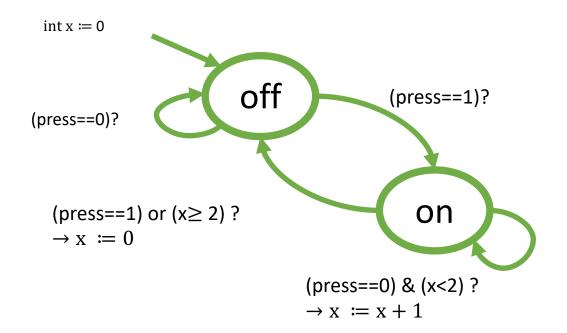


Safety invariants

An invariant φ is a **safety invariant** if $\varphi \cap Unsafe = \emptyset$

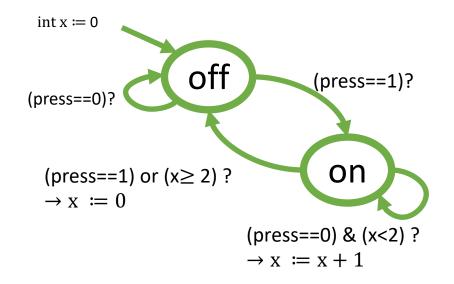
Suppose,
$$Safe = \{x | 0 \le x \le 3\}$$
, and $Unsafe = Safe$

Then, we can verify that $0 \le x \le 2$ is a *safety invariant* for modified switch



Inductive Safety Proof

- Given TS and a property φ , prove that all reachable states of TS satisfy φ
- **b** Base case: Show that all initial states satisfy φ
- Inductive case: assume state s satisfies φ , then show that if $(s, s') \in [T]$, then s' must also satisfy φ



Inductive Invariant

- A property φ is an *inductive invariant* of a transition system TS if
 Every initial state satisfies φ
 - ▶ If any state s satisfies φ , and $(s, s') \in \llbracket T \rrbracket$, then s' satisfies φ
- By definition, if φ is an inductive invariant, then all reachable states of TS satisfy φ , and hence it is also an invariant

Proving inductive invariants: I

Consider transition system TS given by

- ►*Init*: $x \mapsto 0$
- ► T: if (x < m) then $x \coloneqq x + 1$ (else x remains unchanged)
- ▶ Is φ : $(0 \le x \le m)$ an inductive invariant?
- Base case: x is zero, so φ is trivially satisfied

Proving inductive invariants: I

Inductive case:

▶ Pick an arbitrary state (i.e. arbitrary value for state variable x), say $x \mapsto k$

Init: $x \mapsto 0$

T: if (x < m) then $x \coloneqq x + 1$

- ▶ Now assume k satisfies φ , i.e. $0 \le k \le m$
- Consider the transition, there are two cases:
 - If k < m, then x = k + 1 after the transition, and (k < m) \Rightarrow (k + 1) \leq m

If k = m, then x = k (because guard is not true), which is $\leq m$.

▶ In either case, after the update $0 \le x \le m$

 \blacktriangleright So φ is an inductive invariant, and the proof is complete

Proving that something is an invariant

- Given TS and a property φ , prove that all reachable states of TS satisfy φ
- ComputeReach(TS), it actually gives an inductive definition of reachable states
 - ▶ All states specified by *I* (initial state) are reachable using 0 transitions
 - ▶ If a state s is reachable using k transitions, and (s, s') is a transition in [T], then s' is reachable using k + 1 transitions
 - Reachable = Reachable using n transitions for some n

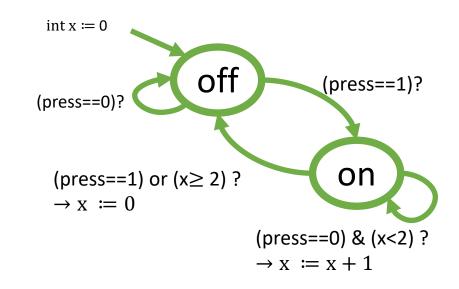
How do we prove safety invariants?

To establish that φ is an invariant of TS:

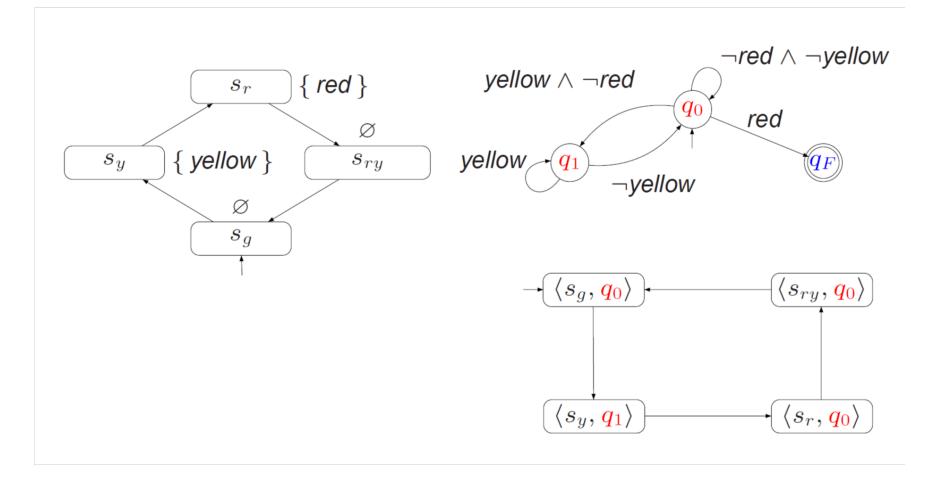
- Find another property ψ such that
 - ▶ $\psi \Rightarrow \varphi$ (i.e. every state satisfying ψ must satisfy φ)
 - $\mathbf{V}\psi$ is an inductive invariant
 - Show initial states satisfy ψ
 - Assume an arbitrary state s satisfies ψ , consider any state q' such that $(s, s') \in [T]$, then prove that s' satisfies ψ

Safety Proof for Switch

- Let's try the inductive invariant: $\psi: ((mode = off) \Rightarrow (x = 0)) \land ((mode = on) \Rightarrow (0 \le x \le 2))$
- Init: $x \mapsto 0$, mode $\mapsto off$
- Base case: (off, 0) trivially satisfies ψ
- Inductive hypothesis: assume that a state q satisfies ψ
- ▶ Inductive step: prove that any q' s.t. $(q, q') \in \llbracket T \rrbracket$ satisfies ψ
 - Case I: q = (off, 0)
 - q' = (off, 0) [trivial]
 - q' = (on, 0) [satisfies second conjunct in ψ]
 - Case II: q = (on, n)
 - ▶ q' = (on, n + 1) if n < 2, this implies that $n + 1 \le 2$, so q' satisfies ψ
 - q' = (off, 0) otherwise, this again implies that q' satisfies ψ
- So ψ is an inductive invariant
- Further, $\psi \Rightarrow \varphi$ (note that every state satisfying ψ will satisfy φ)
- So φ is an invariant of the TS!



Synchronous Product

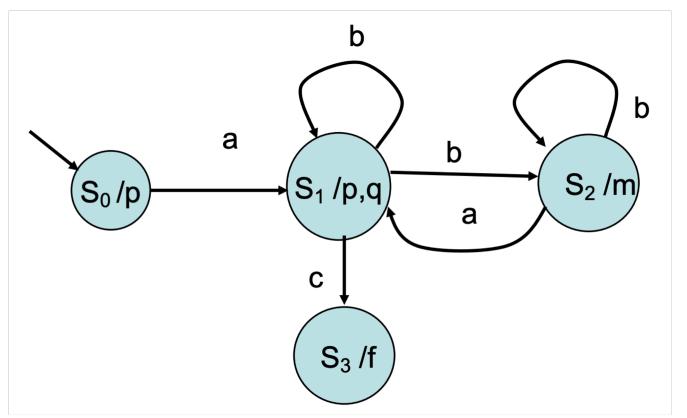


checking of safety properties can hence be reduced to checking an invariant in the product

Monitors

- A safety monitor classifies system behaviors into good and bad
- Safety verification can be done using inductive invariants or analyzing reachable state space of the system
 - A bug is an execution that drives the monitor into an error state
- Can we use a monitor to classify infinite behaviors into good or bad?
- Yes, using theoretical model of Büchi automata proposed by J. Richard Büchi in 1960

Specification in LTL

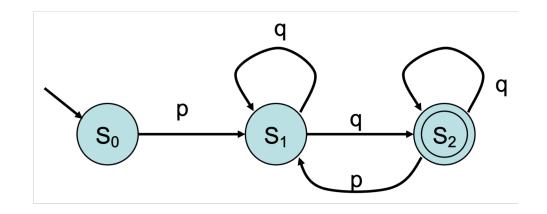


Fm

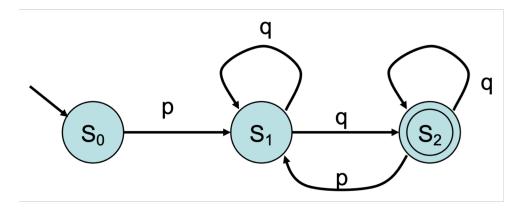
 $G(m \rightarrow Xq)$

Büchi automaton

- Theoretical result: Every LTL formula φ can be converted to a Büchi monitor/automaton A_{φ}
- It is an automaton which accepts infinite paths
- A Büchi automaton is tuple B = $< S, I, A, \delta, F >$
 - S finite set of states (like a TS) –
 - I Í S is a set of initial states (like a TS) –
 - A is a finite alphabet (like a TS) –
 - δ is a transition relation (like a TS)
 - F is a set of accepting states
- An infinite sequence of states (a path) is accepted iff it contains accepting states (from F) infinitely often



Example: accepted words



What words are accepted by this automaton B?

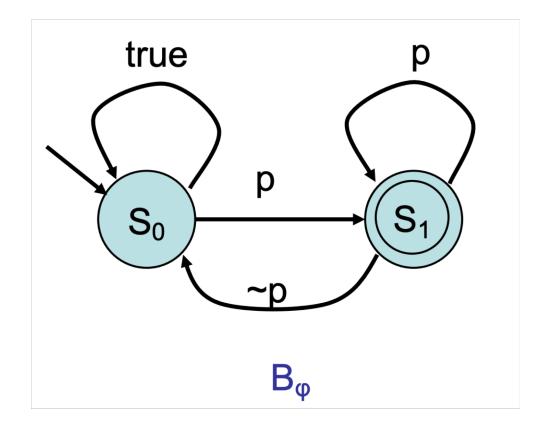
L(B) = pq+(pq+)* L(B) is called the language of B.

It is the set of words for which there exists an accepting run of the automaton.

LTL to Buchi

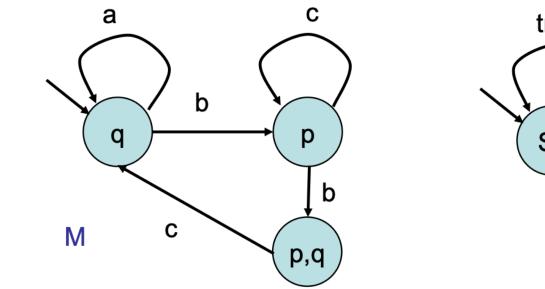
Every LTL formula has a corresponding Buchi automaton that accepts all and only the infinite state traces that satisfy the formula

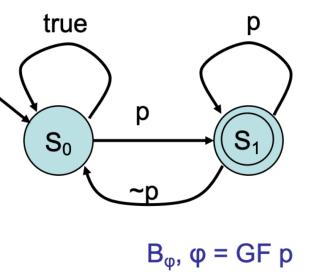
 $\phi = G F p$



LTL Model Checking

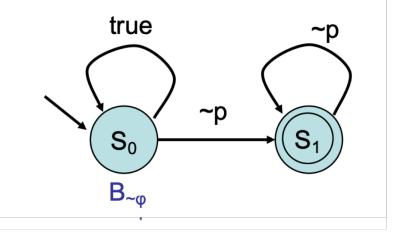
- TS M: input set A = {a,b,c} and AP={p,q}
- Formula φ = G F p
- Traces of M = infinite label sequences (e.g. σ₁=({q},{p},{p,q})* and σ₂={q}*)





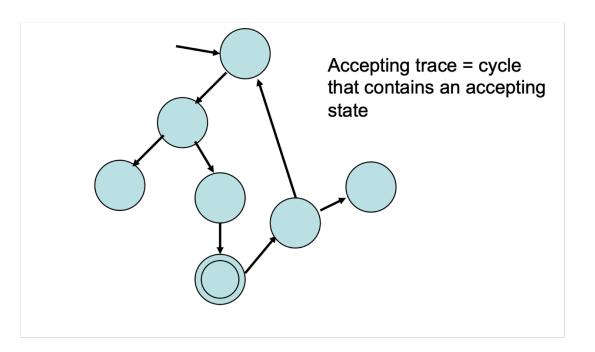
LTL Model Checking

- B_{ϕ} accepts exactly those traces that satisfy ϕ
- $B_{\sim\phi}$ accepts exactly those traces that falsify ϕ
- $\sim \phi = \sim (GFp) = F \sim (Fp) = F(G \sim p)$



LTL Model Checking

• If TS generates a trace that is accepted by $B_{\sim \phi}$, this means, by construction, that the trace violates ϕ , and so that the TS is incorrect (relative to ϕ)



Design challenges → Course Concepts

- Modeling protocols, decision layer components
 - Synchronous and Asynchronous processes
 - Understanding system-level safety using synchronous and asynchronous composition
 - Verification using Model Checking, Inductive Invariants
 - Liveness properties with LTL, CTL
 - Model-based and Scenario-based Testing approaches

Design challenges → Course Concepts

- Modeling Controllers, Path planning
 - Timed and Hybrid Processes, Dynamical Systems
 - Markov Decision Processes & Markov Chains
 - Verification using Model Checking, Inductive invariants, Liveness checking with LTL, CTL, STL
 - Testing using Falsification-based approaches
 - Software synthesis using Temporal Logic-based approaches, reinforcement learning

Design Challenges → Course Concepts

- Reasoning about environments, physical processes to be controlled
 - Dynamical systems models, hybrid processes
 - Signal Temporal Logic as a way to express Cyber-Physical systems specifications
 - Testing and Falsification approaches
 - Reasoning about safety

How does everything fit together?

- You want to develop a new CPS/IoT system with autonomy
- Analyze its environment: model it as a dynamical system or a stochastic system (e.g. PoMDPs)
- Analyze what models to use for the control algorithms
 - Choices are: Traditional control schemes (PID/MPC), state-machines (synchronous vs. asynchronous based on communication type), AI/planning algorithms, hybrid control algorithms, or combinations of these

Safety is the key!!

- Try to specify the closed-loop system as something you can simulate and see its behaviors
 - Integrative modeling environment such as Simulink (plant models + software models)
 - Specify requirements of how you expect the system to behave (STL, LTL, or your favorite spec. formalism)
 - This step is a DO NOT MISS. It will provide documentation of your intent, and also a machine-checkable artifact
- Test the system a lot, and then test some more
- Apply formal reasoning wherever you can. Proofs are great if you can get them
- Safety doesn't end at modeling stage; continue reasoning about safety after deployment (through monitoring etc.)

