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1 Considerazioni generali

1.1 Nano che?

• Cosa significa nano? il prefisso nano implica una moltiplicazione per 10−9. Con nano-
strutture si intendono sistemi per i quali l’estensione (size) è su scala nanometrica almeno
in una direzione.
• Come si ottiene una nano-struttura? Confinando il moto lungo una o più direzioni con

mezzi opportuni (variazione della composizione del materiale (eterostrutture), applicando
campi elettrici o magnetici, ...) . Daremo esempi di confinamento in una dimensione
(sistema bidimensionale, in due dimensioni (sistema unidimensionale ), in tre dimensioni
(sistema zero dimensionale (punto quantistico, piccolo cluster).
• Perché nano è interessante? Perché con opportune tecniche di fabbricazione si possono

ottenere sistemi con proprietà suscettibili di applicazioni tecnologiche, sistemi a volte non
presenti in natura.

1.2 Rapporto superficie/volume in sistemi estesi ed in
sistemi micrometrici e nanometrici

• Spesso in fisica statistica si argomenta dell’irrilevanza dei contributi di superficie rispetto
a quelli di volume, in quanto nel limite termodinamico (N → ∞, V → ∞, N/V = % =
cost) in generale il contributo di superfice è trascurabile rispetto a quello di volume.
– Consideriano ad esempio il contributo di volume all’energia EV = eV , ove e è l’e-

nergia per unità di volume ed il contributo di superficie all’energia ES = e′S, ove e′
è l’energia per unità di superficie dovuta ad una interfaccia; e ed e′ sono quantità
intensive. Evidentemente

ES
EV
∝ S

V
∝ V −1/3 → 0.

– Consideriamo ora un sistema di taglia (estensione) finita. Cominciamo con un cu-
betto di spigolo L = 1mm. Assumendo un volume per atomo v = 1/% = 40Å3 si
ottiene che il sistema contiene N = 2.5 · 1019 atomi. Semplici considerazioni portano
al risultato che, se NS = S/v2/3 sono gli atomi in superficie e N = V/v,

NS

N
= S/v2/3

V/v
= 6V 2/3

V/v1/3 = 6
(V/v)1/3 = 6

N1/3 .

– Quindi con L = 1mm otteniamo NS/N = 2 ·10−6, con L = 1µm otteniamo NS/N =
2 · 10−3 e con L = 1nm c’è un solo atomo al centro circondato da 24 atomi di
superficie.
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1 Considerazioni generali

• Ci possono essere casi nei quali si è interessati a massimizzare la superficie dei sistemi. Ad
esempio nei catalizzatori i fenomeni d’interesse avvenogono alla superficie del catalizzatore
che tipicamente è un metallo nobile molto costoso. Quindi la massimizzazione della
superficie rispetto al volume risponde ad un’esigenzia di economia!

1.3 Dipendenza delle proprietà dei sistemi dalla
dimensionalità

Supponendo di essere in grado di realizzare sistemi a dimensionalità ridotta, può essere inte-
ressante studiare come le proprietà dei sistemi dipendano dalla dimensionalità D. A questo
scopo studiamo la densità di stati di elettroni non interagenti, ma con massa efficace per tener
conto della presenza di un reticolo cristallino nel quale gli elettroni si muovono. Più avanti
giustificheremo l’approssimazione di massa efficace e daremo cenni al modo di introdurre anche
l’interazione tra gli elettroni.

Consideriamo nel seguito elettroni con massa m∗ in D dimensioni in un dominio di spigolo
L. La dispersione in energia degli stati di particella singola sarà quindi ε(k, σ) = }2k2/2m∗
(σ = ±1, per elettroni con proiezione di spin su/giù) e la densità di stati in energia (DOS) (per
un sistema spolarizzato di spin, quindi con ∑σ = 2) sarà

g(E) = 2
LD

∑
k
δ(E − }2k2/2m∗) = 2

LD

∞̂

0

dk

(2π/L)D k
D−1ΩDδ(E − }2k2/2m∗)

= ΩD

2D−1πD
m∗

~2 k
D−2
∗ ,

ove k∗ = (2m∗E)1/2/~ e ΩD = DπD/2/Γ (D/2 + 1). Quindi

g(E) = D

Γ (D/2 + 1)

(
m∗

2π~2

)D/2
ED/2−1Θ(E).

1.4 Confinamento in una dimensione: sistema bidimensionale

1.4.1 L’Hamiltoniana di singola particella

Consideriamo ora l’Hamiltoniana Ĥ0 di singola particella in presenza di un potenziale V (z)

Ĥ0 = p̂2
x

2m∗ +
p̂2
y

2m∗ + p̂2
z

2m∗ + V (ẑ).

Supponiamo di conoscere le soluzioni del problema trasverso (moto lungo la direzione z)[
p̂2
z

2m∗ + V (ẑ)
]
φn(z) = εnφn(z) n = 0, 1, 2, ....
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1.5 Lunghezza di de Broglie ed effetti quantistici in sistemi confinati

La soluzione dell’equazione di Schrodinger completa

Ĥ0

∣∣∣ψ~k,n〉 = E~k,n

∣∣∣ψ~k,n〉
è

ψ~k,n(x, y, z) = 1√
L
eikxx

1√
L
eikyyφn(z),

restringendosi alla componente spaziale dell’orbitale di singola particella, con

E~k,n = ~2k2
x

2m +
~2k2

y

2m + εn ≡
~2k2

2m∗ + εn.

1.4.2 La densità di stati

Evidentemente la densità di stati in energia è

g(E) =
∑
n

gn(E),

con (D = 2)

gn(E) = 2
LD

∑
k
δ(E − E~k,n) = 2

LD
∑

k
δ(E − εn − }2k2/2m∗) = 2

Γ (2)
m∗

2π~2 Θ(E − εn),

= m∗

π~2 Θ(E − εn).

La densità di stati complessiva g(E) è mostrata in Fig. 1.1.

1.4.3 Tipi di confinamento in una dimensione

Il potenziale V (z) può avere varie forme. In un pozzo quantistico ha un profilo a buca (come
mostrato in Fig. 1.1) e la buca (in 1 D ) ha sempre almeno uno stato legato. Se la buca è
abbastanza alta ne ha più d’uno. Una buca di larghezza L con pareti infinite ha infiniti stati
legati con energie ~2π2n2/(2m∗L2) ed n interi non nulli. In tutti i casi i livelli energetici εn sono
discreti, come pure nel caso di un confinamento armonico (V (z) = m∗ω2z2/2).

1.5 Lunghezza di de Broglie ed effetti quantistici in sistemi
confinati

La dinamica degli elettroni in un solido periodico è usualmente studiata in approssimazione
semiclassica in termini di pacchetti di onde di Bloch. Nel caso in cui si sia interessati a pacchetti
di stati di una singola banda centrati al minimo della banda e con componenti molto vicine al
minimo è naturale ricorrere al concetto di massa efficace (m∗). Normalmente la massa efficace
è un tensore reale, simmetrico e con autovalori positivi. In generale, a meno di affermazioni
esplicite, in queste lezioni ci restringeremo a minimi sferici.
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1 Considerazioni generali

where mn is the electron effective mass, and E is the energy. The de Broglie
wavelength of the typical charge carrier for metals is usually only a few
nanometers; the values for semiconductors are considerably larger, for
example GaAs has a de Broglie wavelength of 24 nm1, while Si has a smaller
deBrogliewavelengthof around12nm.Therefore ametal cluster, as discussed
in Chapter 4, will only show confinement effects for very small nanometer-
sized clusters, while quantum dots made of semiconductor materials can
be an order ofmagnitude larger andwill still exhibit the characteristic 0DDOS
with discrete energy levels as a signature of effective confinement.
The experimental challenge now lies in the creation of specific con-

finement potentials, which provide one-, two-, and three-dimensional

Energy levels in direction of
confinement

“particle in a box”
[only E in conduction band is shown]

Sub-bands in x-y plane
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Density of States for 2D system 
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Figure 1.1 The discussion of confinement for a 2D quantum well with one direction
of confinement (z axis) is summarized. The QW is sketched on the left hand side: a
material with a smaller band-gap (light stripe) is embedded in a material with a larger
band-gap (grey). The left-hand figure shows the energy levels within the quantum well,
for clarity of illustration only two energy levels are included in the conduction band.
The figure in the center shows the two parabolic sub-bands and the total energy of
the electrons in these sub-bands, which is composed of the parabolic and the
quantized contribution in the z direction. The schematic on the right-hand side shows
the corresponding density of states of the conduction band for a 2D quantum well.
The band gaps of the bulk material and the quantum well are indicated in this figure:
because of the quantification of energy levels due to confinement, the lowest energy
level in the conduction band is energetically “higher” than the conduction band
minimum in the bulk material, hence the bandgap of the well is larger. The DOS is
derived in the text and summarized in Equation 1.7.

1http://www.ioffe.ru/SVA/NSM/ is a database of essential semiconductor properties and
bandstructures. The de Broglie wavelengths of several semiconductors are included here:
http://www.ioffe.ru/SVA/NSM/Semicond/index.html.

1.1 Size, Dimensionality, and Confinement |15

c01 3 February 2012; 16:43:35

Figura 1.1: Densità di stati in un pozzo quantistico

Un modo di capire se il confinamento va ad inficiare la descrizione in termini di pacchetti è di
confrontare la lunghezza di de Broglie termica

λ = h/
√

2m∗E

con la larghezza del potenziale V (z), che nel caso della buca è L. Qui l’energia termica è stimata
come E = (3/2)KBT e a temperatura ambiente (T = 300oK)si ottiene

λ = 6.02√
m∗/me

nm,

conme = 9.11·10−28g, la massa dell’elettrone nel vuoto. Così si ottiene λ = 24nm per una buca
di GaAs, usando una massa efficace m∗ = 0.063me. Perchè gli effetti di confinamento possano
essere trascurati e si possa utilizzare l’approssimazione semiclassica bisogna che L� λ.

Notiamo che nella letteratura dei semiconduttori viene usata una definizione di lunghezza
d’onda di de Broglie diversa da quella incontrata in meccanica statistica

λ = h√
2πm∗KBT

.
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2 Envelope function approximation
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In this chapter we are interested in the quantum mechanical motion
of electrons in the crystal if the periodic lattice potential is perturbed.
This can occur as a result of the presence of lattice defects, impurities,
or doping atoms. It can also arise due to the incorporation of interfaces
between different layers of materials. Other reasons could be the pres-
ence of external electric or magnetic fields, or internal fields arising from
time-dependent lattice distortions or vibrations such as those caused
by phonons or surface acoustic waves. In this chapter, we will restrict
ourselves to static perturbations small enough to be treated in lowest
order perturbation theory, and of a spatial range much larger than the
lattice constant of the underlying material. We will see that this restric-
tion leads to considerable simplifications leading us to an effective mass
Schrödinger equation for electrons in conduction bands with parabolic
dispersion.

4.1 Quantum mechanical motion in a
parabolic band

Weak and long-range perturbations of perfect crystal symmetry can be
caused, for example, by an external electric field, or by the presence of
a charged doping atom. Figure 4.1 shows schematically the perturbed

continuous
conduction band
levels

occupied
valence band
levels

discrete impurity level
in valence band (always occupied)

discrete impurity level in conduction band
(occupied for n-type semiconductor at T = 0)

Fig. 4.1 Continuum and discrete en-
ergy levels in the vicinity of a dop-
ing atom in a semiconductor. E1

is the energy of a discrete level be-
low the conduction band edge; E2 is
the energy of a state in the contin-
uum. (Reprinted with permission from
Slater, 1949. Copyright 1949 by the
American Physical Society.)



54 Envelope functions and effective mass approximation

lattice potential in the presence of a positively charged doping atom.
There are a number of different ways of solving this quantum mechan-

ical problem for the electronic motion. The methods differ essentially
in the set of basis functions used as a starting point for a perturbation
treatment. People have used Bloch-states (Enderlein and Schenk, 1992),
band edge states from k ·p-theory (Luttinger and Kohn, 1955), and the
so-called Wannier states (Wannier, 1937; Zinman, 1972; Kittel, 1970).
In order to give some insight into the derivation of the equation of mo-
tion, we will work in the Bloch-state basis and restrict the discussion to
a perturbation of a parabolic conduction band with minimum at Γ as it
is found, for example, in GaAs.

The problem on the basis of Bloch-states. Assume that we have
solved Schrödinger’s equation for the unperturbed crystal. The corre-
sponding dispersion relations En(k) and the Bloch-functions ψnk(r) =
eikrunk(r) are known. Now we seek the solution of the perturbed Schrö-
dinger equation

[H0+ U(r)]Ψ(r) = EΨ(r), (4.1)

where H0 is the hamiltonian of the unperturbed lattice and U(r) is the
perturbing potential. We expand the wave function Ψ(r) on the basis of
Bloch-states:

Ψ(r) =
∑

n,k

Fn(k)ψnk(r).

Inserting this expansion into Schrödinger’s equation gives
∑

nk

ψnk(r) [En(k) − E + U(r)]Fn(k) = 0.

Multiplying by ψ⋆
n′k′(r) and integrating over r leads to

∑

n,k

[(En(k) − E) δnk,n′k′ + Un′k′,nk]Fn(k) = 0, (4.2)

where we have used the orthogonality of Bloch-states and introduced
the matrix elements of the perturbing potential

Un′k′,nk =

∫
d3r ψ⋆

n′k′(r)U(r)ψnk(r).

The matrix elements of the perturbation. We will now further
simplify the matrix elements of the perturbation. To this end we intro-
duce the Fourier transform of U(r) (see Appendix A.2) and obtain

Un′k′,nk =

∫
d3q U(q)

∫
d3r ei(k−k′+q)ru⋆

n′k′(r)unk(r).

In this expression we can expand the lattice periodic function
u⋆

n′k′(r)unk(r) into a Fourier series and obtain for the matrix element

Un′k′,nk =

∫
d3q U(q)

∑

K

Cn′k′
nk (K)

∫
d3r ei(k−k′+q+K)r
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with the so-called Bloch integral

Cn′k′
nk (K) =

1

V0

∫

EZ

d3r e−iKru⋆
n′k′(r)unk(r).

The spatial integral in the expression for the matrix element Un′k′,nk

contributes only if the exponent vanishes, i.e., if q = k′ − k − K. As a
matter of fact, the integral is a representation of Dirac’s delta function.
Therefore the matrix element simplifies to

Un′k′,nk = (2π)3
∑

K

U(k′ − k − K)Cn′k′
nk (K). (4.3)

So far we have used the periodicity of the crystal lattice without using
any approximation.

Simplifying approximations. For further simplifications to the prob-
lem we make the following assumptions about the perturbation:

(1) We assume that the perturbing potential changes slowly on the
scale of the lattice constant, i.e., U(q) is significant only for q ≪
π/a.

(2) We assume that the perturbation is small compared to typical
energy separations of bands in the crystal.

(3) We assume that the coefficients Fn(k) have significant values only
for small values of k.

According to the third assumption, we consider only states near the
nondegenerate Γ-minimum. As a consequence of this and the first as-
sumption, in the sum over K only K = 0 is retained and the matrix
element simplifies to

Un′k′,nk ≈(2π)3U(k′ − k)Cn′k′
nk (0).

Now we would like to simplify the Bloch integral Cn′k′
nk (0). Based on

the third assumption, we employ the expansion of the Bloch-functions
near the conduction band minimum, eq. (3.19). We obtain

Cn′k′
nk (0) =

1

V0

∫

EZ

d3r u⋆
n′k′(r)unk(r) ≈ 1

(2π)3
δnn′ + O(k2),

and therefore
Un′k′,nk ≈U(k′ − k)δnn′ .

This means that, given our assumptions, the perturbation does not mix
states of neighboring bands, but only states of different k near the Γ-
minimum. With the above result for the matrix element, the equation
of motion (4.2) simplifies to

∑

k

[(En(k) − E) δk,k′ + U(k′ − k)]Fn(k) = 0.
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Simplification of the wave function. The wave function in real space
now reads

Ψ(r) =
∑

k

Fn(k)eikrunk(r).

Only small wave vectors k are important here, due to the long-range
nature of U(r). We therefore approximate unk(r) ≈un0(r) and obtain
for the wave function

Ψ(r) = un0(r)
∑

k

Fn(k)eikr = un0(r)Fn(r).

In the last step we have interpreted the sum over k as the Fourier series
of a real space function Fn(r). This function is of long range compared
to the lattice period and is called the envelope function of the wave
function.

Approximating the dispersion. We now approximate the dispersion
relation En(k) accordingly by using an approximation for small k. Near
the Γ-minimum we have [cf. eq. (3.22)]

Ec(k) = Ec +
!2k2

2m⋆
,

where m⋆ is the effective mass of electrons in the conduction band. With
these simplifications the equation of motion for electrons reads

!2

2m⋆
k2Fc(k) +

∑

k′

U(k − k′)Fc(k
′) = (E − Ec)Fc(k).

Equation of motion in real space. This equation determines the
Fourier components of the envelope function Fc(r). Transformation
from Fourier space into real space is straightforward. The first term
on the left-hand side corresponds to the second derivative of the enve-
lope function in real space. The second term is a convolution integral
which transforms into the product of the two corresponding functions
in real space. We therefore obtain the following differential equation
determining the envelope function Fc(r):

[
− !2

2m⋆
∆ + Ec + U(r)︸ ︷︷ ︸

:=Ec(r)

]
Fc(r) = EFc(r). (4.4)

This is exactly Schrödinger’s equation (4.1) where the periodic lattice
potential hidden in H0has disappeared, but the free electron mass in H0

has been replaced by the effective mass of the conduction band electrons.
Introducing the local band edge energy Ec(r), this function acts as the
effective potential in which the conduction band electrons move.

The envelope function Fc(r) brings about very convenient simplifica-
tions. For example, matrix elements of a quantum mechanical quantity,
which have to be calculated using the complete electronic wave function,
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can usually be expressed as integrals over the envelope function alone.
As an example, we consider the electron density. Assume that the en-
velope functions Fi(r) are solutions of eq. (4.4) with energies Ei. The
electron density of the system is then given by

n(r) =
∑

i

|ψi(r)|2f(Ei) = |uc0(r)|2
∑

i

|Fi(r)|2f(Ei),

where f(E) is the Fermi distribution function. The envelope function
and the lattice periodic function uc0(r) vary on different length scales.
Within a primitive cell at position R of the lattice Fi(r) ≈ Fi(R) is
essentially constant. If we are interested only in the mean density in the
primitive cell at R, it is given by

n(R) =
1

VEZ

∫

EZ

dV |uc0(r)|2
︸ ︷︷ ︸

=1

∑

i

|Fi(R)|2f(Ei) =
∑

i

|Fi(R)|2f(Ei).

On a length scale that is large compared to the lattice constant, the
electron density is given by the envelope function alone and we can
neglect the lattice periodic function un0(r).

Hydrogen-like impurities. A simple application of the concept of the
envelope function is the determination of the energy levels of a hydrogen-
like impurity in a semiconductor. It has indeed been shown that modern
fabrication techniques have the potential to allow a precise incorpora-
tion of single doping atoms at predefined locations. Figure 4.2 shows
scanning tunneling microscope images of a hydrogen passivated Si(001)
surface. Using the tip of the scanning tunneling microscope, hydrogen
atoms can be locally desorbed. Such a spot of about 1 nm size is shown in
Fig. 4.2(a). If the surface is then exposed to PH3, the molecules are pref-
erentially adsorbed at those positions, where the hydrogen passivation
has been removed. A thermal annealing step lets the P atom diffuse into
the top layer of the Si substrate where it forms a substitutional doping
site as shown in Fig. 4.2(b).

Fig. 4.2 STM images of atomically
controlled single phosphor atom in-
corporation into Si(001). (a) Hydro-
gen terminated Si(001) surface with a
hydrogen desorption point. (b) The
same area after PH3 dosing and an-
nealing showing a single P atom incor-
porated at the location defined by the
H-desporption point. (Reprinted with
permission from Schofield, 2003. Copy-
right 2003 by the American Physical
Society.)

As an example for the use of the effective mass equation, we consider
a silicon atom sitting on the Ga site in a GaAs lattice. The silicon atom
can satisfy all bonds with neighboring arsenic atoms using only three of
its four valence electrons. As a consequence, one excess electron and an
excess positive elementary charge in the silicon nucleus remain. Such
a silicon atom is called a donor, because it can give away the excess
electron. However, the positively charged donor ion will bind the excess
electron, and the Coulomb interaction between them will appear in the
equation for the envelope function:

[
− !2

2m⋆
∆ − e2

4πεε0r

]
Fc(r) = (E − Ec)Fc(r).

The important point is that the relative dielectric constant of the host
crystal, in our case GaAs, enters in the Coulomb potential. It accounts

N



58 Envelope functions and effective mass approximation

for the polarization of the lattice by the charged donor, which effectively
reduces the interaction strength. The solution of this quantum problem
is that of the hydrogen problem, in which the Rydberg energy ERy =
13.6 eV is replaced by an effective Rydberg energy E⋆

Ry and Bohr’s radius

aB = 0.53 Å by an effective radius a⋆
B:

E⋆
Ry =

e4m⋆

2(4πεε0)2!2
= ERy

m⋆

me

1

ε2

a⋆
B =

4πεε0!2

m⋆e2
= aB

me

m⋆
ε.

For GaAs, with ε = 12.53 and m⋆ = 0.067me, we find E⋆
Ry = 5.7 meV

and a⋆
B = 100 Å. The energy levels of the hydrogen-like impurity are

then

En = Ec −
E⋆

Ry

n2
.

These states are discrete and lie below the conduction band edge of
the unperturbed crystal as schematically shown in Fig. 4.3. As in the
hydrogen atom, the excitation energy E⋆

Ry from the ground state to the
lower edge of the conduction band (continuum) is called the binding
energy. Measured binding energies of donors in GaAs are 5.789 meV for
SeAs, 5.839 meV for SiGa, 5.870 meV for SAs, 5.882 meV for GeGa, and
5.913 meV for CGa. These values agree quite well with the theoretical
prediction for E⋆

Ry.

Fig. 4.3 Energy levels of a hydrogen-
like impurity in GaAs (Yu and Car-
dona, 2001).

Figure 4.4 shows the total wave function of the ground state includ-
ing the Bloch part emphasizing that the envelope function determines
the shape of the probability density distribution on length scales large
compared to the lattice constant.

Equation of motion at the Γ-minimum of the conduction band
in the presence of a magnetic field. The equation of motion of
an electron at the conduction band minimum under the influence of a

Fig. 4.4 Total wave function of the
hydrogen-like impurity in GaAs includ-
ing the Bloch contribution (Yu and
Cardona, 2001).
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magnetic field has been derived by Luttinger (1951), and by Luttinger
and Kohn (1955) using similar methods. It was also found that, in this
case, the equation for the envelope function is identical to the effective
mass Schrödinger equation for a free particle in a magnetic field. Under
the simultaneous influence of a vector potential A(r) and an electrostatic
potential U(r) the equation of motion for electrons at the Γ-minimum
of the conduction band (see, e.g., Winkler 2003) reads

[
1

2m⋆

(
!
i
∇ + |e|A(r)

)2

+ U(r) +
1

2
g⋆µBσB

]
Fc(r) = (E − Ec)Fc(r).

(4.5)
Here, the elementary charge |e| = 1.6×10−19C is taken to be a positive
number. In the following chapters of the book we will frequently call
the envelope function Fc(r) simply the wave function of the electron,
because its equation of motion is identical with that of an electron with
mass m⋆ in vacuum. We will further use the convention that all energies
are measured from the conduction band edge of the unperturbed crystal,
such that Ec = 0 in the above equation. The effective mass m⋆ and the
effective g⋆-factor entering in the above equation can be calculated from
the knowledge of the band edge parameters given in Table 3.6 using eqs.
(3.30) and (3.31).

Equation (4.5) is of great importance for semiconductor nanostruc-
tures. Methods of structuring and patterning materials allow the fab-
rication of tailored potential landscapes U(r). Magnetic fields can be
created in the laboratory that influence the electronic motion as they do
in the free electron case. Solving the equations of motion is greatly facil-
itated by the existence of many analytical solutions and approximative
schemes from quantum mechanics textbooks.

The considerations leading to eq. (4.5) for conduction band electrons
near Γ can be extended to semiconductors with conduction band minima
at other points in the first Brillouin zone (e.g., silicon or germanium). In
this case, the wave function is expanded at the corresponding conduction
band minima rather than at Γ. More complicated equations of motion
result due to the valley degeneracy and the anisotropic effective masses.
The theory for valence band holes is also much more demanding, because
there are degenerate states at Γ.

4.2 Semiclassical equations of motion,
electrons and holes

Conduction band electrons. With the validity of the effective mass
Schrödinger equation (4.5) for the crystal electron, the semiclassical limit
of quantum mechanics (i.e., the motion of wave packets) must have its
range of application in semiconductor physics. Wave packets can be
constructed from the envelope functions Fc(r) and the dynamics of its
center of mass can be investigated. The result is Newton’s equation of
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motion
m⋆r̈ = −|e|(E − ṙ ×B), (4.6)

where E is the electric field and B is the magnetic field at the location of
the electron. As a consequence, there is a variety of possibilities in the
physics of semiconductor nanostructures to investigate the borderlines
between classical and quantum physics. Examples are investigations of
the relation between classical and quantum chaos, or the transition from
quantum to classical mechanics in the presence of decoherence.

Valence band holes. We will now briefly discuss the dynamics of holes,
i.e., missing electrons near a maximum of the valence band, in the classi-
cal limit. The convex curvature of the valence band could be interpreted
using a negative effective mass. Newton’s equation of motion reads in
this case

−m⋆r̈ = −|e|(E − ṙ ×B).

However, a negative effective mass is physically not very intuitive. We
can reinterpret this equation of motion by multiplying it by −1:

m⋆r̈ = +|e|(E − ṙ ×B)

This can be interpreted as the equation of motion for particles with posi-
tive mass m⋆, but with positive charge +|e|. The occurrence of a positive
charge at the top of the valence band is also intuitive from another point
of view. In the electrically neutral, uncharged semiconductor crystal the
valence band is completely filled. Removing an electron from the top
of the valence band, an initially localized positive charge remains. Such
a missing electron is called a hole. According to the above equation of
motion, the effective mass m⋆ and the charge +e are properties of this
hole which appears to move through the crystal like a classical particle.

Further reading

• Papers: Slater 1949; Luttinger 1951; Luttinger and
Kohn 1955.

• Effective mass from k ·p-theory: Davies 1998; Kit-
tel 1970; Yu and Cardona 2001.

• Effective mass from quasi-classical considerations
with group velocity and Newton’s equation of mo-

tion: Kittel 2005; Kittel 1970; Singleton 2001;
Ashcroft and Mermin 1987.

• Effective mass from the hydrogen problem in semi-
conductors, doping: Davies 1998.

• Band structure of semiconductors: Winkler 2003.
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Exercises

(4.1) Consider the differential equation for the enve-
lope function, eq. (4.5), with a magnetic field
B = (0, 0, B) and the Coulomb potential U(r) =
e2/4πϵϵ0r.

(a) Give reasons why the solution of the problem
can be separated in that of the orbital motion
and that of the spin dynamics.

(b) Discuss qualitatively the effects of the mag-
netic field on the spin dynamics.

(c) Discuss qualitatively how the magnetic field
affects the orbital energy levels and wave
functions.

(4.2) In silicon, the hamiltonian for the conduction band
envelope function in the effective mass equation is
given by

H =
!2

2mL

∂2

∂x2
+

!2

2mT

∂2

∂y2
+

∂2

∂z2
+ Vc(r),

where Vc = e2/4πϵϵ0r is the Coulomb potential,
and mL and mT are the longitudinal and trans-
verse effective masses, respectively. Consider the
case mL = mT + ∆m, where ∆m/mT ≪ 1. Calcu-
late the effect of the presence of ∆m on the energies
of the 1s-, 2s-, and 2p-states of a hydrogen-like im-
purity using perturbation theory.



3 Interazioni effettive - singola
sottobanda occupata

3.1 Gas di elettroni 2D - buca infinita di larghezza a e
potenziale triangolare

Consideriamo pochi elettroni interagenti in banda di conduzione ed in presenza di un potenziale
confinante lunfo z, descritti quindi dall’Hamiltoniana

H = H1 +H2 ≡
N∑
i=1

[
−~2∇2

i

2m∗ + V (zi)
]

+
∑
i<j

v(|ri − rj|)

=
∑
i

[
− ~2

2m∗
∂2

∂z2 + V (z)
]

+
∑
i

[
− ~2

2m∗

(
∂2

∂x2 + ∂2

∂y2

)]
+
∑
i<j

v(|ri − rj|)

≡ Hz + H̃,

ove evidentemente
Hz =

∑
i

[
− ~2

2m∗
∂2

∂z2 + V (z)
]
,

H̃ =
∑
i

[
− ~2

2m∗

(
∂2

∂x2 + ∂2

∂y2

)]
+
∑
i<j

v(|ri − rj|),

r = (x, y, z) = (s, z), con s = (x, y) e V (z) è il potenziale di confinamento trasverso. Vogliamo
studiare ora il problema agli autovalori per l’hamiltoniana H:

HΨ(s1, s1, ..., sN ; z1, z2, ..., zN) = EΨ(s1, s1, ..., sN ; z1, z2, ..., zN). (3.1)

Evidentemente conosciamo le soluzioni del problema di singola particella con hamiltoniana

h = −~∇2

2m∗ + V (z);

esse sono, restringendosi alla componente spaziale dell’orbitale di singola particella,

φk,n(r, z) = eik·s√
A
ϕn(z),

con

17
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−~2ϕ”
n(z)

2m∗ + V (z)ϕn(z) = εnϕn(z),

e k = (kx, ky).
Ora gli orbitali {ϕn(z)} costituiscono una base completa rispetto a ze possiamo sviluppare le
soluzioni dell’eq. 3.1 come

Ψ(s1, s1, ..., sN ; z1, z2, ..., zN) =
∑

n1,n2,...,nN

ψn1,n2,...,nN
(s1, s1, ..., sN)ϕn1(z1)ϕn2(zN) . . . ϕnN

(zN).

Se i livelli εn sono ben separati (εn2 − εn1 � εF ), ove εF è l’energia di Fermi del problema
bidimensionale nel piano (x,y), si può approssimare

Ψ(s1, s1, ..., sN ; z1, z2, ..., zN) ≈ ψn1,n1,...,n1(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN)
≡ ψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN),

mettendo tutte le particelle nell’orbitale trasverso più basso in energia, ovvero φn1(z), ottenendo

Hψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN) = (H̃ +Nεn1)ψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN)
= Eψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN),

che implica

(H̃ψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN) = E2Dψ(s1, s1, ..., sN)ϕn1(z1)ϕn1(zN) . . . ϕn1(zN),
(3.2)

ove E2D = E − Nε1 . Attenzione: l’hamiltoniana H̃ dipende ancora dalle intere coordinate
spaziali ri = (si,, zi), i = 1, N .
Possiamo però proiettare l’eq. 3.2 su ϕn1(z1)ϕn1(zN) . . . ϕn1(zN) moltiplicandola sulla sinistra
per ϕ∗n1(z1)ϕ∗n1(zN) . . . ϕ∗n1(zN) ed integrando rispetto a z1.z2, . . . , zN . Evidentemente in questa
operazione bisogna valutare integrali del tipo

ˆ ∞
−∞

dz|ϕn1(z)|2,

che valgono 1 (gli orbitali sono normalizzati ad 1) ed integrali del tipo

u(|si − sj|) =
ˆ ∞
−∞

dzi

ˆ ∞
−∞

dzj|ϕn1(zi)|2|ϕn1(zj)|2v(|ri − rj)|, (3.3)

con r = (s, z). Consideriamo il caso di elettroni in un mezzo con costante dielettrica ε,

v(r) = e2

εr
= e2

ε
√
s2 + z2

,
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3.1 Gas di elettroni 2D - buca infinita di larghezza a e potenziale triangolare

e sviluppiamo il potenziale di interazione di coppia in trasformata di Fourier:

ˆ
dq

(2π)2 e
iq·s
ˆ
dQ

2π e
iQz 4πe2

ε(q2 +Q2) . (3.4)

È facile mostrare con il metodo dei residui che
ˆ
dQ

2π e
iQz 4πe2

ε(q2 +Q2) = 2πe2

εq
e−qz. (3.5)

Utilizzando le eq. 3.4 e 3.5 nell’eq. 3.3si ottiene

u(|si − sj|) =
ˆ ∞
−∞

dzi

ˆ ∞
−∞

dzj|ϕn1(zi)|2|ϕn1(zj)|2
ˆ

dq
(2π)2 e

iq·(si−sj) 2πe2

εq
e−q|zi−zj |

=
ˆ

dq
(2π)2 e

iq·(si−sj) 2πe2

εq

ˆ ∞
−∞

dzi

ˆ ∞
−∞

dzj|ϕn1(zi)|2|ϕn1(zj)|2e−q|zi−zj |

ˆ
dq

(2π)2 e
iq·(si−sj)r 2πe2

εq
F (q) ≡

ˆ
dq

(2π)2 e
iq·(si−sj)ru(q),

ove, chiaramente il fattore di forma F (q) è dato da

F (q) =
ˆ ∞
−∞

dzi

ˆ ∞
−∞

dzj|ϕn1(zi)|2|ϕn1(zj)|2e−q|zi−zj |

e
u(q) = 2πe2

εq
F (q).

E quindi la proiezione fornisce l’equazione

H2Dψ(s1, s1, ..., sN) = E2Dψ(s1, s1, ..., sN),

ove
H2D =

∑
i

[
− ~2

2m∗

(
∂2

∂x2 + ∂2

∂y2

)]
+
∑
i<j

u(|si − sj|).

Abbiamo ottenuto in questo modo un’hamiltoniana bidimensionale con un’interazione di cop-
pia effettiva, che si ottiene dall’originaria interazioine tridimensionale, attraverso la proiezione
sull’orbitale del moto trasverso più basso in energia. L’interazione effettiva ha una forma par-
ticolarmente semplice in termini della trasformata di Fourier che risulta essere il prodotto di
u(q) = u2D(q)F (q), con u2D(q) = 2πe2/(εq) l’interazione per un sistema strettamente bidimen-
sionale (corrisponente a |ϕn1(z)|2 = δ(z)). Il fattore di forma F (q), che tiene conto della forma
del potenziale di localzzazione, dipende dalla particolare scelta di V (z). Per una buca di altezza
infinita e larghezza a (pozzo quantistico) si ottiene il risultato esatto

F (q) = 1
4π2 + q2a2

(
3qa+ 8π2

qa
− 32π4

q2a2
1− e−qa

4π2 + q2a2

)
.
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3 Interazioni effettive - singola sottobanda occupata

Per una buca triangolare

V (z) =

∞ z < 0
eFz z > 0

,

con F l’intensità del campo elettrico trasverso nella regine d’interesse, un trattamento varia-
zionale per l’equazione di singola particella fornisce

F (q) = [1 + 9
8
q

b
+ 3

8
q2

b2 ][1 + q

b
]−3,

ove il vettore d’onda b contiene parametri del dispositivo (HIGFET) nel caso in cui la costante
dielettrica dei due materiali che costituiscono l’interfaccia siano identiche (caso GaAs - AlGaAs).
Nel caso del MOSFET (composto da un’interfaccia Si- Ossido di Si) l’espressione è leggermente
più complicata, dalla presenza delle due costanti dielettriche che sono apprezzabilmente diverse.
Nei due casi il limite strettamente bidimensionale F (q) = 1 è ottenuto rispettivamente per
a→ 0 e b→∞.
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12 Electronic properties of carbon-based nanostructures

This is followed by the improved description provided by first-principles calculations
within density functional theory (DFT) and beyond using many-body perturbation the-
ory within the GW approximation, which leads to a renormalized Fermi velocity close
to the Dirac point. The next part focuses on the specificities of graphene nanoribbons
(GNRs), with a description of the formation of confinement-induced energy gaps which
increase linearly with reducing the lateral size. These GNR structures are shown to share
some commonalities with their folded versions, since carbon nanotubes (CNTs) are
often pictured as the geometrical result of rolling up a graphene ribbon. Carbon nano-
tubes are found to be either metallic or semiconducting depending on their helical sym-
metry. Metallic (armchair) nanotubes are actually the best existing one-dimensional
ballistic conductors, almost insensitive to the Peierls dimerization mechanism, and
exhibiting quantized conductance when appropriately connected to metals such as palla-
dium. The energy gaps in semiconducting tubes downscale linearly with the tube diam-
eter, and eventually close for the limit of very large diameter (in accordance with the
zero-gap limit of a graphene monolayer). Finally, note that there is currently great inter-
est in analyzing the effects of chemical doping and structural defects in graphene-based
materials, given the possibility to tailor the electronic properties and add novel func-
tionalities to the related devices, to improve or complement the silicon-based CMOS
technologies.

2.2 Electronic properties of graphene

2.2.1 Tight-binding description of graphene

In two-dimensional graphene, carbon atoms are periodically arranged in an infinite
honeycomb lattice (Fig. 2.1(a)). Such an atomic structure is defined by two types of
bonds within the sp2 hybridization, as described in Chapter 1. From the four valence
orbitals of the carbon atom (the 2s, 2px, 2py, and 2pz orbitals, where z is the direction
perpendicular to the sheet), the (s, px, py) orbitals combine to form the inplane σ (bond-
ing or occupied) and σ ∗ (antibonding or unoccupied) orbitals. Such orbitals are even
with respect to the planar symmetry. The σ bonds are strongly covalent bonds deter-
mining the energetic stability and the elastic properties of graphene (Fig. 2.1(a)). The
remaining pz orbital, pointing out of the graphene sheet as shown in Fig. 2.1(a), is odd
with respect to the planar symmetry and decoupled from the σ states. From the lateral
interaction with neighboring pz orbitals (called the ppπ interaction), localized π (bond-
ing) and π∗ (antibonding) orbitals are formed (Wallace, 1947). Graphite consists of a
stack of many graphene layers. The unit cell in graphite can be primarily defined using
two graphene layers translated from each other by a C-C distance (acc = 1.42 Å). The
three-dimensional structure of graphite is maintained by the weak interlayer van der
Waals interaction between π bonds of adjacent layers, which generate a weak but finite
out-of-plane delocalization (Charlier, Gonze & Michenaud, 1994b).

The bonding and antibonding σ bands are actually strongly separated in energy
(> 12 eV at #), and therefore their contribution to electronic properties is commonly
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Figure 2.1 The carbon valence orbitals. (a) The three σ orbitals in graphene and the π orbital
perpendicular to the sheet. The σ bonds in the carbon hexagonal network strongly connect the
carbon atoms and are responsible for the binding energy and the structural properties of the
graphene sheet. The π bonds are perpendicular to the surface of the sheet. The corresponding
bonding and antibonding σ bands are separated by a large energy gap of ∼12 eV; while (b) the
bonding and antibonding π states lie in the vicinity of the Fermi level (EF). Consequently, the σ

bonds are frequently neglected for prediction of the electronic properties of graphene around the
Fermi energy.

disregarded (Fig. 2.1(b)). The two remaining π bands completely describe the low-
energy electronic excitations in both graphene (Wallace, 1947) and graphite (Charlier
et al., 1991). The bonding π and antibonding π∗ orbitals produce valence and con-
duction bands (Fig. 2.1(b)) which cross at the charge neutrality point (Fermi level of
undoped graphene) at vertices of the hexagonal Brillouin zone.

Carbon atoms in a graphene plane are located at the vertices of a hexagonal lattice.
This graphene network can be regarded as a triangular Bravais lattice with two atoms
per unit cell (A and B) and basis vectors (a1, a2):

a1 = a
(√

3
2

,
1
2

)

, a2 = a
(√

3
2

, −1
2

)

. (2.1)

Note that a=
√

3acc, where acc = 1.42 Å is the carbon–carbon distance in graphene. In
Fig. 2.2(a) A-type and B-type atoms are represented by full and empty dots respectively.
From this figure we see that each A- or B-type atom is surrounded by three atoms of the
opposite type.

By using the condition ai · bj = 2πδij, the reciprocal lattice vectors (b1, b2) can be
obtained,

b1 = b
(

1
2

,
√

3
2

)

, b2 = b
(

1
2

, −
√

3
2

)

, (2.2)
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(a) (b)

M

K+

K-

L

A B

a1

a2

b1

b2

Figure 2.2 (a) Showing the basis vectors a1 and a2 in the hexagonal network of graphene. This
network is a triangular Bravais lattice with a two atom-basis: A (full dots) and B (empty dots).
(b) The reciprocal lattice points corresponding to the triangular Bravais lattice (full dots) as well
as the associated basis vectors b1 and b2. The unit cell/Brillouin zone are shown shaded gray in
a and b respectively. Highly symmetric points labeled with # (zone center), K+, K−, and M are
also indicated in b.

with b= 4π/(3acc) = 4π/a
√

3. These vectors are shown in Fig. 2.2(b) together with
the first Brillouin zone (shaded gray). This hexagonal-shaped Brillouin zone1 is built
as the Wigner–Seitz cell of the reciprocal lattice. Out of its six corners, two of them
are inequivalent (the others can be written as one of these two plus a reciprocal lattice
vector). These two special points are denoted with K+ and K−. Another high symmetry
point is the one labeled with M in Fig. 2.2(b). They can be chosen as:

K+ = 4π

3a

(√
3

2
, −1

2

)

, K− = 4π

3a

(√
3

2
,

1
2

)

, M = 2π√
3a

(1, 0) . (2.3)

When the carbon atoms are placed onto the graphene hexagonal network (Fig. 2.2(a)),
the electronic wavefunctions from different atoms overlap. However, because of sym-
metry the overlap between the pz orbitals and the s or the px and py electrons is strictly
zero. Therefore, the pz electrons which form the π bonds in graphene can be treated
independently from the other valence electrons. Within this π -band approximation, the
A atom (or B atom) is uniquely defined by one orbital per atom site pz(r − rA) (or
pz(r − rB)).

To derive the electronic spectrum of the total Hamiltonian, the corresponding
Schrödinger equation has to be solved. According to Bloch’s theorem, the eigenfunc-
tions evaluated at two given Bravais lattice points Ri and Rj differ from each other in
just a phase factor, exp(ik · (Ri − Rj)). Because of the two-atom basis, the Bloch ansatz

1 Note that the hexagonal shape of the Brillouin zone is a consequence of the triangular Bravais lattice. It is
by no means connected with the two-atom basis which does not enter into the definition of the Brillouin
zone.



2.2 Electronic properties of graphene 15

for the eigenfunctions is a linear combination of Bloch sums2 on each sublattice:

%(k, r) = cA(k)p̃A
z (k, r) + cB(k)p̃B

z (k, r), (2.4)

where

p̃A
z (k, r) = 1√

Ncells

∑

j
eik.Rj pz(r − rA − Rj), (2.5)

p̃B
z (k, r) = 1√

Ncells

∑

j
eik.Rj pz(r − rB − Rj), (2.6)

where k is the electron wavevector, Ncells the number of unit cells in the graphene sheet,
and Rj is a Bravais lattice point. In the following we will neglect the overlap s = ⟨pA

z |pB
z ⟩

between neighboring pz orbitals. Then, the Bloch sums form an orthonormal set:

⟨p̃α
z (k) | p̃β

z (k′)⟩ = δk,k′δα,β , (2.7)

where α, β = A, B. Using these orthogonality relations in the Schrödinger equation,
H%(k, r) = E%(k, r), one obtains a 2 × 2 eigenvalue problem,

(HAA(k) HAB(k)

HBA(k) HBB(k)

) (
cA(k)

cB(k)

)
= E(k)

(
cA(k)

cB(k)

)
. (2.8)

The matrix elements of the Hamiltonian are given by:

HAA(k) = 1
Ncells

∑

i, j
eik.(Rj−Ri)⟨pA,Ri

z | H | pA,Rj
z ⟩, (2.9)

HAB(k) = 1
Ncells

∑

i, j
eik.(Rj−Ri)⟨pA,Ri

z | H | pB,Rj
z ⟩, (2.10)

with HAA = HBB and HAB = H∗
BA, and introducing the notation pA,τ

z = pz(r − rA − τ )

and pB,τ
z = pz(r−rB−τ ). After simple manipulations, and by restricting the interactions

to first-nearest-neighbors only, one gets:

HAB(k) = ⟨pA,0
z |H|pB,0

z ⟩ + e−ik.a1⟨pA,0
z |H|pB,−a1

z ⟩ + e−ik.a2⟨pA,0
z |H|pB,−a2

z ⟩
= −γ0α(k), (2.11)

where γ0 stands for the transfer integral between first neighbor π orbitals (typical values
for γ0 are 2.9–3.1 eV (Charlier et al., 1991, Dresselhaus et al., 2000)), and the function
α(k) is given by:

α(k) = (1 + e−ik.a1 + e−ik.a2). (2.12)

Taking ⟨pA,0
z |H|pA,0

z ⟩ = ⟨pB,0
z |H|pB,0

z ⟩ = 0 as the energy reference, we can write
H(k) as:

H(k) =
(

0 −γ0α(k)

−γ0α(k)∗ 0

)
. (2.13)

2 Alternatively, one may proceed by writing the Hamiltonian and the eigenfunctions in matrix form, as
shown in the supplementary material on the authors’ website.
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This 2 × 2 Hamiltonian is very appealing and may also be written in terms of Pauli
matrices as in (Haldane, 1988), thereby emphasizing the analogy with a spin Hamil-
tonian.3 Section 2.2.2 derives in detail the consequences of the A/B bipartite lattice
structure on the (pseudo)-spinor symmetry of (four-component) electronic eigenstates.
The energy dispersion relations are easily obtained from the diagonalization of H(k)

given by Eq. (2.13):

E±(k) = ±γ0|α(k)| (2.14)

= ±γ0
√

3 + 2 cos(k.a1) + 2 cos(k.a2) + 2 cos(k.(a2 − a1)), (2.15)

which can be further expanded as

E±(kx, ky) = ±γ0

√

1 + 4 cos

√
3kxa
2

cos
kya
2

+ 4 cos2 kya
2

. (2.16)

The wavevectors k = (kx, ky) are chosen within the first hexagonal Brillouin zone (BZ).
Clearly, the zeros of α(k) correspond to the crossing of the bands with the + and −
signs. One can verify that α(k = K+) = α(k = K−) = 0 and therefore the crossings
occur at the points K+ and K−. Furthermore, with a single pz electron per atom in the
π -π∗ model (the three other s, px, py electrons fill the low-lying σ band), the (−) band
(negative energy branch) in Eq. (2.16) is fully occupied, while the (+) branch is empty,
at least for electrically neutral graphene. Thus, the Fermi level EF (or charge neutrality
point) is the zero-energy reference in Fig. 2.3 and the Fermi surface is composed of the
set of K+ and K− points. Graphene displays a metallic (zero-gap) character. However,
as the Fermi surface is of zero dimension (since it is reduced to a discrete and finite set of
points), the term semi-metal or zero-gap semiconductor is usually employed. Expanding
Eq. (2.16) for k in the vicinity of K+ (or K−), k = K+ + δk (k = K− + δk), yields
a linear dispersion for the π and π∗ bands near these six corners of the 2D hexagonal
Brillouin zone,

E±(δk) = ±h̄vF|δk|, (2.17)

where

vF =
√

3γ0a
2h̄

(2.18)

is the electronic group velocity. Graphene is thus highly peculiar for this linear energy–
momentum relation and electron–hole symmetry. The electronic properties in the vicin-
ity of these corners of the 2D Brillouin zone mimic those of massless Dirac fermions
(developed in Section 2.2.2) forming “Dirac cones” as illustrated in Fig. 2.3. The six
points where the Dirac cones touch are referred to as the Dirac points. The electronic
3 Writing the Hamiltonian in terms of Pauli matrices allows us also to classify the terms according to their

symmetries. A particularly important one is electron–hole symmetry. The Hamiltonian is said to have
electron–hole symmetry if there is a transformation P , such that P†HP = −H. This guarantees that if
% is an eigenstate of H with a positive energy E (electron function), then P% is also an eigenstate with
energy −E (hole function) and the spectrum is symmetric with respect to E = 0. For a Hamiltonian as the
one here, a term proportional to σz (such as a staggering potential which breaks A-B symmetry) opens a
gap but preserves electron–hole symmetry.
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Figure 2.3 Graphene π and π∗ electronic bands. In this simple approach, the π and π∗ bands are
symmetric with respect to the valence and conduction bands. The linear dispersion relation close
to the K+ (light grey dots) and K− (black dots) points of the first 2D Brillouin zone gives rise to
the “Dirac cones” as shown on the right. Note that close to these cones kx and ky are used to
denote the shift from the corresponding K point.

group velocities close to those points are quite high at ∼ 8.5 × 105 m/s, and within the
massless Dirac fermions analogy represent an effective “speed of light.”

This simple orthogonal tight-binding model (Wallace, 1947) yields π and π∗ zone-
center # energies which are symmetric (±γ0) with respect to EF. In fact, the anti-
bonding (unoccupied) π∗ bands are located at a higher energy if the overlap integral S
is not set to zero (as illustrated in Fig. 2.1(b)). A better (but more complicated) π − π∗

parameterization could lead to analogous results (Reich et al., 2002), as well as more
accurate first-principles calculations. In the following, after a presentation of the effec-
tive massless Dirac fermion model, we comment on the effects beyond nearest neighbor
interactions and the so-called trigonal warping correction.

2.2.2 Effective description close to the Dirac point and massless Dirac fermions

By expanding Eq. (2.13) for the Hamiltonian around K+ and K− (the two inequivalent
corners of the Brillouin zone) we get an approximation close to those points. To keep a
compact notation in what follows, k measures the deviations from those points. A linear
expansion then gives

HK+ = h̄vF

(
0 kx − iky

kx + iky 0

)
= vF(pxσx + pyσy), (2.19)

where px(y) = h̄kx(y) and the Pauli matrices are defined as usual:

σx =
(

0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (2.20)
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The effective Hamiltonian can also be written in the more compact form:

HK+ = vFσ̂ .p, (2.21)

where σ̂ = (σx, σy, σz). For the inequivalent K point one has the transposed Hamiltonian

HK− = Ht
K+ . (2.22)

Substituting p by the corresponding operator p̂ = −ih̄∇̂ in Eq. (2.21) (this is equivalent
to the k.p or effective mass approximation Ajiki 1993, DiVicenzo and Mele, 1984), a
form equivalent to the Dirac–Weyl Hamiltonian in two dimensions is obtained, which
in quantum electrodynamics follows from the Dirac equation by setting the rest mass
of the particle to zero. Therefore, the low-energy excitations mimic those of massless
Dirac particles of spin 1/2 (such as a massless neutrino), with velocity of light c, and
inherent chirality as explained below. However, in contrast to relativistic Dirac particles,
low-energy excitations of graphene have a Fermi velocity vF about 300 times smaller
than the light velocity, whereas the Pauli matrices appearing in the low-energy effective
description operate on the sublattice degrees of freedom instead of spin, hence the term
pseudospin. The low-energy quasiparticles in graphene are often referred to as massless
Dirac fermions.

One of the most interesting properties of the Dirac–Weyl equation is its helical or chi-
ral nature4 which is a direct consequence of the Hamiltonian being proportional to the
helicity operator, which here for the case of the Hamiltonian in Eq. (2.21) is defined as:

ĥ = σ̂ · p
|p| . (2.23)

The quantity ĥ is essentially the projection of the sublattice pseudospin operator σ̂ on the
momentum direction. Interestingly, since ĥ commutes with the Hamiltonian, the projec-
tion of the pseudospin is a well-defined conserved quantity which can be either positive
or negative, corresponding to pseudospin and momentum being parallel or antiparallel
to each other (see Fig. 2.4). At the K− point, the Hamiltonian is proportional to σ̂ t.p
and involves the left-handed Pauli matrices σ̂ t (in contrast to the right-handed matri-
ces σ̂ ). Therefore, one says that chirality is inverted when passing from K+ to K− as
represented in Fig. 2.4.

To explore this in more detail, let us rewrite once more the Hamiltonian as:

Hξ (p) = vF|p|
(

0 e−iξθp

e+iξθp 0

)
, (2.24)

where px + ipy =
√

p2
x + p2

yeiθp, θp= arctan(py/px) and ξ can take the values ξ = +1
which corresponds to K+ and ξ = −1 to K−. Then, one can verify that this Hamiltonian
is diagonalized by the unitary operator

Uξ = 1√
2

(−e−iξθp e−iξθp

1 1

)
. (2.25)

4 For massless particles the two are identical and the terms are used interchangeably.
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Figure 2.4 The two inequivalent Dirac cones at K+ and K− points of the first Brillouin zone,
together with direction of the pseudospin parallel or antiparallel to the momentum p of selected
energies in conduction and valence bands.

Indeed,

U†
ξ (p)Hξ (p)Uξ (p) = vF

(−|p| 0
0 |p|

)
= −vF|p|σz, (2.26)

which makes explicit the linear energy dispersion E±(p) = ±vF|p| and the electron–
hole symmetry.5 On the other hand, the eigenstates of Eq. (2.24) can be written as:

|%ξ ,s⟩ = 1√
2

(
1

se+iξθp

)
. (2.27)

The index s = ±1 is the band index (s = +1 for the conduction band and s = −1
for the valence band) and ξ the valley index as stated before (ξ = +1 (K+), ξ = −1
(K−)). Using this explicit form for the eigenstates we can directly verify that they are
also eigenstates of the appropriate helicity operator (also called chirality operator) with
eigenvalues ±1.

Around K+ (ξ = +1), the pseudospin of eigenstates in the conduction band is paral-
lel to the momentum and antiparallel for eigenstates in the valence band. The chirality
in this case is simply the band index. The property around K− (ξ = −1) is reversed as
illustrated in Fig. 2.4. This peculiarity has a strong influence in many of the most intrigu-
ing properties of graphene. For example, for an electron to backscatter (i.e. changing p
to −p) it needs to reverse its pseudospin. But as the pseudospin direction is locked to
that of momentum, backscattering is not possible if the Hamiltonian is not perturbed by
a term which flips the pseudospin (this is also termed absence of backscattering (Ando,
Nakanishi & Saito, 1998)).

Although we are dealing all the time with both valleys separately, it is important to
keep in mind that the full structure of the eigenstates is described by a four-component
spinor wavefunction, (|%K+,A⟩, |%K+,B⟩, |%K−,A⟩, |%K−,B⟩)t. The full Hamiltonian of

5 Also, by comparison with the relativistic expression, E(p) = ±
√

p2v2
F + m∗2c4 enforces a zero effective

mass.
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ideal graphene is given by,

Ĥ = vF

⎛

⎜⎜⎝

0 π† 0 0
π 0 0 0
0 0 0 π

0 0 π† 0

⎞

⎟⎟⎠ , (2.28)

with π = px + ipy and π† = px − ipy. Although for this ideal case the states at both k
points are decoupled, one should be aware that any perturbation which is not smooth at
the atomic scale (e.g. impurities) will couple them.

Phase ambiguity and Berry phase
The existence of an inherent phase ambiguity of the quantum wavefunction is well
illustrated through the Bloch theorem, which states that the eigenstates of a given
Hamiltonian H (defining the energetics of the atomic unit cell with periodic bound-
ary conditions) can generally be written as |%k⟩ = eik.r|ψk⟩, with |ψk⟩ defined inside
the unit cell (invariant under any transformation such as |ψk⟩ → eϕk |ψk⟩, with eϕk an
arbitrary phase function in k-space). To leave the phase ambiguity and capture the phase
interferences in physical observables, one has to define the so-called Berry connection
(equivalent to a vector potential) as A = i⟨ψk|∇̂k|ψk⟩. All physical quantities will be
invariant under any gauge transformation A → A+∇̂kϕk, while the Berry phase defined
as a gauge-invariant quantity

γc =
∮

A.dk (2.29)

measures the total phase accumulated upon a transformation (rotation) of the wavefunc-
tion in k-space along a closed loop. The Berry curvature F = ∇̂k.A is analogous to the
magnetic field, while γc =

∫∫
F.d2k gives the Berry flux. The existence of a nontriv-

ial Berry phase has been demonstrated to have many profound consequences in quan-
tum physics (Thouless, 1998, Xiao, Chang & Niu, 2010), and in graphene and carbon
nanotubes it conveys phenomena such as absence of backscattering in nanotubes, Klein
tunneling, weak antilocalization, zero-energy Landau level, and an anomalous quantum
Hall effect, as described in the following chapters.

Under 2π rotation, the eigenstates of the Dirac excitations get a π phase factor. Using
the rotation operator R(θ) = e−iθ .S/h̄, with S = h̄/2σ̂z for spin-1/2 particles, it is
indeed readily shown that R(θ = 2π)|%K±(s = ±1)⟩ = eiπσ̂z |%ξ ,s⟩ = −|%ξ ,s⟩ (using
e−iθ(n̂.σ̂ )/h̄ = cos θ + i(n̂.σ̂ ) sin θ ).

One can also directly compute the Berry phase from the general definition as

A = −i⟨ψk|∇̂k|ψk⟩ = −i
2

(1, e−iθ ).
(

0
i∇kθeiθ

)
= eθ

2|k| , (2.30)

(eθ is a unit vector perpendicular to p) while

γc =
∮

A.dk =
∫ 2π

0
dk.

eθ

2|k| = π . (2.31)
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4.1 Bands, valley degree of freedom and pseudospin

4.1.1 Bands, band filling and valley degree of freedom

In neutral graphene (no doping and no additional charges due to gates) in the (Wigner-Seitz)
unit cell there are 2 carbon atoms with a total of 8 valence electrons.

Figure 4.1:
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(a) (b)

M

K+

K-

L

A B

a1

a2

b1

b2

Figure 2.2 (a) Showing the basis vectors a1 and a2 in the hexagonal network of graphene. This
network is a triangular Bravais lattice with a two atom-basis: A (full dots) and B (empty dots).
(b) The reciprocal lattice points corresponding to the triangular Bravais lattice (full dots) as well
as the associated basis vectors b1 and b2. The unit cell/Brillouin zone are shown shaded gray in
a and b respectively. Highly symmetric points labeled with ! (zone center), K+, K−, and M are
also indicated in b.

with b = 4π/(3acc) = 4π/a
√

3. These vectors are shown in Fig. 2.2(b) together with
the first Brillouin zone (shaded gray). This hexagonal-shaped Brillouin zone1 is built
as the Wigner–Seitz cell of the reciprocal lattice. Out of its six corners, two of them
are inequivalent (the others can be written as one of these two plus a reciprocal lattice
vector). These two special points are denoted with K+ and K−. Another high symmetry
point is the one labeled with M in Fig. 2.2(b). They can be chosen as:

K+ = 4π

3a

(√
3

2
, −1

2

)

, K− = 4π

3a

(√
3

2
,

1
2

)

, M = 2π√
3a

(1, 0) . (2.3)

When the carbon atoms are placed onto the graphene hexagonal network (Fig. 2.2(a)),
the electronic wavefunctions from different atoms overlap. However, because of sym-
metry the overlap between the pz orbitals and the s or the px and py electrons is strictly
zero. Therefore, the pz electrons which form the π bonds in graphene can be treated
independently from the other valence electrons. Within this π -band approximation, the
A atom (or B atom) is uniquely defined by one orbital per atom site pz(r − rA) (or
pz(r − rB)).

To derive the electronic spectrum of the total Hamiltonian, the corresponding
Schrödinger equation has to be solved. According to Bloch’s theorem, the eigenfunc-
tions evaluated at two given Bravais lattice points Ri and Rj differ from each other in
just a phase factor, exp(ik · (Ri − Rj)). Because of the two-atom basis, the Bloch ansatz

1 Note that the hexagonal shape of the Brillouin zone is a consequence of the triangular Bravais lattice. It is
by no means connected with the two-atom basis which does not enter into the definition of the Brillouin
zone.

In order to study the valence and the (lowest) conduction bands, one diagonalizes the crystal
Hamiltonian on the basis set of the eight Bloch sums, formed with 2s, 2px , 2py , and 2pz orbitals
for each of the two carbon atoms in the unit cell. Since there are eight valence electrons per unit
cell, we expect four completely occupied bands (if the four lowest lying bands do not overlap
in energy with upper lying four energy bands). The band wavefunctions originated from the
six s, px , and py orbitals (σv bands) are even under reflection in the plane of graphite; they
do not mix with band wavefunctions originated from the two pz orbitals (π bands), which are
odd under reflection in the plane of graphene. Thus σv -bands and π -bands can be studied
separately. One finds three bonding σv bands, separated by a substantial gap (≈ 6eV) from the
three antibonding σv* bands and 2 π bands, with the bonding π band separated by a zero energy
gap from the antibonding π* band at the 3 K− and 3 K+ points in the First Brillouin Zone
(FBZ) (see, e.g., Fig. 4.1).
The lowest lying bands are shown as obtained in older (Fig. 4.2) and newer (Fig. 4.3) tight-
binding calculations. The qualitative energy plot given in Fig. 2.1 (b) of Foa-Torres (FT) does
not really agree with the results shown above.
For the sake of clarity and with reference to Fig. 4.1 let’s observe that in the FBZ there are
3 K− points (the one shown plus the additional two obtained by reciprocal lattice translation)
that however belong to the FBZ only for 1/3 (they are shared between 3 different unit cells in
k-space); similarly for the K+ points. In the end in the FBZ there is only one full K− point and
similarly there is only one full K+ point. Thus, if the chemical potential is slightly above the
neutrality value µ = 0, one has few electrons occupying the two inequivalent pockets (inverted
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Figure 4.2:
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K 3

K 3

K 1

K 2

K 3

K 1

K 3

K 2
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Figure 6.17 Band structure of graphene, obtained with the tight-binding method. Bands which
are even and odd under reflection in the plane of graphene are indicated with continuous and
broken lines respectively. The energies of the valence states of the carbon atom are also indi-
cated. The values of k at the points !, K , and Q, are k = 0, k = (2π/a)(2/3, 0), and
k = (2π/a)(1/2,

√
3/6), respectively [from F. Bassani and G. Pastori Parravicini, Nuovo

Cimento 50 B, 95 (1967); with kind permission from Società Italiana di Fisica].

with respect to the traditional two-dimensional electron gas of Schrödinger particles
formed at semiconductor heterojunctions. The pz orbitals of carbon atoms on the two
sublattices of the honeycomb lattice give rise to the highest valence band and to the
lowest conduction band, which become degenerate at the corners of the Brillouin zone
for symmetry reasons.

For π-bands, we start from the two basis Bloch sums built from the pz orbitals of
the two carbon atoms in the primitive cell

#1,2(k, r) = 1√
N

∑

tm

eik·tmφz(r−d1,2 − tm), (6.36)

The essential features of the π -bands dispersion curves can be easily captured within
the semi-empirical tight-binding method (Section 5.2). Assuming nearest neighbor
interactions, with estimated parameter t ≈ −3 eV, the representation of the crystal
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Figure 4.3:
sorption on graphene. The crystallographic structure of
graphene with two sublattices is shown in Fig. 2. In pure
graphene the sublattices are equivalent, but if we bind one of
carbon atoms !for example, A0 in Fig. 2" with hydrogen we
automatically break this equivalence.

To check the computational procedure, we reproduce first
known results7–10 for single hydrogen atom chemisorbed
on graphene. In agreement with the previous calculations
we have found hydrogen-carbon distance about 1.1 Å,
and shift of the carbon atom bonded with the hydrogen
one about 0.3 Å along Z direction. One should stress,
additionally to the previous results, that the atomic distor-
tions are not negligible also for the second and third
neighbors of the hydrogen-bonded carbon atom A0 #see
Fig. 3!a"$. The amplitude of the modulation of graphene
sheet in the perpendicular direction around the hydrogen
atom was estimated as 0.4 Å, which is comparable with
the height of intrinsic ripples on graphene of order of
0.7 Å found in atomistic simulations.19 The radius of the
distorted region around hydrogen atom turned out to be
about 3.8 Å.

Transformation of the sp2 hybridization of carbon in ideal
graphene to the sp3 hybridization in hydrogenated graphene
results in a change of the bond lengths and angles. A typical

bond length for sp2 CuC bonds is 1.42 Å for graphene and
graphite and 1.47 Å for other compounds, and the standard
bond angle is 120°. For sp3 hybridization, the standard value
of CuC bond length is 1.54 Å, and the angle is 109.5°. A
typical value for the single CuH bond length is 1.086 Å.
One can see in Table I that for single hydrogen atom the
CuH bond length is close to the standard value, but
CuCuH and CuCuC angles are intermediate between
90° and 109.5° and 120° and 109.5°, respectively. Also, the
length of CuC bond is in between 1.42 and 1.54 Å. This
means an intermediate character of the hybridization be-
tween sp2 and sp3.

A pictorial view of the reconstruction of chemical bonds,
with the breaking of double CvC bond and formation of
single CuH bond, is shown in Fig. 4. For the case of single
hydrogen atom #Fig. 4!a"$ this releases two unpaired elec-
trons. One of the electrons forms a bond with hydrogen
whereas the other is unpaired. The latter is delocalized in
some rather broad area on lattice.9 As a result, carbon be-
comes magnetic !see the Table I" and hydrogen atom also
possesses a small magnetic moment about 0.12!B. In gen-
eral, at the chemisorption of single carbon atom, the hybrid-
ization is still rather close to sp2. One has to consider other
opportunities which can lead to sp3 bonding and possible
gain in the chemisorption energy.

FIG. 1. !Color online" Band structure of a single graphene layer.
Solid red lines are " bands and dotted blue lines are # bands.

FIG. 2. !Color online" Crystallographic structure of graphene.
Red and blue circles show A and B sublattices, respectively. Labels
show the distance from A0 carbon atom !coordination sphere num-
bers". All bonds in graphene are equivalent, and the double bonds
are marked for convenience of comparison with other pictures.

FIG. 3. !Color online" Picture of local distortions of graphene at
chemisorption of !a" single hydrogen atom !A0", !b" two hydrogen
atoms bonded with carbon atoms from the same sublattice !A0-A2",
!c" two hydrogen atoms bonded with neighboring carbon atoms
from the same side of graphene sheet !A0-B1", and !d" two hydrogen
atoms bonded with neighboring carbon atoms from both sides of
graphene sheet !A0-B1!". Red and blue circles are carbon atoms from
two sublattices and white circles are hydrogen atoms.

BOUKHVALOV, KATSNELSON, AND LICHTENSTEIN PHYSICAL REVIEW B 77, 035427 !2008"

035427-2

cones) at K− and K+. The electrons in the two pockets or valleys are distinguishable in the
absence of intervalley transition, thus one has an additional degree of freedom (the valley degree
of freedom) to label the electrons! Thus, if you like, we have red (at K−) and black (at K+)
electrons!
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4.1.2 Linearized Hamiltonian, pseudospin, helicity

4.1.2.1 Linearization

With reference to eqs. 2.12, 2.13 of FT, we have

α(k) = 1 + e−ik·a1 + e−ik·a2 ,

with a1 = a(
√

3/2,1/2), a2 = a(
√

3/2,-1/2), which gives

α(k) = 1 + e−ikxa
√
3/2e−ikya/2 + e−ikxa

√
3/2eikya/2 = 1 + 2e−ikxa

√
3/2 cos

(
kya

2

)
.

Note that in the following we shall change to the usual definition of the Dirac points K± =
(4π/3a)(

√
3/2,±1/2), so as to make contact with some of the existing literature. The choice

of FT appears to be a mistake. See, for example, Rev. Mod. Phys. 81, 109 (2009) by Castro
Neto and coworkers, Rev. Mod. Phys. 83, 1193 (2011) by M. O. Goerbig, and the book by (i)
G. Grosso e G. Pastori Parravicini (2014).
Let’s now put k± = K± + q, with K± = (4π/3a)(

√
3/2,±1/2) and q � K±, qa� 1. Consid-

ering that kxa
√

3/2 = π + qxa
√

3/2 and kya/2 = ±π/3 + qya/2, We get

α(k±) = 1 + 2e−iπ−iqxa
√
3/2 cos

(
±π3 + qya

2

)
' 1− 2

(
1− iqxa

√
3

2

)(
1/2∓

√
3

2
qya

2

)
,

which yields, to leading order in qa,

α(k±) = 1− 1 + iqxa

√
3

2 ±
√

3
2 qya = a

√
3

2 (iqx ± qy) = ia

√
3

2 (qx ∓ iqy). (4.1)

In order to recover a result similar to the one in eq. 2.19 of FT we resort to a unitary transfor-
mation, which we choose already diagonal on the basis of the two orbitals p̃Az (k,r) and p̃Bz (k,r)
as

P =
(
eiφ1 0
0 eiφ2

)

where of course φ1 and φ2 are real. The hamiltonian in eq. 2.8 of FT is transformed to

H(k±) =
(

0 −ei(φ1−φ2)γ0α(k±)
−e−i(φ1−φ2)γ0α(k±)∗ 0

)
,

with diagonal elements if present unaffected by the transformation, and the coefficient vector
transformed to

(
eiφ1cA(k±)
eiφ2cB(k±)

)
.
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It is evident that the choice φ1 − φ2 = π/2, i.e., ei(φ1−φ2) = i, yields

H(k±) =
(

0 γ0a
√

3
2 (qx ∓ iqy)

γ0a
√

3
2 (qx ± iqy) 0

)
≡ ~vF

(
0 qx ∓ iqy

q ± iqy 0

)
≡ HK± .

In other words,

HK+ = ~vF
(

0 qx − iqy
q + iqy 0

)
= vf σ̂ · p (4.2)

and

HK− = ~vF
(

0 qx + iqy
qx − iqy 0

)
= vf σ̂∗ · p = H t

K− , (4.3)

with σ̂ = (σx, σy, σz) and σx, σy, σz the Pauli matrices; moreover,

vF = γa

√
3

2~ .

The two equations above do agree with those in FT, thanks to correct definition of K±.

4.1.2.2 Pseudospin

Pauli matrices above are used to describe a physical properties of electrons in one of the two
inequivalent valleys, i.e., the coefficients of the linear combination of bloch sums at A and B,
cA(k), cB(k). We shall say that Pauli matrices above describe a new property of electrons
and name it pseudospin.They have no relation with the physical spin which, up to this point,
has not yet entered the description of electrons in graphene! Has we have already noted, in
the absence of intervalley transitions electrons can be assigned an additional discrete degree of
freedom which specify to which valley they belong (K+ or K−); we again use Pauli matrices
for this degree of freedom and we shall denote them by τx, τy, τz to distinguish them from thos
describing pseudospin; this is the valley pseudospin.

4.1.2.3 Alternative choice of axes and resulting hamiltonians.

We shall now consider a rotation of the wavevector axes (see Fig.4.1) by 90oclockwise yielding
q′x = −qy, q′y = qx, which changes eq. 4.1 into

α(k±) = 1− 1 + iq′ya

√
3

2 ∓
√

3
2 q′xa = ∓a

√
3

2 (q′x − iqy). (4.4)

Let’s drop the ’ and write the hamiltonian with respect to the new axes

HK± = ±
(

0 γ0a
√

3
2 (qx ∓ iqy)

γ0a
√

3
2 (qx ± iqy) 0

)
≡ ±~vF

(
0 qx ∓ iqy

q ± iqy 0

)
,
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or
Hξ = ξ~vF

(
0 qx − iξqy

q + iξqy 0

)
= ξvF (σ̂xpx + ξσ̂ypy), ξ = ±. (4.5)

Consider now
H− = −~vF

(
0 qx + iqy

q − iqy 0

)
.

Evidently, if we write the spinor as

(
cB−(q)
cA−(q)

)
,

rather than (
cA−(q)
cB−(q)

)
,

we obtain for the hamiltonian

H− = −~vF
(

0 qx − iqy
q + iqy 0

)
= −~vF (σ̂xpx + σ̂ypy),

or
Hξ = ξvF (σ̂xpx + σ̂ypy), ξ = ±, (4.6)

and the hamiltonian

H =
(
H+ 0
0 H−

)
= ~vF

(
σ̂ · p 0

0 −σ̂ · p−

)
= ~vF τ̂ ⊗ σ̂ · p (4.7)

acts on the four-spinor (cA+(q), cB+(q), cB−(q), cA−(q))t.

4.1.2.4 Helicity

The helicity is defined as the projection of the pseudospin along the direction of momentum

ĥ = σ̂· p
|p|

, (4.8)

and is clearly proportional to the Hamiltonian of eq. 4.2, therefore one may choose common
eigenstates for helicity and hamiltonian, i.e., one can simultaneously diagonalize the hamiltonian
and the helicity. Sticking to the vicinity of the K+ point, with Hamiltonian 4.2, it can be easily
shown that to the two energies eigenvalues E±(p) = ±vf |p| it correspond to helicity 1 (spin
parallel to p) for electrons in the upper band ( E(p) = vf |p|) and helicity -1 (spin antiparallel
to p) for holes in the lower band (E−(p) = −v|p| ) (see, e.g., FT, pages 18,19.).
Let’s derive the above result. We use the form of eq. 4.6 for the hamiltonians at the Kξpoint,
which we rewrite as

Hξ = ξvF |p|
(

0 e−iθp

eiθp 0

)
, (4.9)
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4.2 Dirac Fermions in a magnetic field (FT 2.7.5)

where ξ = ±1, px + ipy = |p|eiθp , and θp arctan(py/px). Consider the unitary transformation

Uξ = 1√
2

(
−e−iθp e−iθp

1 1

)

and calculate U+
ξ HξUξ:

H ′ξ = U+
ξ HξUξ = ξ

vF |p|
2

(
−eiθp 1
eiθp 1

)(
0 e−iθp

eiθp 0

)(
−e−iθp e−iθp

1 1

)
= −ξvF |p|

(
1 0
0 −1

)
= −ξvF |p|σ̂z.

Thus the energy eigenvalue are E±(p) = ±vf |p|, for σz = ∓1. If we observe that the helicity
may be written as

ĥξ =
(

0 e−iθp

eiθp 0

)
,

it immediately follows that U+
ξ ĥξUξ = −σ̂z. Thus for ξ = +1 (K+ point) in the upper band

(σz = −1, E+(p) = v|p| ) the eigenstate has positive helicity, i.e. the pseudospin is parallel to
the momentum and in the lower band (σz = +1, E−(p) = −v|p| ) the eigenstates have negative
helicity, i.e., pseudospin is antiparallel to the momentum. Clearly the situation is reversed for
ξ = −1 (K− point).

4.1.2.5 Absence of backscattering

As helicity is a good quantum number near a Dirac point, the conservation of helicity means
that the change in sign of p implies also the flip of pseudospin (change of sign of the projection
of the pseudospin along the momentum). Thus backscattering would be possible only in the
presence of interactions that also flip the pseudospin.

4.2 Dirac Fermions in a magnetic field (FT 2.7.5)

4.2.1 Spectrum and spinors

What happens when graphene is placed into a perpendicular magnetic field B = (0, 0, B)?
Let’s start from the linearized Hamiltonian, of eq. 4.6which we rewrite, as in Foa-Torres,

Hξ = ξvF

(
0 px − ipy

px + ipy 0

)
= ξvF (pxσx + pyσy),

where from now on we drop the hat operator symbol on both spin matrices and momentum.
According to the envelope function approximation we change ~q, with q the small
wavevector providing the departure from either K+ or K−, into the momentum
operator p. The presence of the magnetic field can be taken into account by the minimal
coupling p→ p + eA(r)/c ≡ Π. The Hamiltonian becomes
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Hξ
B = ξvF

(
0 Πx − iΠy

Πx + iΠy 0

)
= ξvF (Πxσx + Πyσy). (4.10)

Let’s now study the commutation relations between the components of the generalize momen-
tum Π. We have

[Πx,Πy] = [px + eAx(r)/c, py + eAy(r)/c] = e

c
([px, Ay] + [Ax,py]) =

= e

c
([px, Ay]− [py, Ax]) = −i~e

c

(
∂xAy
∂x
− ∂yAx

∂y

)
= −i~eB

c
.

Introducing the magnetic length lB as

l2B = ~c
eB

,

we get

[Πx,Πy] = −i~
2

l2B
. (4.11)

Considering the similarity with the p q commutation relation in the harmonic oscillator, we
introduce the lowering and raising (destruction and creation) operators as

a = lB√
2~

(Πx − iΠy) , a+ = lB√
2~

(Πx + iΠy) .

We easily verify the commutation relation of such operators using eq. 4.11.

[a, a+] = l2B
2~2 (i[Πx,Πy]− i[Πy,Πx]) = l2B

2~2

(
2~2

l2B

)
= 1.

Indeed they act as destruction and creation operators. Let’s now rewrite the Hamiltonian in
terms of such operators. Evidently

Πx = ~√
2lB

(a+ a+), Πy = i
~√
2lB

(a− a+)

and

Hξ
B = ξvF (Πxσx + Πyσy) = ~√

2lB
ξvF [(a+ a+)σx + i(a− a+)σy]

= ~√
2lB

ξvF

(
0 a+ a+ + (a− a+)

a+ a+ − (a− a+) 0

)

= ξ
√

2~vF
lB

(
0 a

a+ 0

)
.
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Thus for ξ = 1 we get

H+
B =
√

2~vF
lB

(
0 a

a+ 0

)
,

and for ξ = −1 we get

H−B = −
√

2~vF
lB

(
0 a

a+ 0

)
= −H+

B .

Let’s study Hξ
B

Hξ
B=ξ
√

2~vF
lB

(
0 a

a+ 0

)
=~ω

(
0 a

a+ 0

)
.

Above we set ω =
√

2vF/lB. The equation for the two-spinor is

Hξ
Bψn = Enψn,

with
ψn =

(
un
vn

)
.

We get the two coupled equations

ξ~ωavn = Enun (4.12)
ξ~ωa+un = Envn. (4.13)

Using the first of the two equations in the second we get

1
En

(~ω)2a+avn = Envn

or
a+avn =

(
En
~ω

)2
vn.

But we know that

a+a|n〉 = n|n〉, n = 0, 1, 2, ... .

Thus we may take vn = |n〉, which yields

a+a|n〉 =
(
En
~ω

)2
|n〉 = n|n〉,

which provides the eigenvalues

En = ±~ω
√
n. (4.14)

39



4 Graphene - additions to Foa-Torres

To get un we use eq. 4.12, which gives

un = ξ
~ω
En

avn = ±ξ 1√
n
a|n〉.

Recalling that a|n〉 =
√
n|n− 1〉 and a+|n〉 =

√
n+ 1|n+ 1〉, we get

un = ±ξ|n− 1〉, n > 0; un = 0, n = 0.

Thus the spinor wavefunction is for n = 0

ψ0 =
(

0
|0〉

)
,

and for n > 0

ψn =
(
|n− 1〉
±ξ|n〉

)
.

4.2.2 Wavefunctions and degeneracy

4.2.2.1 Wavefunctions and spectrum

In order to explicitly get spinors envelope wavefunctions and their degeneracy, we go back to
eq. 4.10 and specialize to a particular choice of the gauge, the Landau gauge:

A(r) = B(−y, 0, 0).

Clearly, this implies

Πx = px −
eB

c
y → −i~ ∂

∂x
− eB

c
y,

Πy = py → −i~
∂

∂x
,

which when used in eq. 4.10 yields:

Hξ
B = ξvF

(
0 Πx − iΠy

Πx + iΠy 0

)
= ξvF

 0 −i~ ∂
∂x
− eB

c
y − ~ ∂

∂x

−i~ ∂
∂x
− eB

c
y + ~ ∂

∂x
0

 .
Recall that we have to solve the system

Hξ
B

(
φA(r)
φB(r)

)
= ξvF

 0 −i~ ∂
∂x
− eB

c
y − ~ ∂

∂x

−i~ ∂
∂x
− eB

c
y + ~ ∂

∂x
0

( φA(r)
φB(r)

)
= E

(
φA(r)
φB(r)

)
,
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with φA(r)and φB(r) envelope functions, or defining ε = E/(~ξvF ) 0 −i ∂
∂x
− eB

~c y −
∂
∂y

−i ∂
∂x
− eB

~c y + ∂
∂y

0

( φA(r)
φB(r)

)
= ε

(
φA(r)
φB(r)

)
;

this yields the system 
−i∂φB

∂x
− y

l2B
φB − ∂φB

∂y
= εφA

−i∂φA

∂x
− y

l2B
φA + ∂φA

∂y
= εφB

.

Let’s try with φA(r) = eikxxϕA(y), φB(r) = eikxxϕB(y). We get


kxϕB − y

l2B
ϕB − ϕ′B = εϕA

kxϕA − y
l2B
ϕA + ϕ′A = εϕB

, (4.15)

with ϕ′A = ∂ϕA(y)/∂y, ϕ′B = ∂ϕB(y)/∂y. We now take the derivative with respect to y of the
first equation to get (

kx −
y

l2B

)
ϕ′B −

ϕB
l2B
− ϕ′′B = εϕ′A. (4.16)

We then use (i) eq. 4.16 and (ii) the first equation in the system 4.15 in the second equation
of the system to get(

kx −
y

l2B

)[(
kx −

y

l2B

)
ϕB − ϕ′B

]
+
[(
kx −

y

l2B

)
ϕ′B −

ϕB
l2B
− ϕ′′B

]
= ε2ϕB,

which simplifies to

− ϕ′′B + 1
l4B

(y − l2Bkx)2ϕB =
(
ε2 + 1

l2B

)
ϕB ≡ ε̃BϕB. (4.17)

In a similar fashion, taking the derivative of the second equation 4.15 and using it together
with the second equation in the first one, one readlily obtains

− ϕ′′A + 1
l4B

(y − l2Bkx)2ϕA =
(
ε2 − 1

l2B

)
ϕA ≡ ε̃AϕA. (4.18)

Eq. 4.17 is the equation of a one dimensional harmonic oscillator, as it is clearly obtained by
rewriting it as

− ~2

2mϕ′′B + ~2

2m
1
l4B

(y − l2Bkx)2ϕB = − ~2

2mϕ′′B + mω2
c

2 (y − l2Bkx)2ϕB = ~2

2m

(
ε2 + 1

l2B

)
ϕB ≡ ε̃BϕB,

where we have used the definition of the magnetic length to get the frequency of the oscillator
ωc = eB/mc, i.e., the cyclotron frequency and ε̃B = E2/(2mv2

F ) + ~ωc/2. Evidently ε̃B =
~ωc(nB + 1/2), nB = 0, 1, 2, · · · and
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E2

2mv2
F

= ε̃B −
~ωc
2 = ~ωc

(
nB + 1

2

)
− ~ωc

2 = ~ωcnB.

We get

E = ±
√

2mv2
F~ωcnB = ±

√
2mv2

F~eBnB/(mc) = ±~
√

2v2
F (eB/~c)nB, (4.19)

= ±~
√

2nBvF/lB ≡ ±~ω
√
nB (4.20)

in agreement with eq. 4.14, as ω =
√

2vF/lB. Moreover ϕB(y) = ϕnB
(y − y0), n = 0, 1, 2, · · · ,

with ϕnB
(y) the oscillator wavefunctions centred at the origin and y0 = l2Bkx.

A similar result is obtained from eq. 4.18, which yields

E2

2mv2
F

= ε̃A + ~ωc
2 = ~ωc

(
nA + 1

2

)
+ ~ωc

2 = ~ωc(nA + 1),

and E
E = ±~ω

√
nA + 1, (4.21)

with ϕA(y) = ϕnA
(y − y0), nA = 0, 1, 2, · · · . Evidently from eqs. 4.19 and 4.21 one obtains

nA = nB − 1. Thus, for nB > 0 ϕB(y) = ϕnB
(y − y0) and ϕA(y) = ϕnB−1(y − y0). However,

for nB = 0 ϕA(y) = ϕnB−1(y − y0) is invalid, but substituting ϕB(y) = ϕ0(y − y0) in the first
equation in 4.15 one simply gets ϕA(y) = 0, in agreement with the results in the previous
subsection. In order to write the spinor for given ξ, we observe that eqs. 4.15 fix the sign of
the ratio ϕA(y)/ϕB(y) for given value of E: recall that ε = E/(~ξvF ). Thus, if the energy is
λ~ω√nB, with λ = ±1, the spinor may be written, omitting the plane wave eikxx, as

(
φn−1(y − y0)
λξφn(y − y0)

)
, (4.22)

for n 6= 0, and

(
0

φ(y − y0)

)
(4.23)

for n = 0. You are urged to compare the results of the present subsection with those of 4.2.1

4.2.2.2 Degeneracy and filling factor

The one dimensional oscillators found above have centers in y0 = kxl
2
B and the energy does not

depend on kx! Consider a sample with dimensions Lx, Ly and use periodic boundary conditions
for the motion along x, so that kx = 2πnx/Lx, with nx = 0,±1,±2, · · · . Clearly the center of
the oscillator must fall within the sample

0 ≤ kxl
2
B ≤ Ly,
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4.2 Dirac Fermions in a magnetic field (FT 2.7.5)

or
0 ≤ nx ≤

LxLy
2πl2B

.

This implies that each oscillator state labelled with n has a degeneracy gn = LxLy/(2πl2B) =
A/(2πl2B) , where A = LxLyis the area of the sample. Lets consider a field B = 1 gauss. This
yields lB =

√
~c/(eB) = 2.56× 10−4cm. Thus for B = 10 tesla we get lB = 0.810× 10−6cm =

8.1nm. Clearly if we take A = 1cm2 we get gn = 2.42× 1011, which is a huge number.
We note that

gn = A

2πl2B
= AB

(hc/e) = Φ
Φ0
,

i.e., gnis the ratio between the total magnetic flux through the sample and the quantum of flux
Φ0 = hc/e or the number of flux quanta within the sample surface.
One defines the flux density as the ratio between the level degeneracy gn (or number of flux
quanta) and the surface area, i.e. nB = 1/(2πl2B). Evidently one oscillator level may accomodate
a maximum number of electrons of given spin and valley index equal to its degeneracy, i.e.,
AnB. Thus for N ≤ AnB, one defines the filling factor of an oscillator level as ν = N/(AnB) ≡
ρ/nB,with ρ = N/A the areal density of electrons. Evidently, by definition 0 ≤ ν ≤ 1.
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5 Quantum Transport - additions to
Foa-Torres

5.0.1 Additions to Landauer Buttiker
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3 Quantum transport: general concepts

The previous sections have been devoted to the electronic structure of carbon-based
materials. The rest of the book is now focused on their transport properties. This part is
meant as a nexus, providing a brief reminder on quantum transport with a focus on the
tools that are needed later in the book. After a discussion of the most relevant length
scales and the different transport regimes, three different formalisms are reviewed,
namely Landauer theory, the Kubo formalism and the semiclassical Boltzmann trans-
port equation. More technical details concerning the use of Green’s functions methods
and the Lanczos method for computing the density of states and wave-propagation are
discussed in Appendixes C and D respectively.

3.1 Introduction

3.1.1 Relevant time and length scales

Electron transport through a device is a phenomenon that takes place in time and space
and as such there are relevant time and length scales. Given a device with characteristic
dimensions Lx, Ly, and Lz, if the system is metallic then one has the Fermi wavelength
λF = 2π/kF associated with its Fermi wave-number kF. The elastic mean free path ℓel
can be defined as the distance that an electron travels before getting elastically backscat-
tered (off impurities for example); ℓel = vFτel, where τel is the mean time between those
elastic scattering events which are usually produced by defects or imperfections in the
crystal structure. In disordered systems, when the disorder strength is such that ℓel ∼ λF,
the wavefunctions become localized on a length scale ξ , the localization length.

Analogously to ℓel, one can define the inelastic mean free path ℓin = vFτin as the
mean distance between inelastic scattering events such as those due to electron–phonon
or weak electron–electron interactions. Generically, it is usual to speak of the electronic
mean free path ℓ, without discerning the specific source, elastic or inelastic.1 The phase
coherence length ℓφ (and corresponding coherence time τφ) is defined as the length
over which the phase of the single-electron wavefunction is preserved (within an inde-
pendent electrons approximation), which limits the scale of quantum phase interfer-
ences. Typical values for graphene, carbon nanotubes and other materials are given in
Table 3.1.

1 In graphene the main sources of scattering include charged impurities, defects in the crystal structure and
microscopic corrugations of the graphene sheet (also called ripples). Their relative importance is still
debated.
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Table 3.1 Typical magnitudes of the charge density (n), the mean free path ℓ, Fermi wavelength (λF)
and the coherence length (Lφ) at 4 K in various materials.

GaAs-AlGaAs Metals Graphene SWNT MWNT

n 4 × 1011 cm−2 1021 − 1023 cm−3 1011 − 1012 cm−2 1011 cm−2 ,,
ℓ 100 − 104 nm 1 − 10 nm 50 nm to 3 µma 1 µm 10 − 40 nm
λF 40 nm 0.5 nm 2

√
π/n 0.74 nm ,,

Lφ 100 nm 0.5 µm 0.5 µmb 3 µmc 100 nm

a In suspended graphene, mean free paths of about 100 nm were found at 4 K for n ∼ 1011 cm−2 (and
about 75 nm at 300 K) in Du et al. (2008), while Bolotin et al. (2008) estimate ℓ of up to 1.2 µm for
n ∼ 2 × 1011 cm−2. On the other hand, reported values for devices made from graphene sandwiched in
between hBN crystals go up to 3 µm (Mayorov et al., 2011).

b See Tikhonenko et al. (2009).
c See Stojetz et al. (2005).

3.1.2 Coherent versus sequential transport

Coherent or sequential? is probably one of the most crucial questions, since it dictates
the general framework that better suits a particular system under investigation in a par-
ticular experimental condition (Weil & Vinter, 1987, Jonson & Grincwajg, 1987, Luryi,
1989, Foa Torres, Lewenkopf & Pastawski, 2003). Note, however, that the answer most
probably lies in between these two extreme situations (see also Section 3.5).

Let us imagine that we start with the sample (nanotube, graphene ribbon, etc.)
decoupled from the electrodes. As the coupling between them is turned on, there is
an increasing escape rate which determines the intrinsic width ('α) of the levels (εα)
corresponding to the isolated sample. The more isolated is the sample from the elec-
trodes, the longer the lifetime τD of an electron in any of those levels and the smaller
the intrinsic level width 'α = h̄/τD. If the lifetime associated with the intrinsic level
width is longer than the coherence time (τφ), then the electrons will spend enough time
inside the sample to suffer phase breaking events leading to a decoherent regime.

In the decoherent limit, one may use a sequential picture for transport, in which the
electronic motion is divided, as in a theater play, into different parts:

1. Tunneling in. The electron is transmitted from the left electrode into the sample;
2. Dwelling. The electron dwells in the sample, eventually interacting with other elec-

trons or with phonons/vibrational degrees of freedom;
3. Tunneling out. The electron tunnels into the right electrode or is reflected back to

the left one.

A sometimes implicit assumption of such a picture is that transport is decoherent.
Therefore, the description can be at a semiclassical level where only the occupation
probabilities (and not the amplitudes) are taken into account into a set of rate equations.
Typically, these rate equations take into account the different possible processes (tun-
neling in and out of the sample, electron–electron and inelastic interactions) through a
Fermi golden rule for the associated transition rates. By solving these equations one gets

For graphene λ_F =35 ÷ 100 nm
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the occupation probabilities, from which the current and other quantities of interest can
be computed. The widely used Boltzmann equation belongs to this class of schemes,
and is introduced later in Section 3.3.

Transport in the Coulomb blockade regime (see also Section 5.8.1) is usually
described by such a sequential picture (Beenakker, 1991). In this regime, the contacts
to the electrodes are weak enough such that the charge inside the sample is well defined
and quantified. One says that the transport is suppressed (or blocked) and is only pos-
sible at precise energies, which can be tuned by varying the gate voltage (conductance
peaks). The energy scale governing such peaks is the charging energy (Ec): the energy
necessary to compensate for the electron repulsion and add one more electron to the
system.

When the coherence time is longer than the residence time in the sample, the tunnel-
ing processes through the contacts and dwell inside the sample cannot be treated in a
separate fashion anymore. The picture is that of a coherent transport mechanism and the
theater play becomes a weird quantum game. This is the realm where quantum inter-
ference effects and even more exotic phenomena involving correlated motion between
electrons like the Kondo effect may take place.2 The Landauer–Büttiker theory and the
Kubo formalism, which are briefly introduced in Sections 3.2 and 3.4.4, provide an
appropriate framework for coherent, noninteracting electrons.

A crucial magnitude controlling the transition between these regimes is the intrin-
sic energy level width 'α of the sample connected to outside world. As one moves
from the coherent to the sequential regime, 'α is reduced until it becomes the smallest
energy scale in the problem (the sample being more and more disconnected from the
electrodes). Simultaneously, the value of the charging energy increases from zero to a
value where it dominates over the mean level spacing * and dictates a sequential and
discretized transfer of charges from a source to a drain electrode.

A beautiful experiment showing this transition is reproduced in Fig. 3.1 (Babic &
Schönenberger, 2004). The coupling with the leads changes as the gate voltage Vg is var-
ied, thereby producing a crossover from low transparency to high transparency contacts
and allowing observation of the transition from coherent (lower Vg region in Fig. 3.1 (a)
and (b)) to sequential tunneling (high Vg region in the figures, where isolated resonances
are observed). The conductance accordingly exhibits a wealth of phenomena which
includes, from higher to lower gate voltage: Coulomb blockade peaks, strong cotunnel-
ing, and Kondo effect, and destructive interference which is manifested as Fano reso-
nances.3 This experiment illustrates in a magnificent way that the occurrence and the

2 The Kondo effect is one of the most studied many-body phenomena in condensed matter physics (for a
review see Kouwenhoven & Glazman (2001)), and is also an active topic in graphene physics, both
theoretically (Cornaglia, Usaj & Balseiro, 2009, Cazalilla et al., 2012) and experimentally (Chen et al.,
2011).

3 Fano resonances, also known as anti-resonances in the context of electronic transport (Guinea & Vergés,
1987, D’Amato, Pastawski & Weisz, 1989), are a coherent effect of destructive interference pioneered by
Fano (1935) in spectroscopy and observed since then in many contexts in different nanostructures
(Miroshnichenko, Flach & Kivshar, 2010).
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Figure 3.1 (a) Density plot of the differential conductance versus bias voltage Vsd and gate
voltage Vg (high conductance in black and low conductance in white). (b) Linear response
conductance versus gate voltage. The coupling to the leads strongly depends on the gate voltage,
allowing for the observation of very different phenomena in the same experiment, namely,
Coulomb blockade, Kondo effect and Fano resonances. (Adapted from Babic & Schönenberger
(2004). Copyright (2004) by the American Physical Society. Courtesy of Christian
Schönenberger.)

nature of quantum transport phenomena through a mesoscopic sample strongly depend
on the conditions, the measurement setup, and the dominant energy scales of the system
under study.

3.2 Landauer–Büttiker theory

One of the most influential frameworks for the study of quantum transport is Landauer
theory, pioneered originally by Rolf Landauer in the early fifties (Landauer, 1957, 1970)
and generalized later on by Büttiker and others (Büttiker et al., 1985) for multi-lead sys-
tems. The simplicity of Landauer’s picture for transport boosted it as a driving force in
the field of nanoscale transport. As will be shown later, several reasons make it particu-
larly useful in the context of graphene-based devices and therefore we dedicate the next
pages to a brief presentation of its main points while trying to clarify the underlying
assumptions and limitations.

Let us consider a sample or device that is connected through leads to reservoirs. A
particular case with two leads is represented in Fig. 3.2. Within Landauer’s approach
conductance through a device is seen as a scattering process where electrons injected
from the reservoirs are incident onto the device and then scattered back into the reser-
voirs. Landauer’s theory relates the conductance, measuring the ease with which the
electrons flow, with the transmission probability through the device. The current through
electrode j (Ij) is given by

Ij = 2e
h

∫ N∑

i=1

[
Tj,i(ε)fi(ε) − Ti, j(ε)fj(ε)

]
dε, (3.1)
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Figure 3.3 Scattering through a system with a single incoming and outgoing channel and an
applied voltage difference !V. A current density j is injected from the source. The carriers are
then scattered and a fraction R is reflected and a fraction T transmitted.

3.2.1 Heuristic derivation of Landauer’s formula

Let us consider a one-dimensional metallic system coupled to two 1D electronic leads
which drive incoming and outgoing currents as sketched in Fig. 3.3. The temperature of
the system is set to zero, so only electrons at the Fermi level participate in the electronic
current. This current originates from a potential difference between right and left leads
with e!V ≪ EF. Such potential difference is related to a density gradient δn = n(EF +
e!V) − n(EF) (n(E) being the electron density) which can be approximated, including
spin degeneracy, by

∂n
∂E

|EF .e!V = 2e!V/(π h̄vF). (3.6)

On the other hand, this electron density difference δn can also be written in terms of
the current densities in steady state as

δn = j + jR
evF

− jT
evF

, (3.7)

introducing R and T, the reflection and transmission probabilities respectively. From
Eq. (3.7) one infers that !V = [j(1 + R − T)/(evF)]× π h̄vF/(2e). The total current
I = Tj, so that the resistance of the system reads finally

R = !V/I = h
2e2

R
T

. (3.8)

Based on this derivation, the quantum conductance becomes G = 1/R = 2e2/h ×
T/R, which has an ill-defined value in the limit of perfect transmission (T = 1). Indeed,
given current conservation, R+T = 1, a perfect transmission through the system means
T = 1 and R = 0, or G → ∞ which is clearly unphysical. The reason for such a
singularity comes from the neglect of contact effects. This problem was pioneered by
Rolf Landauer (Landauer, 1970, Imry & Landauer, 1999) who demonstrated that in the
situation of ballistic transport across a given (low-dimensional) system, the resistance
and dissipation will take place at the interface between the measured system and the
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metallic electrodes acting as charge reservoirs. This problem can be solved by rewriting
the Landauer formula as

R = h
2e2

1
T

(3.9)

= h
2e2 + h

2e2
1 − T

T
, (3.10)

so that the quantum resistance is then seen to split into two parts for the single con-
ducting channel case. The first term of Eq. (3.10) gives the contact resistance between
the disorder-free one-dimensional metallic conductor and an electron reservoir with
many more electron channels, whereas the second term of Eq. (3.10) actually provides
information about the intrinsic resistance of the system, which can dominate the total
resistance when the intrinsic transmission is very low. This second term is physically
connected to the so-called four-points transport measurements, which allow access to
such intrinsic resistance, by excluding contact effects.

3.3 Boltzmann semiclassical transport

The Boltzmann equation describes the transport properties of quantum particles (elec-
trons, phonons) driven by a semiclassical dynamics. It determines how the particles of
the system are accelerated in external fields, losing part of their accumulated energy
through scattering-induced momentum relaxation. Scattering processes are determined
by static (impurities, defects) as well as dynamical (phonons) disorders. The Boltz-
mann transport equation describes the dynamics of the distribution function fk(r, t),
which gives the probability (and not the probability amplitude) of finding a particle
in momentum-state |k⟩ in the neighborhood of |r⟩ and at time t. Its most general form
states

∂fk(r, t)
∂t

+ vk · ∇rfk(r, t) + F · ∇k fk(r, t) = ∂fk(r, t)
∂t

∣∣∣∣
coll

, (3.11)

with F describing external (Lorentz) forces acting on the particles, v denoting their
velocity, and where ∂fk(r,t)

∂t |coll is the collision term which drives the system towards
equilibrium, and depends on the sources of scattering and dissipation. The wave nature
of electrons is accounted for in the collision term, as well as in the particles energet-
ics (with E(k) and vk = 1

h̄∇kE(k) given by the crystalline band structure of the clean
system), but the particle dynamics is treated classically in the sense that quantum inter-
ferences between multiple scattering events are disregarded. The Boltzmann transport
theory is therefore invalidated when localization phenomena enter into play and should
instead be replaced by the Kubo approach (described in Section 3.4). In the regime
of high charge density and high temperatures, the Boltzmann transport theory applies
reasonably well, however, even in low-dimensional materials such as graphene.

In Eq. (3.11), the collision term describes the abrupt changes of momentum due to
scattering of the particles. To keep the calculation simple, we hereafter consider only
elastic scattering (particle momentum is changed in the scattering process but energy is



Chapter 1
Introduction

1.1 Quantum Transport in Mesoscopic and Nanoscale
Systems

What systems, models and methods are considered in this book? What is the mean-
ing of the term “nanoscale” and what is its difference from the other known term
“mesoscopic”?

One can note that nanoscale simply assumes nanometer scale spatial dimensions,
very often any structure with at least one spatial dimension smaller than 100nm
(1nm= 10−9 m) is considered as a subject of nanoscience. This definition, however,
includes all types of nanostructures independently of their behavior and physical
properties, which can bemore or less quantum or quite the contrary (semi)classical in
the sense of required physicalmodels.Many nanostructures actually can be described
by well established classical or semiclassical models.

We will focus on quantum transport of charge, spin and heat. Nanoscale in this
respect characterizes not the size, but rather a specific type of systems and effects,
which can be distinguished from both classical systems and mesoscopic quantum
systems.

If you insert the word “nanoscale” into the search line of your internet browser,
you will probably find about 10 times more links than for the word “mesoscopic”.
Nevertheless, about 20years ago, when the first books about quantum transport in
mesoscopic systems and nanostructures had been published [1– 5], almost any quan-
tum transportwas considered asmesoscopic.Actually the term “mesoscopic” charac-
terized the intermediate size between atomic (microscopic) and bulk (macroscopic).
On the other hand, the main methods required to describe experiments in the eighties
of the 20th century, first of all the experiments with semiconductor heterostructures
with µm sizes in transport directions, were based on the quasiclassical methods for
quantum systems with dense (or even continuous) energy spectra. Besides, the the-
oretical description was not based on discrete-level models and could be considered
in the language of real-space propagation paths and phase shifts. As a result, nowa-
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2 1 Introduction

days, mesoscopic is associated with quasiclassical systems with continuous or dense
energy spectra.

But in last years, due to development of molecular electronics and computational
methods for direct modeling at the atomic level, the methods specific for discrete-
level systems become more and more important. At present, quantum nanoscale
transport constitutes its own field of research separated not by hard walls, but by
some visible boundaries from the remaining field of quantum mesoscopic transport.
Let’s try to estimate the parameters responsible for this boundary.

To some extent, the classification can be given based on the characteristic lengths
and times. The most important scales are:

L—the size of the system or characteristic internal length in transport direction;
l p, τp—the elastic scattering length (mean free path) and time;
lε, τε—the inelastic scattering (energy relaxation) length and time;
lϕ , τϕ—the phase-decoherence length and time;
λB—the de Broglie wave length (depends on the kinetic energy, for electrons in
metals it is taken at the Fermi surface).

Typically the characteristic lengths go in the following order

λB < l p < lφ < lε.

For example, in semiconductor (GaAs, Si) 2D electron gas at low temperatures
the values can be λF ≈ 0.05 µm = 50 nm, l p ≈ 0.5 µm, lϕ ≈ 1 µm, lε ≈
3 µm. In metals the numbers are similar: lϕ ≈ 1 µm in gold at T = 1 K. At
room temperatures all these lengths in metals and semiconductors are very small
and transport is described by semiclassical models. Note that this is not the case for
carbon nanostructures like nanotubes, where even at room temperature both electron
and phonon transport can be quantum.

Two scales: the de Broglie wave length λB and the phase-decoherence length lϕ
are specific for quantum transport (other exist also in the classical limit) and are most
important for classification of transport regimes. In the case

λB ≪ L ! lϕ

the motion of electrons is phase-coherent and can not be described by classical
equations, but in most cases it is still quasiclassical, which means that classical
trajectories can be used as a starting point and quantum effects are included mainly
into the phases of quasiclassical wave functions. This is just a case of mesoscopic
system.

Based on the definition of mesoscopic systems as the systems with continu-
ous energy spectrum, we define nanoscale systems as the systems with essentially
discrete energy spectrum in some parts. Usually it means that a discrete-level
system is coupled to infinitely large electrodes (or substrate) with continuous spec-
trum.For example, assume that the characteristic size of the central region in transport
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direction starts to be comparable with the electron wave length:

L ∼λB .

In this case quantization of the single-particle energy levels starts to be important.
Of course, we are interested also in other cases when some system is naturally

represented by discrete-level models. In particular, molecular junctions are described
using the basis of atomic or molecular orbitals. One more origin of discrete many-
body energy spectra is Coulomb interaction (the charging energy) in quantum dots
and small grains. Finally, nanostructured low-dimensional materials (e.g. short nano-
tubes, graphene flakes, etc.) are described by discrete tight-binding (lattice) models.

Thus, we suggest a point of view that the boundary between mesoscopic and
nanoscale systems is mainly the boundary between: (i) a continuous energy spectrum
and continuity in real space of the equations for wave functions in the mesoscopic
case; and (ii) discrete energy spectrum and discrete basis wave functions in nanosys-
tems. Of course, there is no strict separation between meso- and nano- transport and
very often people actually mix these two terms. However, to have practical limits
in the extremely wide field of nanoscience, I consider in this book only transport
through quantum nanosystems with discrete energy spectrum, such as metal grains,
semiconductor quantum dots and single molecules, coupled to one, two, or larger
number of electrodes.

We do not consider in this book the methods and approaches, which are typical
only for mesoscopic transport and focus instead specifically on nanoscale transport
questions. In particular, the following topics are not included:

• quantum interference of Aharonov-Bohm type;
• weak localization;
• universal conductance fluctuations;
• random matrix theory;
• quantum Hall effect;
• quasiclassical and semiclassical transport.

I refer the readers to numerous special reviews on mesoscopic transport.
Still, there are some topics important for both quasiclassical (mesoscopic) and

pure quantum (nanoscale) systems, for example the Landauer scattering approach.
That is the reason why we start from the “mesoscopic” Landauer-Büttiker method
in Chap.2. However, in the next Chap. 3 we formulate the Landauer approach for
discrete basis using the technique of matrix Green functions, in such a way we get a
nanoscale version of this approach.

There is one other significant peculiarity of nanoscale systems: the enhanced role
of interactions. The theory of mesoscopic transport is based usually on free particles
or weakly interacting particles, the perturbation theory is widely used. At nanoscale,
as we already mentioned, both electron-electron and electron-vibron interactions
may be strong and the Landauer approach can not be used anymore. Fortunately,
we can use the powerful methods of Nonequilibrium Green Functions and Quantum
Master Equation, able to treat the many-body problems.
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1.2 Nanojunctions

We focus on the models describing some central system, placed between two or
many ideal electrodes, which are assumed to be noninteracting and being in ther-
mal equilibrium. On the contrary, the central system can be interacting and can be
nonequilibrium if finite voltage is applied. One can call such systems nanojunctions.
Depending on the ratio between the energy scales associated with electron-electron
or electron-vibron interactions in the central system (examples of these energy scales
are the effective charging energy and the polaron energy) and coupling to the leads,
nanojunctions can be classified in several groups.

In the case of strong coupling to the electrodes and weak interactions, the elec-
tronic states of the central system are hybridized with states in the electrodes, charge
quantization is suppressed, transport is mainly coherent and the conductance is of
the order of the conductance quantum G0 = 2e2/h. In some cases one can ignore
completely the atomistic structure and formulate themodel in the continuummedium
approximation (a typical example is the nanojunction shown in Fig. 1.1), or use the
lattice (tight-binding) model with given parameters. The basic way to understand
quantum coherent transport in noninteracting systems is Landauer-Büttiker method
(usually formulated for atomistic or lattice systems with Green function formalism).
We consider coherent transport in Chaps. 2 and 3.

In the case of very weak coupling to the electrodes (Fig. 1.2), the electronic states
of the central system are only weakly disturbed, strong charge quantization and
Coulomb blockade take place and transport is mainly determined by sequential tun-
neling. The central region in this case is often called quantum dot. In this case the
master equation for probabilities of the many-body states is a good starting point.
We consider different examples of sequential tunneling through the systems with
Coulomb blockade and polaron effects in Chaps. 5 and 6.

Besides, the important limiting case is a strongly asymmetric nanojunction
(Fig. 1.3), when the central region is strongly coupled to one electrode and weakly
coupled to other one. This is a typical situation for STM experiments. The peculiar-
ity of this case is that the central region (quantum dot, molecule) is in equilibrium
or weakly nonequilibrium state even at large voltage, because it keeps the state in

Fig. 1.1 Schematic picture
of a nanojunction with strong
coupling to the electrodes
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Fig. 1.2 Schematic picture
of a nanojunction (quantum
dot) with weak coupling to
the electrodes

Fig. 1.3 Schematic picture
of a strongly asymmetric
nanojunction (STM set-up)

equilibrium with stronger coupled electrode. This type of junctions (as well as any
direct contacts between two electrodes without any central region) can be describe
by the so-called Tunneling (or Transfer) Hamiltonian method without use of more
sophisticated methods. We consider tunneling in Chap.4.

1.3 From Basic Concepts to Advanced Methods

The theoretical treatment of transport at nanoscale (see introduction in [1– 12])
requires the combined use of different techniques and approximations. We will
consider discrete-level models starting from few-level and tight-binding noninter-
acting models and going in the direction towards the many-body models with strong
electron-electron and electron-vibron interactions. Let us now outline the main
concepts.

Landauer-Büttiker method [13– 22] establishes the fundamental relation
between the wave functions (scattering amplitudes) of a junction and its conducting
properties. The method can be applied to find the current through a noninteracting
system or through an effectively noninteracting system, for example if the mean-
field description is valid and the inelastic scattering is not essential. Such type of an
electron transport is called coherent, because there is no phase-breaking and quan-
tum interference is preserved during the electron motion across the system. In fact,
coherence is assumed in many ab initio based transport methods using the density-
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MT = MMLM ′ =
(
M11 M12

M21 M22

)(
e−ikL 0
0 eikL

)(
M ′

11 M ′
12

M ′
21 M ′

22

)
. (2.62)

MT11 = M11M ′
11e

−ikL + M12M ′
21e

ikL (2.63)

In the case of two identical barriers, for transmission coefficient we find

T (E) = T 2
1

T 2
1 + 4R1 cos2(kL − θ)

, (2.64)

where θ is the phase of the complex M11. T1 and R1 are transmission and reflection
coefficients of the single barrier.

From this general expression one can see the important property of two-barrier
structures: there are transmission resonances, at some specific energies En the trans-
mission coefficient is large (T (En) = 1 in symmetric structures), while between
resonances it can be small.

When the barriers are δ-functions M11 = 1 + i
K
, θ = arctan

1
K

= arctan
mα

!2k
and the equation for resonances (T = 1) is

tan kL = −!2k
mα

. (2.65)

Close to the resonance, around one of the resonance energies En , the transmission
coefficient has a Lorentzian form

T (E) ≈ $2
n

(E − En)2 + $2
n
, (2.66)

where the width $n is given for two δ-barriers as

$n =
(
2!2EnT 2

1

mL2R1

)1/2

. (2.67)

2.2 Landauer Formula

2.2.1 Single-Channel Formulas

The main idea of the scattering approach to the conductance was first formulated
by Rolf Landauer [1, 2]. He proposed, that the conductance of some segment of a
1D channel with elastic scatterers is determined by the quantum mechanical prob-
abilities of transmission (T ) and reflection (R = 1 − T ) through this segment. It
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should be noted, that Landauer considered the local resistance of a system (the zero-
temperature residual resistance), but not the resistance of a quantum system between
two equilibrium electrodes. As a result, he got for the zero temperature one-channel
(effectively one-dimensional) conductance the so-called “first Landauer formula”

G ′ = e2

h
T

1 − T
= e2

h
T
R
. (2.68)

The result, which seems to be reasonable at least in two limiting cases. At small
transmission T → 0, the conductance is also small and proportional to T , the result,
which is well known from the perturbation theory. In the opposite case, when T → 1,
R → 0, there is no scattering at all, so that the conductance should go to infinity, in
agreement with (2.68). To take into account the spin degeneracy in this formula, one
has to multiply the conductance (2.68) by 2.

However, the further investigations [3, 4] show that the conductance of a 1D
system, calculated by the exact linear response method, can have also quite different
form (depending on the boundary conditions)

G = e2

h
T . (2.69)

This conductance is finite even in the case of the perfectly transparent junction
(T = 1). Actually, there is no contradiction between these two formulas. It was
shown that both are reasonable and give the same current, but correspond to the
voltages, defined between different points. As we shall see below, the key difference
between the formulas (2.68) and (2.69) is that the first one is for the conductance
inside the junction (between points A and B, see Fig. 2.13 below), while the second
gives the conductance related to the equilibrium electrodes (between points L and R
in Fig. 2.13). In Sect. 2.2.4 we obtain both formulas and discuss the relation between
them. The puzzle with finite resistance at T → 1 is also understood, it is clear now
that the current through a junction is always accompanied by the voltage drop at the
boundaries between electrodes and leads. The physical reason is that the number of
open electron transport channels is limited, while many other electrons reflect from
the junction and create some charge distribution. Not so obvious is, however, that
this contact resistance has the universal value Rc = h/e for one spinless channel.

For the transport problems, considered in this book, the second type of the Lan-
dauer formula ismore important usually. Besides, the first type formulas are not exact
for finite-size nanostructures, because they are dependent on the particular electrical
potential distribution inside the junction.

The important question, discussed in connection with the Landauer resistance, is
the origin of dissipation in this approach. Indeed, finite dc current at finite dc voltage
means that the energy is permanently dissipated. On the other hand, we consider only
elastic scattering, so that the energy can not be dissipated in the scattering process.
This problem is closely related to the phenomena of the residual resistance at low
temperature, caused by impurities. In both cases we should introduce some thermal-
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ization. In the case of transport between the equilibrium electrodes, this problem is
resolved quite easy, the energy is dissipated in the electrodes, the details of the dis-
sipation are not relevant. More precisely, the incoming from the electrodes particles
are equilibrium distributed, while outgoing particles propagate into the electrodes
and are thermalized here.

At finite temperature and finite voltage the Landauer formula (2.69) is transformed
into the more general formula for the current:

I (V ) = e
h

∫ ∞

−∞
T (E, V ) [ fL(E) − fR(E)] dE, (2.70)

where T (E, V ) is the transmission function describing the probability of transmis-
sion as a function of energy and voltage V = ϕL − ϕR , fs(E) are the distribu-
tion functions in the left (s = L) or right (s = R) electrodes. In equilibrium the
Fermi-Dirac distribution functions with the chemical potential (Fermi energy) µs ,
the electrical potential ϕs and the temperature Ts are

fs(E) =
1

exp
(

E−µs−eϕs
Ts

)
+ 1

. (2.71)

2.2.2 Heuristic Derivation

Now we are ready to see in detail, how the transmission coefficient can be used to
calculate the current through a quantum junction, in particular we will derive the
Landauer formulas (2.69) and (2.70). We start from the mode-conserving scattering
and use here the heuristic arguments. More rigorous methods are summarized in
Sect. 2.3.

From the scattering picture it follows that all particles, coming from the left
electrode, are transmitted through the junctionwith the probability T (n, kz) and, after
that, their excess energy, phase coherence, and the memory of their previous state

Fig. 2.9 Left-moving and
right-moving particles in a
wire with scatterer (energy
diagram)
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are lost in the right electrode. We assume in all cases, that an electron can go without
scattering from the lead into the electrode, thus for incoming from the left electron
there are only two possibilities: to go into right electrode with the probability T or to
return back to the left electrode with the probability R. The same property takes place
for all particles coming from the right and transmitted to the left. Transport through
the junction is coherent in this model, energy E and transverse quantum number n
are conserved (the case of the multi-channel scattering, when n is not conserved,
will be considered later). Irreversibility is introduced through the relaxation in the
electrodes. The main assumption is that the right-moving particles in the left lead
are populated with the equilibrium distribution function of the left electrode f eqL (E)
and the left-moving particles in the right lead are populated with the equilibrium
distribution function of the right electrode f eqR (E) (see Fig. 2.9).

According to this model, the current of electrons, which enter from the left elec-
trode is determined by the following expression

JL→R = e
∑

n

∫ ∞

0
TL→R(n, kz)υL(n, kz) fL(n, kz)

dkz
2π

, (2.72)

where υL(n, kz) is the group velocity of the particle with momentum kz , fL(n, kz)
is the distribution function, the form of this function is considered below. The inte-
gration is only for right-moving particles with kz > 0. Note, that it is not necessary
to multiply this expression additionally by the factor like (1 − fR(n, kz)) as in the
tunneling “golden rule” theory, because this factor describes the number of empty
states in the right equilibrium electrode and should be included when the transition
between left and right states is considered. Instead, in our approach we consider
scattering states in the leads, which formally can be extended in the electrodes. The
transmission coefficient from the left to the right is simply the probability to find a
particle in the right part of this state.

Taking into account that

υ(kz) =
∂Ez(kz)

!∂kz
= ∂E(kz)

!∂kz
, (2.73)

where E(kz) = En + Ez(kz) is the full energy, we obtain

IL→R = e
h

∑

n

∫ ∞

EnL

TL→R(n, E) fL(E)dE, (2.74)

and a similar expression for the current of right-incoming electrons

IR→L = e
h

∑

n

∫ ∞

EnR

TR→L(n, E) fR(E)dE . (2.75)
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Fig. 2.10 Energy diagrams
for chemical potential
difference (the number of
electrons in the band is
changed, but not the
potential)

Note that the integration in this expressions is done from the bottom of conduction
band EnL(R). Taking into account the symmetry of transmission coefficients (2.28)
we get the expression for the current

I = e
h

∑

n

∫ ∞

−∞
Tn(E)

[
f eqL (E) − f eqR (E)

]
dE . (2.76)

The limits of integration over E can be taken infinite, because the closed channels
have Tn(E) = 0 and do not contribute to the current.

Finally, the distribution functions in this expression should be discussed. There are
different possibilities to create a nonequilibrium state of the junction. In equilibrium
the electro-chemical potential µ̃ = µ+ eϕ should be the same in both electrodes.
Here µ is the (internal) chemical potential, which determines the filling of electron
bands in the electrodes, and ϕ is the electrostatic potential. One can create a differ-
ence of only (internal) chemical potentials (Fig. 2.10) if one of the electrodes will
be populated by extra particles. This case, however, is quite difficult to realize in
nanostructures, because any change of the particle density causes the change in the
electric field. Moreover, typically the external voltage is applied to the electrodes,
while the (internal) chemical potentials of the electrodes far from the junction are not
changed, µL = µR = µ (Fig. 2.11). More generally, one can say that the difference
in the electro-chemical potentials between two points taken inside the equilibrium
electrodes, is always produced by the external voltage (µ̃L−µ̃R = eV ). To determine
the exact distribution of the charge density and electrostatic potential near and inside
the junction, the self-consistent solution of the coupled Schrödinger and Poisson
equations is necessary. In this case the expression (2.76) should be used with care
when the voltage is not small. Indeed, the potential U (z) is now a function of the
applied voltage, and consequently the transmission coefficient is a function of the
voltage too.

The distribution functions in the general case are

f 0L (E) =
1

exp
(

E−µL−eϕL
TL

)
+ 1

, f 0R(E) =
1

exp
(

E−µR−eϕR
TR

)
+ 1

. (2.77)
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Fig. 2.11 Energy diagrams
for voltage difference (the
electron band is shifted up,
the potential is modified)

The temperatures in the electrodes can be also different, but we consider it later.
Usually the simplified form can be used, with explicitly written external voltage

I (V ) = e
h

∑

n

∫ ∞

−∞
Tn(E, V ) [ f0(E − eV ) − f0(E)] dE . (2.78)

where f 0(E) is the Fermi-Dirac distribution function with the equilibrium chemical
potentials µL = µR = EF :

f0(E) =
1

exp
( E−EF

T

)
+ 1

. (2.79)

The distribution functions in the electrodes are the functions of energy E only,
thus one can introduce the transmission function

T (E) =
∑

n

Tn(E), (2.80)

and obtain finally

I (V ) = e
h

∫ ∞

−∞
T (E, V ) [ f0(E − eV ) − f0(E)] dE . (2.81)

This formula can be wrong, however, if an external magnetic field is applied,
because themagnetic field violates the time-reversal symmetry and the relation (2.28)
may be violated too.

The conductance at zero temperature is given by

G = e2

h

∑

n

Tn(EF ). (2.82)
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2.2.3 Conductance Quantization

Perfect Wire

Consider now the conductance of a perfect wire adiabatically coupled to two elec-
trodes. “Perfect wire” means that there are several open reflectionless channels with
transmission coefficient Tn(E) = 1. Thus all right-going electrons inside the junc-
tion are populated only by the left electrode and left-going electrons are populated
only by the right electrode (Fig. 2.12). We can say that right moving electrons have
the (pseudo-) electro-chemical potential of the left electrode µ̃L , while left mov-
ing electrons of the right electrode µ̃R . Of course, the state of electrons inside the
wire is not equilibrium, and these “left” and “right” chemical potentials give the
number and energy of corresponding particles in the channel, but they are not usual
thermodynamic potentials.

Nowwe simplyuse the expression for the current (2.81). Thedistribution functions
in the electrodes at zero-temperature are the step-functions

fL(E, V ) = θ(µ+ eV − E), (2.83)

fR(E) = θ(µ− E), (2.84)

and for the current we obtain

I (V ) = e
h

∑

n

∫ ∞

−∞
Tn(E, V ) [θ(µ+ eV − E) − θ(µ− E)] dE

= e
h

∑

n

∫ µ−En+eV

µ−En

Tn(E, V )dE = e2

h
NV, (2.85)

where we used Tn(E, V ) = 1, and N is the number of open channels between
µ̃L = µ+ eV and µ̃R = µ. For the conductance one has

Fig. 2.12 Left-moving and
right-moving particles in a
perfect wire (energy
diagram)



38 2 Landauer-Büttiker Method

G = e2

h
N . (2.86)

It is accepted to call the conductance of a single-channel perfect wire with spin
the conductance quantum

G0 =
2e2

h
≈ 77.48 µS= 7.748 · 10−5 Ω−1 ≈ 1

12900
Ω−1. (2.87)

The corresponding resistance is

R0 =
h
2e2

≈ 12.9 kΩ. (2.88)

Where does the resistance of a perfect wire come from? The origin of this resistance
is in the mismatch between the large number of modes in the electrodes and a few
channels in the wire. So this is not the resistance of a perfect wire, but rather the
contact resistance of the interface between electrodes and wire.

Quantum Point Contact

In quantum point contacts (QPC), which have usually the adiabatic form, the con-
ductance at low temperatures is quantized in accordance with (2.86). In the spin-
degenerate case it can be written as,

G = 2e2

h

∑

n

θ(EF − En), (2.89)

where EF is the Fermi energy, and En is the maximum of the transverse energy
En(z). The Fermi energy in 2D electron gas can be changed by the gate voltage Vg ,
in this way the conductance quantization was observed experimentally in the form
of steps at the function G(Vg).

At finite temperature the conductance steps are smeared. Besides, the steps are
not perfect, if the junction is not adiabatic. This can be seen from the exactly solvable
model with the potential

V (x, z) = 1
2
mω2

x x
2 + V0 − 1

2
mω2

z z
2. (2.90)

The transmission coefficients have a simple form [5]:

Tn(E) =
1

exp
[
−2π (E − V0 − (n + 1/2)!ωx ) /(!ωz)

]
+ 1

. (2.91)

At ωz ≪ ωx we return to the adiabatic approximation and well defined steps.
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Classical Point Contact

It is interesting to compare the quantum conductance (2.86)with the conductance of a
classical point contact with large width d0 ≫ λF , known as Sharvin conductance [6].
Following [7], this conductance for 2D ballistic channel with the width d0 between
two Fermi gases can be written as

I = eυF

π
d0

∂n
∂µ

eV, (2.92)

In 2D electron gas ∂n/∂µ= m/π!2, and we obtain (with spin degeneracy)

GS =
2e2

h
kFd0
π

. (2.93)

From quantum mechanical point of view kFd0/π is the number of transverse
channels N .

2.2.4 Contact Resistance

Consider now the single-channel casewith the imperfect transmission T ̸= 1, repeat-
ing the same calculation as in (2.85) we obtain

I = e
h
T (µ̃L − µ̃R) =

e2

h
T V, (2.94)

G = e2

h
T . (2.95)

This is the conductance between the reservoirs, e.g. between some two points “L”
and “R” inside the electrodes (see Fig. 2.13). Now consider two other points “A” and
“B” inside the leads. The distribution functions and corresponding “electro-chemical
potentials” (these potentials are not true potentials, but give the correct number and
energy of electrons, as we discussed before) are different for left and right moving
electrons. Now, however, these potentials are different also at different sides of the
scatterer (Fig. 2.12, right). The potential µ̃→

L of the right moving electrons is equal
to µ̃L only in the left part of the wire, as well as µ̃←

R = µ̃R in the right part. All other
electro-chemical potentials are modified by the reflection from the barrier. Assume,
that one can approximate the charge redistribution in the leads due to scattering by
some quasi-equilibrium distributions with corresponding pseudo-potentials µ̃. For
example, only the part of right moving electrons is transmitted through the barrier
and corresponding potential should be T µ̃L , but additionally (1−T )µ̃R are reflected
and move back. Finally, we obtain
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Fig. 2.13 The points of
voltage measurement: L, R
in the equilibrium electrodes;
A, B inside the leads

µ̃→
L = µ̃L , µ̃→

R = T µ̃L + (1 − T )µ̃R, (2.96)

µ̃←
R = µ̃R, µ̃←

L = T µ̃R + (1 − T )µ̃L . (2.97)

The difference of both “left moving” and “right moving” chemical potentials
across the barrier is the same

µ̃→
L − µ̃→

R = µ̃←
L − µ̃←

R = (1 − T )(µ̃L − µ̃R). (2.98)

We can identify this potential difference with the potential drop between points A
and B

eVAB = (1 − T )(µ̃L − µ̃R). (2.99)

Thus we can define the conductance (with the current (2.94))

G ′ = I
VAB

= e2

h
T

1 − T
= e2

h
T
R
, (2.100)

which is exactly “the first Landauer formula” (2.68). The voltage VAB appears as
a result of charge redistribution around the scatterer. Not surprising that for perfect
wire with T = 1 and R = 0 this conductance is infinite.

The conductances (2.95) and (2.100) obey the following relation:

1
G

= h
e2

+ 1
G ′ . (2.101)

This result can be understood in the following way.G−1 can be considered as the full
resistance of the junction, consisted from two sequential resistances of the scatterer
(G ′−1) and of the contact resistance of the perfect wire (h/e2).

Consider additionally the conductance of the incoherent series of N scatterers,
each having the transmission coefficient T1. If the phase coherence is broken, one
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should summarize the probabilities of transmission instead of the quantum ampli-
tudes. Thus, the transfer matrix method does not work in this case. Instead we use
the probability theory. Let us consider first only two scatterers with the transmission
coefficients T1 and T2. The probability of transmission trough both scatterers T is
calculated as the sum of all possible (re)scattering processes

T = T1T2 + T1R2R1T2 + T1R2R1R2R1T2 + · · ·

= T1(1+ R1R2 + (R1R2)
2 + · · · )T2 =

T1T2
1 − R1R2

, (2.102)

or

1 − T
T

= 1 − T1
T1

+ 1 − T2
T2

, (2.103)

which demonstrates the additivity of (1 − T )/T . Thus, for N scatterers we obtain

1 − T
T

= N
1 − T1
T1

. (2.104)

The resistance of the system is

R = h
e2

1
T

= h
e2

+ N
h
e2

R1

T1
. (2.105)

We again obtain the series resistance of N Landauer scatterers and contact resistance.

2.3 Multi-channel Scattering and Transport

2.3.1 S-Matrix and the Scattering States

Consider now the generalmulti-channel case,when the scattering is possible between
different modes. It is convenient to define separately left (L) and right (R), incoming
(+) and outgoing (−) modes (Fig. 2.14). We assume that at z < zL and z > zR the
leads have a constant cross-sections. To make the S-matrix unitary, we introduce
the normalization of incoming and outgoing modes, as was discussed in Sect. 2.1.4.
Thus, outside the scattering region we define

ψ+
LnE (r) =

1√
2π!υLn

φLn(x, y)An+eikn z, z < zL (2.106)

ψ−
LnE (r) =

1√
2π!υLn

φLn(x, y)An−e−kn z, z < zL (2.107)











5 Quantum Transport - additions to Foa-Torres

5.0.2 Additions to Kubo-Greenwood (in Foa-Torres 3.4)

As in Foa-Torres we consider a system in 1 dimension in an external electric field which in
Coulomb gauge comes solely from a vector potential

A(t) = − E0

2iω
(
eiωt − e−iωt

)
,

yielding an electric field
E(t) = −∂A(t)

∂t
= E0cos(ωt).

Let’s consider the dissipated power in the system due to the electric field, which causes transi-
tions between eigenstate of the unpertubed hamiltonian (H0|n〉 = En|n〉). Evidently P = J ·E,
but it can also be expressend as

P =
∑
n,m

(Em − En)f(En)[1− f(Em)]p̃n→m,

where p̃n→mis the probability per unit time of the transition |n〉 → |m〉. Evidently when
Em > En energy is absorbed by the system, while when Em < En energy is emitted by the
system, thus the totale power is the difference between absorbed and emitted nenergy. To
calculate P we need to calculate the p̃n→m. To this end we have to start from the coupling
hamiltonian between the system and the electric field (in SI)

δĤ(t′) = eV̂xA(t).

Linear order time-dependent perturbation theory provides the expressions

an→m(t) = −i
~

ˆ t

0
dt′ei(Em−En)t〈m|δĤ(t′)|n〉,

p̃n→m = lim
t→∞

pn→m
t

= lim
t→∞

1
t
|an→m(t)|2 = lim

t→∞

1
~2t

∣∣∣∣∣
ˆ t

0
dt′ei(Em−En)t〈m|δĤ(t′)|n〉

∣∣∣∣∣
2

.

A simple calculations yields

an→m(t) = − eE0

2i~ω 〈m|V̂x|n〉
(
ei(ω+ωmn)t − 1
i(ω + ωmn) + e−i(ω−ωmn)t − 1

i(ω − ωmn)

)

= eE0

2~ω 〈m|V̂x|n〉
(
ei(ω+ωmn)t − 1

(ω + ωmn) + e−i(ω−ωmn)t − 1
(ω − ωmn)

)
.

Note that p̃n→m does not vanish only if an→m(t) is diverging for large t. This happens if either
ω + ωmn → 0 or ω − ωmn → 0; the two conditions are however mutually exclusive! Thus when
we consider |an→m(t)|2 we can retain one term at time and get

|an→m(t)|2 = e2E2
0

4~2ω2 |〈m|V̂x|n〉|
2
(

21− cos[(ω + ωmn)t]
(ω + ωmn)2 + 21− cos[(ω − ωmn)t]

(ω − ωmn)2

)
.

Recall that limt→∞2[1− cos(ωt)]/(ω2t) = 4πδ(ω) to obtain

p̃n→m lim
t→∞

1
t
|an→m(t)|2 = e2E2

0π

2~2ω2 |〈m|V̂x|n〉|
2[δ(ω + ωmn) + δ(ω − ωmn)].

72



Thus, choosing ω > 0 and setting E = ~ω, we get

P =
∑
n,m

(Em − En)f(En)[1− f(Em)]p̃n→m

=
∑
n,m

(Em − En)f(En)[1− f(Em)]e
2E2

0π

2~2ω2 |〈m|V̂x|n〉|
2[δ(ω + ωmn) + δ(ω − ωmn)

= e2E2
0π

2~2ω2

∑
n,m

|〈m|V̂x|n〉|2 [−~ωf(En)[1− f(Em)]δ(ω + ωmn) + ~ωf(En)[1− f(Em)]δ(ω − ωmn)]

= e2E2
0π

2~2ω2

∑
n,m

|〈m|V̂x|n〉|2 [−~ωf(En)[1− f(Em)]δ(ω + ωmn) + ~ωf(Em)[1− f(En)]δ(ω + ωmn)]

= e2E2
0π

2~2ω2

∑
n,m

|〈m|V̂x|n〉|2 [~ω[f(Em)− f(En)]δ(ω + ωmn)]

= e2E2
0π

2~2ω2

∑
n,m

|〈m|V̂x|n〉|2 [~ω[f(Em)− f(En)]~δ(~ω + Em − En)]

= π~e2E2
0

2~ω
∑
n,m

|〈m|V̂x|n〉|2 [[f(En)− f(Em)]δ(Em − En − ~ω)] .

73
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This gives the conductivity in the RTA as

σxx = − e2

2π

∫
kdk

(
∂f 0

k
∂εk

)
τkv2

k . (3.28)

3.4 Kubo formula for the electronic conductivity

The conductivity of a bulk material is defined at finite frequency ω as the tensorial
ratio between the applied electric field and the resulting electronic current: J(ω) =
σ (ω)E(ω). We assume that the transport measurement direction is along the (Ox) axis,
so that only diagonal elements are taken into account: Jx(ω) = σ (ω)Ex(ω). The Kubo
approach is a technique to calculate linear response in materials (optical, electric, etc.).
It is based on the fluctuation–dissipation th eorem that establishes a correspondence
between the dissipative out-of-equilibrium response (namely, the conductivity) and the
fluctuations at the equilibrium (the correlation function of the charge carrier velocities).

We provide here a comprehensive derivation of the Kubo formula for electronic con-
ductivity (Roche, 1996, Triozon, 2002, Lherbier, 2008), which is suitable for study-
ing quantum transport phenomena in disordered graphene-based materials, based on
numerical simulations. It is inspired by a derivation by Nevill Mott which calculates the
absorbed power driven by electronic transitions induced by the exchanges between the
system and the electromagnetic field (P).

Let us assume an electronic system described by the Hamiltonian Ĥ0 = P̂2

2m + V̂ ,
where V̂ gives the crystal potential which can also include the effect of crystal imper-
fections. Then assume that its electronic spectrum is given by εk, |'k⟩. By applying an
external (weak) electric field, the system will undergo internal fluctuations, which are
usually well captured by electronic transition between states of the system at equilib-
rium. To compute σ , we start with the equation P = J · E with J = σE. The electric
field E(t) is given by E0cos(ωt)ux, but for computational convenience we use an oscil-
latory field throughout the derivation, while the limit to the static case is taken at the
end (E(t) = E0ux) with ω → 0. The associated vector potential A(t) in the Coulomb
gauge is

A(t) = − E0
2iω

(
eiωt − e−iωt

)
ux, (3.29)

while the total power absorbed per unit time is

Ptot abs =
∑

n,m
Pn→m

abs − Pm→n
diss . (3.30)

The average power absorbed (Pabs) and dissipated (Pdiss) per unit time can be esti-
mated from the transition probabilities p̃n→m from electronic states nto m (and inversely
(m → n)) and Fermi–Dirac distribution f (E):

Pn→m
abs =

[
h̄ ω f (En)(1 − f (Em))

]
p̃n→m, (3.31)

Pm→n
diss =

[
h̄ ω f (Em)(1 − f (En))

]
p̃m→n. (3.32)
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Such transition probabilities per unit time are derived from a first-order perturbation
theory in the electric field as

p̃n→m = pn→m(t)
t

= 1
h̄ 2t

∣∣∣∣

∫ t

0
dt′ei(Em−En)t′/h̄ ⟨m|δĤ(t′)|n⟩

∣∣∣∣
2
, (3.33)

with δĤ being the time-dependent perturbation of the total Hamiltonian. At first order
it directly relates to the velocity operator V̂ and vector potential A through

δĤ(t′) = e V̂ · A(t′), (3.34)

δĤ(t′) = eV̂xAx(t′) (for the 1D case). (3.35)

Using Eqs. (3.29–3.35) we obtain

Ptot abs = π h̄ e2E2
0

2h̄ ω

∑

n,m

∣∣⟨m|V̂x|n⟩
∣∣2

δ(Em − En− h̄ ω)
[
f (En) − f (Em)

]
, (3.36)

and finally the total power absorbed per unit time and volume P = Pabs
) () being the

sample volume) is related to the conductivity by

P = Ptot abs
)

= σ ⟨E · E⟩ = σE2
0

2
. (3.37)

Using Eq. (3.37), where ⟨cos2(ωt)⟩ has been replaced by its average value 1/2, one gets
the Kubo conductivity

σ (ω) = π h̄ e2

)

∑

n,m

∣∣⟨m|V̂x|n⟩
∣∣2

δ(Em − En− h̄ ω)
f (En) − f (Em)

h̄ ω
. (3.38)

Using the properties of δ(x) functions and rewriting the expression as a trace of opera-
tors the general expression becomes

σ (ω) = π h̄ e2

)

∫ +∞

−∞
dE

f (E) − f (E + h̄ ω)

h̄ ω
Tr

[
V̂†

xδ(E − Ĥ)V̂xδ(E + h̄ ω − Ĥ)
]

.

(3.39)

It is also instructive to rewrite this formula introducing the autocorrelation function
of velocity (C(E, t)), together with the mean square spreading of wavepackets defined
as (*X2(E, t)). Using

δ
(

E + h̄ ω − Ĥ
)

= 1
2π h̄

∫ +∞

−∞
dt ei

(
E+h̄ ω−Ĥ

)
t/h̄ (3.40)

inside the trace, which is further denoted by A1:

A1 = Tr
[
V̂†

xδ
(

E − Ĥ
)

V̂xδ
(

E + h̄ ω − Ĥ
)]

, (3.41)

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

xδ
(

E − Ĥ
)

V̂x ei
(

E−Ĥ
)

t/h̄
]

, (3.42)

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

xδ
(

E − Ĥ
)

eiĤt/h̄ V̂x e−iĤt/h̄
]

. (3.43)
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The velocity operator in its Heisenberg representation being

V̂x(t) =
(

eiĤt/h̄ V̂x e−iĤt/h̄
)

, (3.44)

we get

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
V̂†

x(0) δ(E − Ĥ)V̂x(t)
]

. (3.45)

Then, one uses the general definition of quantum average for a given energy E, from
which any operator Q̂ has

⟨Q̂⟩E =
Tr

[
δ(E − Ĥ)Q̂

]

Tr
[
δ(E − Ĥ)

] . (3.46)

Replacing Q̂ by the productV̂x(t)V̂
†
x(0),

⟨V̂x(t)V̂
†
x(0)⟩E =

Tr
[
V̂†

x(0)δ(E − Ĥ)V̂x(t)
]

Tr
[
δ(E − Ĥ)

] , (3.47)

and using this result to rewrite A1,

A1 = 1
2π h̄

∫ +∞

−∞
dt eiωt Tr

[
δ(E − Ĥ)

]
⟨V̂x(t)V̂

†
x(0)⟩E, (3.48)

A1 = 1
2π h̄

Tr
[
δ(E − Ĥ)

] ∫ +∞

−∞
dt eiωt ⟨V̂x(t)V̂

†
x(0)⟩E, (3.49)

A1 = 1
2π h̄

A2 A3, (3.50)

with A2 = Tr
[
δ(E − Ĥ)

]
, and A3 =

∫ +∞

−∞
dt eiωt ⟨V̂x(t)V̂

†
x(0)⟩E. (3.51)

Two interesting quantities emerge, with A2 the total density of states. The second
quantity can be reformulated as (A3) using the definition of velocity autocorrelation
function C(E, t) = ⟨V̂x(t)V̂

†
x(0)⟩E, so that

A3 =
∫ +∞

−∞
dt eiωt C(E, t), (3.52)

A3 =
∫ 0

−∞
dt eiωt C(E, t) +

∫ +∞

0
dt eiωt C(E, t), (3.53)

A3 =
∫ +∞

0
dt e−iωt C(E, −t) +

∫ +∞

0
dt eiωt C(E, t), (3.54)

and using C(E, −t) = ⟨V̂x(−t)V̂†
x(0)⟩E = ⟨V̂x(0)V̂†

x(t)⟩E = C(E, t)† , one gets

A3 =
∫ +∞

0
dt e−iωt C(E, t)† + eiωt C(E, t), (3.55)

A3 =
∫ +∞

0
dt 2ℜe

(
eiωt C(E, t)

)
. (3.56)
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One can easily show that the real part of the velocity autocorrelation function is pro-
portional to the second derivative of the mean squared spread

∂2

∂t2
*X2(E, t) = 2ℜe C(E, t), (3.57)

with *X2(E, t) defined as

*X2(E, t) = ⟨
∣∣X̂(t) − X̂(0)

∣∣2⟩E. (3.58)

One can consequently rewrite A1 as follows:

A1 = 1
2π h̄

A2

∫ +∞

0
dt 2ℜe

(
eiωt C(E, t)

)
, (3.59)

and A1 can be replaced in Eq. (3.39) to get another formulation of the Kubo conductivity
(Roche, 1996, Triozon, 2002, Lherbier, 2008):

σ (ω) = e2

2

∫ +∞

−∞
dE

f (E) − f (E + h̄ ω)

h̄ ω

Tr
[
δ(E − Ĥ)

]

)

∫ +∞

0
dt 2ℜe

(
eiωt C(E, t)

)
.

(3.60)

This last Eq. (3.60) is the total density of states per volume unit ρ(E) = Tr
[
δ(E −

Ĥ)
]
/). This is a general form for σ , which can now be simplified taking two limits.

First, let us go to the static electric field limit ω (→ 0,

σDC = −e2

2

∫ +∞

−∞
dE

∂f (E)

∂E
ρ(E)

∫ +∞

0
dt 2ℜe (C(E, t)) , (3.61)

σDC = −e2

2

∫ +∞

−∞
dE

∂f (E)

∂E
ρ(E)

∫ +∞

0
dt

∂2

∂t2
*X2(E, t), (3.62)

σDC = −e2

2

∫ +∞

−∞
dE

∂f (E)

∂E
ρ(E) lim

t(→∞
∂

∂t
*X2(E, t), (3.63)

while the zero-temperature limit (T (→ 0) implies that − ∂f (E)
∂E (→ δ(E − EF), so that

σDC(EF) = e2

2

∫ +∞

−∞
dE δ(E − EF) ρ(E) lim

t(→∞
∂

∂t
*X2(E, t), (3.64)

σDC(EF) = e2

2
ρ(EF) lim

t(→∞
∂

∂t
*X2(EF, t). (3.65)

This last expression means that ∂
∂t*X2(EF, t) should converge in the limit t (→ ∞,

to define a meaningful conductivity. The propagation of the wavepacket thus needs to
establish a saturation regime before conductivity can be safely calculated. However, as
shown in other chapters, the time-dependent scaling on the conductivity can be followed
and allowed to follow localization phenomena as long as phase coherence is maintained.
This formula, known as the Kubo conductivity (Kubo, 1966), is the most general start-
ing point to study quantum (or classical) transport in any type of disordered materi-
als, provided that electron–electron interaction can be described as a perturbation with
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respect to the initial electronic structure, introducing additional transitions (inelastic
scattering), but preserving the independent electron description of transport quantities.

3.4.1 Illustrations for ballistic and diffusive regimes

The behavior of *X2(t) and related diffusion coefficient Dx(t) defined by

Dx(t) = *X2(t)
t

(3.66)

is easily determined in two important transport regimes. Below we outline some conse-
quences of the transport regime on the scaling property of the quantum conductivity, as
computed from the Kubo formula.

Ballistic regime
First, in the absence of any structural imperfection, the electronic propagation remains
ballistic with the mean square spread just defined by the initial velocity of the
wavepacket *X2(t) = v2

x(0)t2, with vx(0) the velocity at t = 0. The diffusion coef-
ficient is then linear in time, Dx(t) = v2

x(0)t, while the Kubo conductivity is given by

σDC(E)bal = e2

2
ρ(E) lim

t(→∞
∂

∂t
*X2(E, t) = e2ρ(E) lim

t(→∞ v2
x(0, E)t, (3.67)

so that σDC(E)bal diverges in the long time limit. This singularity is inherent to the
fact that when deriving the linear response theory, a finite dissipation source, intrin-
sic to the sample, is introduced both physically and mathematically. The ballistic limit
is therefore not well defined in this formalism, although as shown below a complete
equivalence exists with the Landauer–Büttiker formulation, and the quantization of the
conductance can be obtained from the Kubo formula with some extra assumptions.
The conductance of the materials can indeed be derived from the conductivity through
G = σLd−2, with d the space dimension. For one-dimensional systems G = σ/L. Divid-
ing Eq. (3.67) by the relevant length scale L, we can recover a quantized conductance
expected in a ballistic regime (when reflectionless contacts are assumed). By replacing
L by 2vxt (since the length propagated during t is 2

√
*X 2(t) = 2vxt), the conductance

then becomes

G(E) = e2ρ1D(E) lim
t→∞

v2
x(E)t

L
= e2ρ1D(E) lim

t→∞
v2

x(E)t
2vx(E)t

, (3.68)

G(E) = e2

2
ρ1D(E)vx(E) = 2e2

h
= G0, (3.69)

using ρ1D(E) = 2/π h̄ vx(E) and with G0 the conductance quantum (spin degeneracy
included). So even in the most unfavorable transport regime, the quantization of the
conductance can be recovered and identified to the situation of perfect transmission
through reflectionless contacts (Landauer–Büttiker approach, Section 3.2)
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Diffusive regime
The velocity autocorrelation function in the time relaxation approximation is given by
⟨vx(0)vx(t)⟩ = v2

x(0)e−t/τ (introducing the transport time τ and restricting the discus-
sion to elastic scattering events), which yields

lim
t(→∞ *X2(t) = lim

t(→∞ 2τv2
x(0) [t − τ ] (−→ 2τv2

x(0)t. (3.70)

Similarly (using Eq. (3.66)) one gets limt(→∞ Dx(t) (−→ 2τv2
x(0). The Kubo formula

for a diffusive regime then gives access to the semiclassical conductivity (σsc):

σsc(E) = σDC(E)diff = e2

2
ρ(E) lim

t(→∞
∂

∂t
*X2(E, t), (3.71)

σsc(E) = e2ρ(E)τ (E)v2
x(0, E), (3.72)

σsc(E) = e2ρ(E)vx(0, E)ℓe(E), (3.73)

where the mean free path ℓe(E) is introduced. For the diffusive regime,

σsc(E) = e2

2
ρ(E) lim

t(→∞ Dx(E, t) = e2

2
ρ(E)Dmax

x (E), (3.74)

where Dmax
x corresponds to the maximum value (Dmax

x = 2τv2
x(0)). In this regime, by

defining the charge density as n(E) =
∫

dEρ(E), the mobility µ is given by

µ(E) = σsc(E)

n(E)e
. (3.75)

For free electrons E(k) = (h̄ k)2/2m and v(k) = h̄ k/m, with ρ1D(E) = 2
π h̄

( m
2E

)1/2

and n1D(E) = 2
π h̄ (2mE)1/2, so that using Eq. (3.72) and Eq. (3.75), the mobility finally

is given by

µ(E) = e2ρ1D(E)τ (E)v2(E)

en1D(E)
= eτ (E)v2(E)

2E
, (3.76)

µ(E) = eτ (E)h̄ 2k2

2
(

h̄ 2k2
2m

)
m2

= eτ (E)

m
, (3.77)

which are familiar expressions for semiclassical transport (absence of quantum inter-
ferences). One notes that estimation of the mobility becomes problematic for graphene-
based materials for plenty of reasons. First, for clean graphene-based materials
(nanotubes, graphene ribbons or two-dimensional graphene), the mean free path might
become longer than the electrode spacing, so that the use (or even the definition) of
Eq. (3.75) becomes inappropriate since it neglects contact effects. Additionally, in the
presence of intrinsic disorder (vacancies, adsorbed adatoms, etc.), strong scattering and
a significant contribution of quantum interferences occur, which again invalidate the
use of Eq. (3.75). Quantum interferences up to 100 K have been measured experimen-
tally in disordered graphene materials (see for instance Moser et al. (2010)), so even
if inelastic scattering restores in principle the validity of Eq. (3.75), the experimental
estimations have to be scrutinized with care. One general assumption is that the qual-
ity of the sample can be appreciated by estimating the mobility at a charge density



3.4 Kubo formula for the electronic conductivity 107

of (typically) 1011 cm−2 with varying temperature, and that the absolute value allows
comparison of sample quality. In the numerical calculations (using the Kubo formula)
that are discussed later, the estimations of mobility using Eq. (3.75) are made using the
semiclassical conductivity computed at zero temperature.

3.4.2 Kubo versus Landauer

The Kubo approach is a quantum generalization of the semiclassical Bloch–Boltzmann
approach for studying electron transport in materials, which includes all multiple scat-
tering effects driven by disorder. The Kubo–Greenwood formalism (Kubo, 1966) is
well suited for exploring the intrinsic transport properties of a given disordered mate-
rial of high dimensionality. It mainly applies to the study of weakly or strongly disor-
dered systems, characterized by a diffusive regime and localization phenomena in the
low temperature limit. It gives all information on the intrinsic quantum conductivity
which can be accessed experimentally by four-points transport measurements (mean-
ing two electrodes for generating voltage drop and two others for measuring induced
current). With this formalism, when the system is translational invariant, no scattering
takes place, and the “intrinsic” mean free path is infinite. Differently, the Landauer–
Büttiker transport formalism is directly linked with two-points transport measurements
(meaning two identical electrodes for generating voltage drop and measuring induced
current) and is proportional to the transmission probability for charges to be transfered
through a given system connected to external electrodes. A connection between Kubo
and Landauer can be made by rewriting the two-points resistance (computed with the
Landauer–Büttiker method) as e.g. R = R0/T = R0 +Rint, making explicit the “intrinsic
resistance” Rint = R0(1−T)/T, which could be derived applying the Kubo–Greenwood
approach.

Within this formalism, when the system is free of scattering, or when the density of
impurities is sufficiently low such that ℓe ≫ L (L is the distance between source/drain
electrodes) the transport regime is ballistic, with a transmission probability at energy E
entirely proportional to the number of propagating modes, that is G(E) = G0N⊥(E).

In the situation of a large amount of scatterers (such as chemical impurities), i.e.
when ℓe ≪ L, the transport regime becomes diffusive and the conductance scales as
G(E) = G0N⊥(E)ℓe(E)/L. An interpolation formula allows covering of the so-called
quasiballistic regime with T = N⊥(E)/(1 + L/ℓe). If the quantum transmission at the
system/electrode interface is perfect (induces no scattering), then both Kubo and Lan-
dauer formalisms are totally equivalent, although some geometrical factors differentiate
them if computed with the different formalisms (Akkermans & Montambaux, 2007).
The extracted Landauer mean free path ℓL

e and Kubo mean free path ℓK
e are expected to

be proportional, ℓL
e = κℓK

e (κ = 2 for d = 1, κ = π
2 (d = 2), κ = 4

3 (d = 3)) (Akker-
mans & Montambaux, 2007). In the case of a rectangular waveguide, the κ coefficient
depends on the dimensionality of the system (Datta, 1995).

For instance, to determine exactly the κ coefficient for a finite nanotube, one needs to
solve the diffusion equation for the specified geometry and given boundary conditions
(Datta, 1995). κ = 2 at the charge neutrality point. This can also be shown using the
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Einstein relationship for conductivity, σF = e2ρFDF, where ρF = 4/π h̄ vF is the total
density of states at CNP, and DF = ℓevF is the diffusivity coefficient at CNP. The total
conductivity for the quasi-1D system is obtained by using Ohm’s law, G = G0N⊥2ℓe/L.

3.4.3 Validity limit of Ohm’s law in the quantum regime

Ohm’s law in the classical regime can be easily derived using the 1D formula for the
conductance of a diffusive system, i.e. G = σscLd−2 = e2ρ(E)D/L, with ρ(E) =
2/h vF and D = ℓevF. Then G = 2e2/h ℓe

L which uses the additivity rule of resistance,
i.e. R(L1 + L2) = R(L1) + R(L2). In the quantum regime, if one uses the Landauer
expression for the conductance/resistance, one demonstrates that the resistance R(L1 +
L2) > R(L1) + R(L2) because of multiple scattering phenomena.

3.4.4 The Kubo formalism in real space

An efficient real space implementation of the Kubo formula was first developed
by Roche and Mayou in 1997 for the study of quasiperiodic systems (quasicrystals)
(Roche & Mayou, 1997). It was then adapted by Roche and coworkers to allow explo-
ration of mesoscopic (magneto)-transport in complex and disordered mesoscopic
systems including carbon nanotubes, semiconducting nanowires, and graphene-
based materials (Roche, 1999, Roche & Saito, 2001, Roche et al., 2005, Latil, Roche &
Charlier, 2005, Lherbier et al., 2008, Ishii et al., 2009). The typical disordered samples
studied with such methodology already contain several tens of millions of orbitals, and
with the use of high performance computing resources, the simulation of samples with
1 billion atoms can be envisioned in the next decade. This numerical transport method
therefore offers unprecedented exploration possibilities of complex quantum transport
phenomena, not only in realistic models of disordered graphene-based materials, but
also in any other types of materials of exciting scientific and technological interest
(silicon nanowires (Persson et al., 2008), organic crystals (Ortmann & Roche, 2011),
topological insulators, etc).

We present here the basic ingredients of the numerical implementation and provide
in further sections extensive illustrations of its use in the study of disordered graphene-
based materials (Roche, 1996, Triozon, 2002, Lherbier, 2008). Appendix D provides an
extensive technical derivation of such a real space (and order N) implementation using
the Lanczos method, which is also reviewed in detail. We present here a summary of
such a derivation, since it will help us to explore most quantum transport regimes in
complex forms of graphene-based materials. We start again with the general form of the
Kubo conductivity:

σ (ω) = 2πe2 h̄
)

∫ +∞

−∞

f (E)−f (E+ h̄ ω)

h̄ ω
Tr

[
V̂x δ(E−Ĥ) V̂x δ(E−Ĥ+ h̄ ω)

]
dE, (3.78)

where Ĥ is the Hamiltonian operator, V̂x is the operator for the electronic velocity along
the x axis and f (E) is the Fermi distribution function. The DC conductivity corresponds
to the limit ω = 0. Using the property


	1 Considerazioni generali
	1.1 Nano che?
	1.2 Rapporto superficie/volume in sistemi estesi ed in sistemi micrometrici e nanometrici
	1.3 Dipendenza delle proprietà dei sistemi dalla dimensionalità
	1.4 Confinamento in una dimensione: sistema bidimensionale
	1.4.1 L'Hamiltoniana di singola particella
	1.4.2 La densità di stati
	1.4.3 Tipi di confinamento in una dimensione

	1.5 Lunghezza di de Broglie ed effetti quantistici in sistemi confinati

	2 Envelope function approximation
	3 Interazioni effettive - singola sottobanda occupata
	3.1 Gas di elettroni 2D - buca infinita di larghezza a e potenziale triangolare

	4 Graphene - additions to Foa-Torres
	4.1 Bands, valley degree of freedom and pseudospin
	4.1.1 Bands, band filling and valley degree of freedom
	4.1.2 Linearized Hamiltonian, pseudospin, helicity
	4.1.2.1 Linearization
	4.1.2.2 Pseudospin
	4.1.2.3 Alternative choice of axes and resulting hamiltonians.
	4.1.2.4 Helicity
	4.1.2.5 Absence of backscattering


	4.2 Dirac Fermions in a magnetic field (FT 2.7.5)
	4.2.1 Spectrum and spinors
	4.2.2 Wavefunctions and degeneracy
	4.2.2.1 Wavefunctions and spectrum
	4.2.2.2 Degeneracy and filling factor



	5 Quantum Transport - additions to Foa-Torres
	5.0.1 Additions to Landauer Buttiker
	5.0.2 Additions to Kubo-Greenwood (in Foa-Torres 3.4)


