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Introduction

Algebraic Geometry is the field of mathematics that studies the sets of so-
lutions of systems of algebraic equations, i.e. of equations given by polynomials.
The origins of Algebraic Geometry go back to the Ancient Babylonians and Greeks
and, since them, this fascinating subject has attracted mathematicians of every
times and countries. During the 19th and the beginning of last century, important
progress has been made, mainly by the so-called Italian School of Algebraic Ge-
ometry. Then, starting from 1950, the subject was completely refounded, taking
into account the advent of Modern Algebra. This work was initiated by Oscar
Zariski (1899-1986), a mathematician of Russian origin, who studied in Italy and
then moved to the USA, and pushed on mainly by the French mathematician
Alexander Grothendieck (1928-2014). In the last fifty years, important results
and answers to classical problems have been given.

An asterisk * near an exercise denotes that it is quoted in the text.
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1. Affine and projective space.

Let K be a field. By definition, the affine space of dimension n over K is simply
the set Kn : on it, the additive group of Kn acts naturally by translation. The
affine space will be denoted AnK or simply An. So the points of AnK are n−tuples
(a1, . . . , an), where ai ∈ K for i = 1, . . . , n.

The natural action of Kn on AnK , is the map t defined by

t : Kn × AnK −→ AnK

((x1, . . . , xn), (a1, . . . , an)) −→ (x1 + a1, . . . , xn + an).

Note that: t(0, P ) = P, where 0 is the zero vector of Kn and P ∈ AnK , and
t(w, t(v, P )) = t(v + w,P ), for v, w ∈ Kn and P ∈ AnK .

The action of a vector v on a point P is “ by translation”. The point t(v, P )
will be denoted P + v. The action t is faithful and transitive: this means that,
for any choice of P,Q ∈ AnK , there exists one and only one v ∈ V such that
Q = t(v, P ): for this vector, the notation Q− P will be sometimes used.

Let Q ∈ AnK be a point, and W ⊂ Kn be a vector subspace. We define the
affine subspace of AnK passing through Q with orienting space W (or of direction
W ) as follows:

S = {P ∈ AnK | P = Q+ w,w ∈W}.

S can be seen as “W translated in Q”. Note that affine subspaces of AnK do not
necessarily pass through the origin. Two affine subspaces of An with a common
orienting space are called parallel. If dimW = m, we also define dimS = m. The
subspaces of dimension 1 are called lines, those of dimension 2 planes, those of
dimension n− 1 (or of codimension 1) hyperplanes.

The points of an affine subspace of An can be characterised as solutions of a
system of equations. These are of two types:

a) Parametric equations of a subspace.
Let S be the subspace passing through Q(y1, . . . , yn) with orienting space W , and
let w1, . . . , ws be a basis of W , with wi = (wi1, . . . , win). Then P (x1, . . . , xn) ∈ S
if and only if there exist t1, . . . , ts ∈ K such that

(x1, . . . , xn) = (y1, . . . , yn) + t1w1 + . . .+ tsws,

or equivalently 
x1 = y1 + t1w11 + . . .+ tsws1

x2 = y2 + t1w12 + . . .+ tsws2

. . .

. . .

As (t1, . . . , ts) varies in Ks we get in this way all points of S.
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For example, if S is the line through Q of direction W = 〈w〉, with w =
(b1, . . . , bn), then 

x1 = y1 + tb1
x2 = y2 + tb2
. . .
xn = yn + tbn

are parametric equations of S.
b) Cartesian equations of a subspace.

Let s = dimW , W ⊂ Kn, a vector subspace. Then W is the set of vectors
whose coordinates are solutions of a homogeneous linear system of rank n − s in
n indeterminates z1, . . . , zn:{ a11z1 + . . .+ a1nzn = 0

. . .
an−s,1z1 + . . .+ an−s,nzn = 0.

Hence P (x1, . . . , xn) belongs to S if and only if P = Q+w, where w is a solution
of the previous system, i.e. if and only if the following equations are satisfied: a11(x1 − y1) + . . .+ a1n(xn − yn) = 0

. . .
an−s,1(x1 − y1) + . . .+ an−s,n(xn − yn) = 0

i.e. (x1, . . . , xn) is a solution of the system:
a11x1 + . . .+ a1nxn + b1 = 0
. . .
an−s,1x1 + . . .+ an−s,nxn + bn

= 0

where we have put bi = −(ai1y1 + . . .+ ainyn), for i = 1, . . . , n− s. For example a
hyperplane is represented by a unique linear equation of the form:

a1x1 + . . .+ anxn + b = 0.

Let V be a K−vector space, of dimension n + 1. Let V ∗ = V \ {0} be the
subset of non–zero vectors. The following relation in V ∗ is an equivalence relation
(relation of proportionality):

v ∼ v′ if and only if ∃λ 6= 0, λ ∈ K such that v′ = λv.
The quotient set V ∗/∼ is called the projective space associated to V and

denoted P(V ). The points of P(V ) are the lines of V (through the origin) deprived
of the origin. In particular, P(Kn+1) is denoted PnK (or simply Pn) and called the
numerical projective n-space. By definition, the dimension of P(V ) is equal to
dimV − 1.
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There is a canonical surjection p : V ∗ → P(V ) which takes a vector v to its
equivalence class [v]. If (x0, . . . , xn) ∈ (Kn+1)∗, then the corresponding point of
Pn is denoted [x0, . . . , xn]. So [x0, . . . , xn]=[x′0, . . . , x

′
n] if and only if ∃λ ∈ K∗ such

that x′0 = λx0, . . . , x
′
n = λxn.

If a basis e0, . . . , en of V is fixed, then a system of homogeneous coordinates
is introduced in V , in the following way: if v = x0e0 + . . .+ xnen, then x0, . . . , xn

are called homogeneous coordinates of the corresponding point P =[v]= p(v) in
P(V ). We also write P [x0, . . . , xn]. Note that homogeneous coordinates of a point
P are not uniquely determined by P , but are defined only up to multiplication
by a non–zero constant. If dimV = n + 1, a system of homogeneous coordinates
allows to define a bijection

P(V ) −→ Pn

P = [v] −→ [x0, . . . , xn]

where v = x0e0 + . . .+ xnen.
The points E0[1, 0, . . . , 0], . . . , En[0, 0, . . . , 1] are called the fundamental points

and U [1, . . . , 1] the unit point for the given system of coordinates.
A projective (or linear) subspace of P(V ) is a subset of the form P(W ), where

W ⊂ V is a subspace.
Assume that dimW = s + 1 and that W is represented by a linear homoge-

neous system

(∗)

{ a10x0 + . . .+ a1nxn = 0
. . .
an−s,0x0 + . . .+ an−s,nxn = 0.

Note that a (n + 1)-tuple (x̄0, . . . , x̄n) is a solution of the system if and only
if (λx̄0, . . . , λx̄n) is, with λ 6= 0. So these solutions can also be interpreted as
representing the points of P(W ) and the equations (*) as a system of Cartesian
equations of P(W ). To write down parametric equations of P(W ) it is enough to
fix a basis of W , formed by vectors w0, . . . , ws. Then a general point of P(W ) is
parametrically represented by [λ0w0 + . . .+ λsws], as λ0, . . . , λs vary in Ps.

If W,U are vector subspaces of V , the following Grassmann relation holds:

dimU + dimW = dim(U ∩W ) + dim(U +W ).

From this relation, observing that P(U ∩W ) = P(U) ∩ P(W ), we get in P(V ):

dimP(U) + dimP(W ) = dim(P(U) ∩ P(W )) + dimP(U +W ).

Note that P(U +W ) is the minimal linear subspace of P(V ) containing both P(U)
and P(W ): it is denoted P(U) + P(W ).

1.1. Example. Let V = K3, P(V ) = P2, U,W ⊂ K3 subspaces of dimension
2. Then P(U),P(V ) are lines in the projective plane. There are two cases:
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(i) U = W = U +W = U ∩W ;

(ii) U 6= W , dimU ∩W = 1, U +W = K3.

In case (i) the two lines in P3 coincide; in case (ii) P(U)∩P(W ) = P(U ∩W ) = [v],
if v 6= 0 is a vector generating U ∩W. Observe that never P(U) ∩ P(W ) = ∅.

Let T ⊂ P(V ) be a non–empty set. The linear span 〈T 〉 of T is the intersection
of the projective subspaces of P(V ) containing T , i.e. the minimum subspace
containing T . For example, if T = {P1, . . . , Pt}, a finite set, then 〈P1, . . . , Pt〉 =
P(W ), where W is the vector subspace of V generated by vectors v1, . . . , vt such
that P1 = [v1], . . . , Pt = [vt]. So dim〈P1, . . . , Pt〉 ≤ t− 1 and equality holds if and
only if v1, . . . , vt are linearly independent; in this case, also the points P1, . . . , Pt

are called linearly independent. In particular, for t = 2, two points are linearly
independent if they generate a line, for t = 3, three points are linearly independent
if they generate a plane, etc. It is clear that, if P1, . . . , Pt are linearly independent,
then t ≤ n + 1, and any subset of {P1, . . . , Pt} is formed by linearly independent
points.

P1, . . . , Pt are said to be in general position if either t ≤ n + 1 and they are
linearly independent or t > n + 1 and any n + 1 points among them are linearly
independent.

1.2. Proposition. The fundamental points E0, . . . , En and the unit point
U of a system of homogeneous coordinates on Pn are n + 2 points in general
position. Conversely, if P0, . . . , Pn, Pn+1 are n + 2 points in general position,
then there exists a system of homogeneous coordinates in which P0, . . . , Pn are the
fundamental points and Pn+1 is the unit point.

Proof. If e0, . . . , en is a basis, then clearly the n+ 1 vectors e0, . . . , êi, . . . , en, e0 +
. . .+ en are linearly independent: this proves the first claim. To prove the second
claim, we fix vectors v0, . . . , vn+1 such that Pi = [vi] for all i. So v0, . . . , vn is a
basis and there exist λ0, . . . , λn in K such that vn+1 = λ0v0 + . . . + λnvn. The
assumption of general position easily implies that λ0, . . . , λn are all different from 0,
hence λ0v0, . . . , λnvn is a new basis such [λivi] = Pi and Pn+1 is the corresponding
unit point. �

Let H0 = 〈E1, . . . , En〉, H1 = 〈E0, E2, . . . , En〉, . . . ,Hn = 〈E0, . . . , En−1〉 be
n+1 hyperplanes in Pn. Note that the equation ofHi is simply xi = 0. These hyper-
planes are called the fundamental hyperplanes. Let Ui = Pn\Hi = {P [x0, . . . , xn] |
xi 6= 0}. Note that Pn = U0 ∪ U1 ∪ . . . ∪ Un, because no point in Pn has all
coordinates equal to zero. There is a map φ0 : U0 −→ An(= Kn) defined by
φ0([x0, . . . , xn]) = (x1

x0
, . . . , xn

x0
). φ0 is bijective and the inverse map is j0 : An −→ U0

such that j0(y1, . . . , yn) = [1, y1, . . . , yn].

So φ0 and j0 establish a bijection between the affine space An and the subset U0

of the projective space Pn. There are other similar maps φi and ji for i = 1, . . . , n.
So Pn is covered by n+ 1 subsets, each one in natural bijection with An.
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There is a natural way of thinking of Pn as a completion of An; this is done
by identifying An with Ui via φi, and by interpreting the points of Hi(= Pn \ Ui)
as points at infinity of An, or directions in An. We do this explicity for i = 0. First
of all we identify An with U0 via φ0 and j0. So if P [a0, . . . , an] ∈ Pn, either a0 6= 0
and P ∈ An, or a0 = 0 and P [0, a1, . . . , an] /∈ An. Then we consider in An the line
L, passing through O(0, . . . , 0) and of direction given by the vector (a1, . . . , an).
Parametric equations for L are the following:

x1 = a1t
x2 = a2t
. . .
xn = ant

with t ∈ K. The points of L are identified with points of U0 (via j0) with homoge-
neous coordinates x0, . . . , xn given by:

x0 = 1
x1 = a1t
x2 = a2t
. . .

or equivalently, if t 6= 0, by: 
x0 = 1

t
x1 = a1

x2 = a2

. . .

.

Now, roughly speaking, if t tends to infinity, this point goes to P [0, a1, . . . , an].
Clearly this is not a rigorous argument, but just a hint to the intuition.

In this way Pn can be interpreted as An with the points at infinity added,
each point at infinity corresponding to one direction in An.

Exercise to §1.
1*. Let V be a vector space of finite dimension over a fieldK. Let V̌ denote the

dual of V . Prove that P(V̌ ) can be put in bijection with the set of the hyperplanes
of P(V ) (hint: the kernel of a non-zero linear form on V is a subvector space of V
of codimension one).

2. Algebraic sets.

Roughly speaking, algebraic subsets of the affine or of the projective space are
sets of solutions of systems of algebraic equations, i.e. common roots of sets of
polynomials.

Examples of algebraic sets are: linear subspaces of both the affine and the pro-
jective space, plane algebraic curves, quadrics, graphics of polynomials functions,
. . .
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Algebraic geometry is the branch of mathematics which studies algebraic sets
(and their generalizations). Our first aim is to give a formal definition of algebraic
sets.

Let K[x1, . . . , xn] be the polynomial ring in n variables over the field K. If
P (a1, . . . , an) ∈ An, and F = F (x1, . . . , xn) ∈ K[x1, . . . , xn], we can consider the
value of F at P , i.e. F (P ) = F (a1, . . . , an) ∈ K. We say that P is a zero of F if
F (P ) = 0.

For example the points P1(1, 0), P2(−1, 0), P3(0, 1) are zeroes of F = x2
1 +

x2
2 − 1 over any field. If G = x2

1 + x2
2 + 1 then G has no zeroes in A2

R , but it does
have zeroes in A2

C .

2.1. Definition. A subset X of AnK is an affine algebraic set if X is the set of
common zeroes of a family of polynomials of K[x1, . . . , xn].

This means that there exists a subset S ⊂ K[x1, . . . , xn] such that

X = {P ∈ An | F (P ) = 0 ∀ F ∈ S}.

In this case X is called the zero set of S and is denoted V (S) (or in some books
Z(S), e.g. this is the notation of Hartshorne’s book). In particular, if S = {F},
then V (S) will be simply denoted by V (F ).

2.2. Examples and remarks.
1. S = K[x1, . . . , xn]: then V (S) = ∅, because S contains non–zero constants.
2. S = {0}: then V (S) = An.
3. S = {xy − 1} : then V (xy − 1) is the hyperbola.
4. If S ⊂ T , then V (S) ⊃ V (T ).

Let S ⊂ K[x1, . . . , xn] be a set of polynomials, let α := 〈S〉 be the ideal generated
by S. Recall that α = {finite sums of products of the form HF where F ∈ S, H ∈
K[x1, . . . , xn]}.

2.3. Proposition. V (S) = V (α).

Proof. If P ∈ V (α), then F (P ) = 0 for any F ∈ α; in particular for any F ∈ S
because S ⊂ α.

Conversely, if P ∈ V (S), let G =
∑
iHiFi be a polynomial of α (Fi ∈ S ∀ i).

Then G(P ) = (
∑
HiFi)(P ) =

∑
Hi(P )Fi(P ) = 0. �

The above Proposition is important in view of the following:

Hilbert’ Basis Theorem. If R is a Noetherian ring, then the polynomial ring
R[x] is Noetherian.

Proof. Assume by contradiction that R[x] is not Noetherian. Let I ⊂ R[x] be a
not finitely generated ideal. Let f1 ∈ I be a non-zero polynomial of minimum
degree. We define by induction as follows a sequence {fk}k∈N of polynomials: if
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fk (k ≥ 1) has already been chosen, let fk+1 be a polynomial of minimum degree
in I \〈f1, . . . , fk〉. Let nk be the degree of fk and ak be its leading coefficient. Note
that, by the very choice of fk, the chain of the degrees is increasing: n1 ≤ n2 ≤ . . ..

We will prove now that 〈a1〉 ⊂ 〈a1, a2〉 ⊂ . . . is a chain of ideals, that
does not become stationary: this will give the required contradiction. Indeed,
if 〈a1, . . . , ar〉 = 〈a1, . . . , ar, ar+1〉, then ar+1 =

∑r
i=1 biai, for suitable bi ∈ R. In

this case, we consider the element g := fr+1 −
∑r
i=1 bix

nr+1−nifi: g belongs to
I, but g /∈ 〈f1, . . . , fr〉, and its degree is strictly lower than the degree of fr+1:
contradiction. �

2.4. Corollary. Any affine algebraic set X ⊂ An is the zero set of a finite
number of polynomials, i.e. there exist F1, . . . , Fr ∈ K[x1, . . . , xn] such that X =
V (F1, . . . , Fr).

�

Note that V (F1, . . . , Fr) = V (F1)∩. . .∩V (Fr), so every algebraic set is a finite
intersection of algebraic sets of the form V (F ), i.e. zeroes of a unique polynomial
F . If F = 0, then V (0) = An; if F = c ∈ K \ {0}, then V (c) = ∅; if deg F > 0,
then V (F ) is called a hypersurface.

2.5. Proposition. The affine algebraic sets of An satisfy the axioms of the
closed sets of a topology, called the Zariski topology.

Proof. It is enough to check that finite unions and arbitrary intersections of alge-
braic sets are again algebraic sets.

Let V (α), V (β) be two algebraic sets, with α, β ideals of K[x1, . . . , xn]. Then
V (α) ∪ V (β) = V (α ∩ β) = V (αβ), where αβ is the product ideal, defined by:

αβ = {
∑
fin

aibi | ai ∈ α, bi ∈ β}.

In fact: αβ ⊂ α ∩ β so V (α ∩ β) ⊂ V (αβ), and both α ∩ β ⊂ α and α ∩ β ⊂ β
so V (α) ∪ V (β) ⊂ V (α ∩ β). Assume now that P ∈ V (αβ) and P /∈ V (α): hence
∃F ∈ α such that F (P ) 6= 0; on the other hand, if G ∈ β then FG ∈ αβ so
(FG)(P ) = 0 = F (P )G(P ), which implies G(P ) = 0.

Let V (αi), i ∈ I, be a family of algebraic sets, αi ⊂ K[x1, . . . , xn]. Then
∩i∈IV (αi) = V (

∑
i∈I αi), where

∑
i∈I αi is the sum ideal of α′is. In fact αi ⊂∑

i∈I αi ∀i, hence V (
∑
i αi) ⊂ V (αi) ∀i and V (

∑
i αi) ⊂ ∩iV (αi). Conversely, if

P ∈ V (αi) ∀i, and F ∈
∑
i αi, then F =

∑
i
Fi; therefore F (P ) =

∑
Fi(P ) = 0.

�

2.6. Examples.

1. The Zariski topology of the affine line A1.
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Let us recall that the polynomial ring K[x] in one variable is a PID (principal
ideal domain), so every ideal I ⊂ K[x] is of the form I = 〈F 〉. Hence every closed
subset of A1 is of the form X = V (F ), the set of zeroes of a unique polynomial
F (x). If F = 0, then V (F ) = A1, if F = c ∈ K∗, then V (F ) = ∅, if degF = d > 0,
then F can be decomposed in linear factors in polynomial ring over the algebraic
closure of K; it follows that V (F ) has at most d points.

We conclude that the closed sets in the Zariski topology of A1 are: A1, ∅ and
the finite sets.

2. If K = R or C, then the Zariski topology and the Euclidean topology on
An can be compared, and it results that the Zariski topology is coarser. Indeed
every open set in the Zariski topology is open also in the usual topology. Let
X = V (F1, . . . , Fr) be a closed set in the Zariski topology, and U := An \ X; if
P ∈ U , then ∃ Fi such that Fi(P ) 6= 0, so there exists an open neighbourhood of
P in the usual topology in which Fi does not vanish.

Conversely, there exist closed sets in the usual topology which are not Zariski
closed, for example the balls. The first case, of an interval in the real affine line,
follows from part 1.

We want to define now the projective algebraic sets in Pn. Let K[x0, x1, . . . , xn]
be the polynomial ring in n + 1 variables. Fix a polynomial G(x0, x1, . . . , xn) ∈
K[x0, x1, . . . , xn] and a point P [a0, a1, . . . , an] ∈ Pn: then, in general,

G(a0, . . . , an) 6= G(λa0, . . . , λan),

so the value of G at P is not defined.

2.7. Example. Let G = x1 +x0x1 +x2
2 , P [0, 1, 2] = [0, 2, 4] ∈ P2

R . So G(0, 1, 2) =
1 + 4 6= G(0, 2, 4) = 2 + 16. But if Q = [1, 0, 0] = [λ, 0, 0], then G(1, 0, 0) =
G(λ, 0, 0) = 0 for all λ.

2.8. Definition. Let G ∈ K[x0, x1, . . . , xn]: G is homogeneous of degree d, or G
is a form of degree d, if G is a linear combination of monomials of degree d.

2.9. Lemma. If G is homogeneous of degree d, G ∈ K[x0, x1, . . . , xn], and t is a
new variable, then G(tx0, . . . , txn) = tdG(x0, . . . , xn).

Proof. It is enough to prove the equality for monomials, i.e. for

G = axi00 x
i1
1 . . . xinn with i0 + i1 + . . .+ in = d :

G(tx0, . . . , txn) = a(tx0)
i0(tx1)

i1 . . . (txn)in = ati0+i1+...+inxi00 x
i1
1 . . . xinn =

= tdG(x0, . . . , xn).

�
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2.10. Definition. Let G be a homogeneous polynomial of K[x0, x1, . . . , xn]. A
point P [a0, . . . , an] ∈ Pn is a zero of G if G(a0, . . . , an) = 0. In this case we write
G(P ) = 0.

Note that by Lemma 2.9 if G(a0, . . . , an) = 0, then

G(λa0, . . . , λan) = λdegGG(a0, . . . , an) = 0

for every choice of λ ∈ K∗.

2.11. Definition. A subset Z of Pn is a projective algebraic set if Z is the set
of common zeroes of a set of homogeneous polynomials of K[x0, x1, . . . , xn].

If T is such a subset of K[x0, x1, . . . , xn], then the corresponding algebraic set
will be denoted by VP (T ).

Let α = 〈T 〉 be the ideal generated by the (homogeneous) polynomials of T .
If F ∈ α, then F =

∑
iHiFi, Fi ∈ T : if P ∈ VP (T ), and P [a0, . . . , an], then

F (a0, . . . , an) =
∑
Hi(a0, . . . , an)Fi(a0, . . . , an) = 0, for any choice of coordinates

of P , regardless if F is homogeneous or not. We say that P is a projective zero of
F .

If F is a polynomial, then F can be written in a unique way as a sum of
homogeneous polynomials, called the homogeneous components of F : F = F0 +
F1 + . . .+ Fd. More in general, we give the following:

2.12. Definition. Let A be a ring. A is called a graded ring over Z if there exists
a family of additive subgroups {Ai}i∈Z such that A = ⊕i∈ZAi and AiAj ⊂ Ai+j
for all pair of indices.

The elements of Ai are called homogeneous of degree i and Ai is the homoge-
neous component of degree i. The standard example of graded ring is the polyno-
mial ring with coefficients in a ring R. In this case the homogeneous components
of negative degrees are all zero.

2.13 Proposition - Definition. Let I ⊂ A be an ideal of a graded ring. I is
called homogeneous if the following equivalent conditions are fulfilled:
(i) I is generated by homogeneous elements;

(ii) I = ⊕k∈Z(I ∩Ak), i.e. if F = Σk∈ZFk ∈ I, then all homogeneous components
Fk of F belong to I.

Proof of the equivalence.
“ (ii)⇒(i)”: given a system of generators of I, write each of them as sum of its

homogeneous components: Fi = Σk∈ZFik. Then a set of homogeneous generators
of I is formed by all the elements Fik.

“ (i)⇒(ii)”: let I be generated by a family of homogeneous elements {Gα},
with degGα = dα. If F ∈ I, then F is a combination of the elements Gα with
suitable coefficients Hα; write each Hα as sum of its homogeneous components:
Hα = ΣHαk. Note that the product HαkGα is homogeneous of degree k+ dα. By
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the unicity of the expression of F as sum of homogeneous elements, it follows that
all of them are combinations of the generators {Gα} and therefore they belong to
I. �

Let I ⊂ K[x0, x1, . . . , xn] be a homogeneous ideal. Note that, by the noethe-
rianity, I admits a finite set of homogeneous generators.

Let P [a0, . . . , an] ∈ Pn. If F ∈ I, F = F0 + . . .+ Fd, then F0 ∈ I, . . . , Fd ∈ I.
We say that P is a zero of I if P is a projective zero of any polynomial of I or,
equivalently, of any homogeneous polynomial of I. This also means that P is a
zero of any homogeneous polynomial of a set generating I. The set of zeroes of I
will be denoted VP (I): all projective algebraic subsets of Pn are of this form.

As in the affine case, the projective algebraic subsets of Pn satisfy the axioms
of the closed sets of a topology called the Zariski topology of Pn (see also Exercise
3).

Note that also all subsets of An and Pn have a structure of topological space,
with the induced topology, which is still called the Zariski topology.

Exercises to §2.
1. Let F ∈ K[x1, . . . , xn] be a non–constant polynomial. The set An \ V (F )

will be denoted AnF . Prove that {AnF |F ∈ K[x1, . . . , xn] \K} is a topology basis
for the Zariski topology.

2. Let B ⊂ Rn be a ball. Prove that B is not Zariski closed.

3*. Let I, J be homogeneous ideals of K[x0, x1, . . . , xn]. Prove that I + J , IJ
and I ∩ J are homogeneous ideals.

4*. Prove that the map φ : A1 → A3 defined by t→ (t, t2, t3) is a homeomor-
phism between A1 and its image, for the Zariski topology.

5. Let X ⊂ A2
R be the graph of the map R → R such that x → sinx. Is X

closed in the Zariski topology? (hint: intersect X with a line....)

3. Examples of algebraic sets.

a) In the Zariski topology both of An and of Pn all points are closed.
If P (a1, . . . , an) ∈ An: P = V (x1 − a1, . . . , xn − an). If P [a0, . . . , an] ∈ Pn:

P = VP (〈aixj − ajxi〉i,j=0,...,n).
Note that in the projective case the polynomials defining P as closed set are

homogeneous. They can be seen as minors of order 2 of the matrix(
a0 a1 . . . an

x0 x1 . . . xn

)
with entries in K[x0, x1, . . . , xn].

b) Hypersurfaces.
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Let us recall that the polynomial ring K[x1, . . . , xn] is a UFD (unique fac-
torization domain), i. e. every non-constant polynomial F can be expressed in
a unique way (up to the order and up to units) as F = F r11 F r22 . . . F rss , where
F1, . . . , Fs are irreducible polynomials, two by two distinct, and ri ≥ 1∀ i =
1, . . . , s. Hence the hypersurface of An defined by F is

X := V (F ) = V (F r11 F r22 . . . F rss ) = V (F1F2 . . . Fs) = V (F1) ∪ V (F2) ∪ . . . ∪ V (Fs).

The equation F1F2 . . . Fs = 0 is called the reduced equation of X. Note
that F1F2 . . . Fs generates the radical

√
F . If s = 1, X is called an irreducible

hypersurface; by definition its degree is the degree of its reduced equation. Any
hypersurface is a finite union of irreducible hypersurfaces.

In a similar way one defines hypersurfaces of Pn, i. e. projective algebraic
sets of the form Z = VP (G), with G ∈ K[x0, x1, . . . , xn], G homogeneous. Since
the irreducible factors of G are homogeneous (see Exercise 3.6), any projective
hypersurface Z has a reduced equation (whose degree is, by definition, the degree
of Z) and Z is a finite union of irreducible hypersurfaces. The degree of a projective
hypersurface has the following important geometrical meaning.

3.1. Proposition. Let K be an algebraically closed field. Let Z ⊂ Pn be a
projective hypersurface of degree d. Then a line of Pn, not contained in Z, meets
Z at exactly d points, counting multiplicities.

Proof. Let G be the reduced equation of Z and L ⊂ Pn be any line.
We fix two points on L: A = [a0, . . . , an], B = [b0, . . . , bn]. So L admits

parametric equations of the form
x0 = λa0 + µb0
x1 = λa1 + µb1
. . .
xn = λan + µbn

The points of Z ∩L are obtained from the homogeneous pairs [λ, µ] which are
solutions of the equation G(λa0 + µb0, . . . , λan + µbn) = 0. If L ⊂ Z, then this
equation is identical. Otherwise, G(λa0 +µb0, . . . , λan +µbn) is a non-zero homo-
geneous polynomial of degree d in two variables. Being K algebraically closed, it
can be factorized in linear factors:

G(λa0 + µb0, . . . , λan + µbn) = (µ1λ− λ1µ)d1(µ2λ− λ2µ)d2 . . . (µrλ− λrµ)dr

with d1 + d2 + . . . + dr = d. Every factor corresponds to a point in Z ∩ L, to be
counted with the same multiplicity as the factor. �

If K is not algebraically closed, considering the algebraic closure of K and
using Proposition 3.1, we get that d is un upper bound on the number of points
of Z ∩ L.
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c) Affine and projective subspaces.

The subspaces introduced in §1, both in the affine and in the projective case,
are examples of algebraic sets.

d) Product of affine spaces.

Let An, Am be two affine spaces over the field K. The cartesian product
An×Am is the set of pairs (P,Q), P ∈ An, Q ∈ Am: it is in natural bijection with
An+m via the map

φ : An × Am −→ An+m

such that φ((a1, . . . , an), (b1, . . . , bm)) = (a1, . . . , an, b1, . . . , bm).

From now on we will always identify An × Am with An+m. We get two
topologies on An × Am: the Zariski topology and the product topology.

3.1. Proposition. The Zariski topology is strictly finer than the product topol-
ogy.

Proof. If X = V (α) ⊂ An, α ⊂ K[x1, . . . , xn] and Y = V (β) ⊂ Am, β ⊂
K[y1, . . . , ym], then X × Y ⊂ An × Am is Zariski closed, precisely X × Y =
V (α ∪ β) where the union is made in the polynomial ring in n + m variables
K[x1, . . . , xn, y1, . . . , ym]. Hence, if U = An \X, V = Am \ Y are open subsets of
An and Am in the Zariski topology, then U×V = An×Am\((An×Y )∪(X×Am))
is open in An × Am in the Zariski topology.

Conversely, we prove that A1 × A1 = A2 contains some subsets which are
Zariski open but are not open in the product topology. The proper open subsets
in the product topology are of the form A1×A1 \ { finite unions of “ vertical” and
“ horizontal” lines}.

– Fig. 1 –
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Let X = A2 \V (x−y): it is Zariski open but does not contain any non-empty
subset of the above form, so it is not open in the product topology. There are
similar examples in An × Am for any n,m. �

Note that there is no similar construction for Pn × Pm.

e) Embedding of An in Pn.
Let Hi be the hyperplane of Pn of equation xi = 0, i = 0, . . . , n; it is closed

in the Zariski topology, and the complementar set Ui is open. So we have an open
covering of Pn: Pn = U0 ∪ U1 ∪ . . . ∪ Un. Let us recall that for all i there is a
bijection φi : Ui → An such that φi([x0, . . . , xi, . . . , xn]) = (x0

xi
, . . . , 1̂, . . . , xn

xi
). The

inverse map is ji : An → Ui such that ji(y1, . . . , yn) = [y1, . . . , 1, . . . , yn].

3.2. Proposition. The map φi is a homeomorphism, for i = 0, . . . , n.

Proof. Assume i = 0 (the other cases are similar).
We introduce two maps:
(i) dehomogeneization of polynomials with respect to x0.
It is a map a : K[x0, x1, . . . , xn]→ K[y1, . . . , yn] such that

a(F (x0, . . . , xn)) = aF (y1, . . . , yn) := F (1, y1, . . . , yn).

Note that a is a ring homomorphism.
(ii) homogeneization of polynomials with respect to x0.
It is a map h : K[y1, . . . , yn]→ K[x0, x1, . . . , xn] defined by

h(G(y1, . . . , yn)) = hG(x0, . . . , xn) := xdegG
0 G(

x1

x0

, . . . ,
xn

x0

)

.
hG is always a homogeneous polynomial of the same degree as G. The map h

is clearly not a ring homomorphism. Note that always a(hG) = G but in general
h(aF ) 6= F ; what we can say is that, if F (x0, . . . , xn) is homogeneous, then ∃r ≥ 0
such that F = xr0(h(aF )).

Let X ⊂ U0 be closed in the topology induced by the Zariski topology of
the projective space, i.e. X = U0 ∩ VP (I) where I is a homogeneous ideal of
K[x0, x1, . . . , xn]. Define aI = {aF | F ∈ I}: it is an ideal of K[y1, . . . , yn]
(because a is a ring homomorphism). We prove that φ0(X) = V (aI). For:
let P [x0, . . . , xn] be a point of U0; then φ0(P ) = (x1

x0
, . . . , xn

x0
) ∈ φ0(X) ⇐⇒

P [x0, . . . , xn] = [1, x1

x0
, . . . , xn

x0
] ∈ X = VP (I) ⇐⇒ F (1, x1

x0
, . . . , xn

x0
) = 0 ∀ aF ∈

aI ⇐⇒ φ0(P ) ∈ V (aI).
Conversely: let Y = V (α), α ideal of K[y1, . . . , yn], be a Zariski closed set

of An. Let hα be the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set
{hG | G ∈ α}. We prove that φ−1

0 (Y ) = VP (hα) ∩ U0. In fact: [1, x0, . . . , xn] ∈
φ−1

0 (Y ) ⇐⇒ (x1, . . . , xn) ∈ Y ⇐⇒ G(x1, . . . , xn) = hG(1, x1, . . . , xn) = 0 ∀ G ∈
α⇐⇒ [1, x1, . . . , xn] ∈ VP (hα). �
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From now on we will often identify An with U0 via φ0 (and similarly with Ui

via φi). So if P [x0, . . . , xn] ∈ U0, we will refer to x0, . . . , xn as the homogeneous
coordinates of P and to x1

x0
, . . . , xn

x0
as the non–homogeneous or affine coordinates

of P .

Exercises to §3.

1*. Let n ≥ 2. Prove that, if K is an algebraically closed field, then in AnK
both any hypersurface and any complementar set of a hypersurface have infinitely
many points.

2. Prove that the Zariski topology on An is T1.

3*. Let F ∈ K[x0, x1, . . . , xn] be a homogeneous polynomial. Check that its
irreducible factors are homogeneous. (hint: consider a product of two polynomials
not both homogeneous...)

4. The ideal of an algebraic set and the Hilbert Nullstellensatz.

Let X ⊂ An be an algebraic set, X = V (α), α ⊂ K[x1, . . . , xn]. The ideal α
defining X is not unique: for example, let X = {0} ⊂ A2; then 0 = V (x1, x2) =
V (x2

1 , x2) = V (x2
1 , x

3
2) = V (x2

1 , x1, x2, x
2
2) = . . . Nevertheless, there is an ideal we

can canonically associate to X, i.e. the biggest one. Precisely:

4.1. Definition. Let Y ⊂ An be any set.

The ideal of Y is I(Y ) = {F ∈ K[x1, . . . , xn] | F (P ) = 0 for any P ∈ Y } =
{F ∈ K[x1, . . . , xn] | Y ⊂ V (F )}: it is formed by all polynomials vanishing on Y .
Note that I(Y ) is in fact an ideal.

For instance, if P (a1, . . . , an) is a point, then I(P ) = 〈x1 − a1, . . . , xn − an〉.
Indeed all its polynomials vanish on P , and, on the other side, it is maximal.

The following relations follow immediately by the definition:

(i) if Y ⊂ Y ′, then I(Y ) ⊃ I(Y ′);

(ii) I(Y ∪ Y ′) = I(Y ) ∩ I(Y ′);

(iii) I(Y ∩ Y ′) ⊃ I(Y ) + I(Y ′).

Similarly, if Z ⊂ Pn is any set, the homogeneous ideal of Z is, by def-
inition, the homogeneous ideal of K[x0, x1, . . . , xn] generated by the set {G ∈
K[x0, x1, . . . , xn] | G is homogeneous and VP (G) ⊃ Z}. It is denoted Ih(Z).

Relations similar to (i),(ii),(iii) are satisfied. Ih(Z) is also the set of polyno-
mials F (x0, . . . , xn) such that every point of Z is a projective zero of F .

Let α ⊂ K[x1, . . . , xn] be an ideal. Let
√
α denote the radical of α, i.e. the

ideal {F ∈ K[x1, . . . , xn] | ∃r ≥ 1 s.t. F r ∈ α}. Note that always α ⊂
√
α; if

equality holds, then α is called a radical ideal.

4.2. Proposition.
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1) For any X ⊂ An, I(X) is a radical ideal.

2) For any Z ⊂ Pn, Ih(Z) is a homogeneous radical ideal.

Proof. 1) If F ∈
√
I(X), let r ≥ 1 such that F r ∈ I(X): hence if P ∈ X, then

(F r)(P ) = 0 = (F (P ))r in the base field K. Therefore F (P ) = 0.

2) is similar, taking into account that Ih(Z) is a homogeneous ideal (see
Exercise 4.7.). �

We can interpret I as a map from P(An), the set of subsets of the affine space,
to P(K[x1, . . . , xn]). On the other hand, V can be seen as a map in the opposite
sense. We have:

4.3. Proposition. Let α ⊂ K[x1, . . . , xn] be an ideal, Y ⊂ An be any subset.
Then:

(i) α ⊂ I(V (α));

(ii) Y ⊂ V (I(Y ));

(iii) V (I(Y )) = Y : the closure of Y in the Zariski topology of An.

Proof. (i) If F ∈ α and P ∈ V (α), then F (P ) = 0, so F ∈ I(V (α)).

(ii) If P ∈ Y and F ∈ I(Y ), then F (P ) = 0, so P ∈ V (I(Y )).

(iii) Taking closures in (ii), we get: Y ⊂ V (I(Y )) = V (I(Y )). Conversely,
let X = V (β) be any closed set containing Y : X = V (β) ⊃ Y . Then I(Y ) ⊃
I(V (β)) ⊃ β by (i); we apply V again: V (β) = X ⊃ V (I(Y )) so any closed set
containing Y contains V (I(Y )) so Y ⊃ V (I(Y )). �

Similar properties relate homogeneous ideals of K[x0, x1, . . . , xn] and subsets
of Pn; in particular, if Z ⊂ Pn, then VP (Ih(Z)) = Z, the closure of Z in the Zariski
topology of Pn.

There does not exist any characterization of I(V (α)) in general. We can only
say that it is a radical ideal containing α, so it contains also

√
α. To characterise

I(V (α)) we need some extra assumption on the base field.

4.4. Hilbert Nullstellensatz (Theorem of zeroes). LetK be an algebraically
closed field. Let α ⊂ K[x1, . . . , xn] be an ideal. Then I(V (α)) =

√
α.

Remark. The assumption on K is necessary. Let me recall that K is alge-
braically closed if any non–constant polynomial of K[x] has at least one root in K,
or, equivalently, if any irreducible polynomial of K[x] has degree 1. So if K is not
algebraically closed, there exists F ∈ K[x], irreducible of degree d > 1. Therefore
F has no zero in K, hence V (F ) ⊂ A1

K is empty. So I(V (F )) = I(∅) = {G ∈
K[x] | ∅ ⊂ V (G)} = K[x]. But 〈F 〉 is a maximal ideal of K[x], and 〈F 〉 ⊂

√
〈F 〉.

If 〈F 〉 6=
√
〈F 〉, by the maximality

√
〈F 〉 = 〈1〉, so ∃r ≥ 1 such that 1r = 1 ∈ 〈F 〉,

which is false. Hence
√
〈F 〉 = 〈F 〉 6= K[x] = I(V (F )).
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We will deduce the proof of Hilbert Nullestellensatz, after several steps, from
another very important theorem, known as the “ Emmy Noether normalization
Lemma”.

We start with some definitions.
Let K ⊂ E be fields, K a subfield of E. Let {zi}i∈I be a family of elements

of E.
4.5.Definition. The family {zi}i∈I is algebraically free over K or, equivalently,
the elements zi’s are algebraically independent over K if there does not exist
any non–zero polynomial F ∈ K[xi]i∈I , the polynomial ring in a set of variables
indexed on I, such that F vanishes in the elements of the family {zi}.

For example: if the family is formed by one element z, {z} is algebraically
free over K if and only if z is transcendental over K. The family {π,

√
π} is not

algebraically free over Q: it satisfies the non–trivial relation x2
1 − x2 = 0.

By convention, the empty family is free over any field K.

Let S be the set of the families of elements of E, which are algebraically free
over K. S is a non–empty set, partially ordered by inclusion and inductive. By
Zorn’s lemma, there exist in S maximal elements, i.e. algebraically free families
such that they do not remain free if any element of E is added. Any such maxi-
mal algebraically free family is called a transcendence basis of E over K. It can
be proved that, if B,B′ are two transcendence bases, then they have the same
cardinality, called the transcendence degree of E over K. It is denoted tr.d.E/K.

4.6. Definition. A K–algebra is a ring A containing (a subfield isomorphic to)
K.

Let y1, . . . , yn be elements of E: the K–algebra generated by y1, . . . , yn is,
by definition, the minimum subring of E containing K, y1, . . . , yn: it is denoted
K[y1, . . . , yn] and its elements are polynomials in the elements y1, . . . , yn with co-
efficients in K. Its quotient field K(y1, . . . , yn) is the minimum subfield of E
containing K, y1, . . . , yn.

A finitely generatedK–algebraA is aK–algebra such that there exist elements
of A y1, . . . , yr which verify the condition A = K[y1, . . . , yr].

4.7. Proposition. There exists a transcendence basis of K(y1, . . . , yn) over K
contained in the set {y1, . . . , yn}.
Proof. Let S be the set of the subfamilies of {y1, . . . , yn} formed by algebraically
independent elements: S is a finite set so it possesses maximal elements with
respect to the inclusion. We can assume that {y1, . . . , yr} is such a maximal family.
Then yr+1, . . . , yn are each one algebraic over K(y1, . . . , yr) so K(y1, . . . , yn) is an
algebraic extension of K(y1, . . . , yr). If z ∈ K(y1, . . . , yn) is any element, then z is
algebraic over K(y1, . . . , yr), so the family {y1, . . . , yr, z} is not algebraically free.
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�

4.8. Corollary. tr.d.K(y1, . . . , yn)/K ≤ n. �

Let now A ⊂ B be rings, A a subring of B. Let b ∈ B: b is integral over A if
it is a root of a monic polynomial of A[x], i.e. there exist a1, . . . , an ∈ A such that

bn + a1b
n−1 + a2b

n−2 + . . .+ an = 0.

Such a relation is called an integral equation for b over A.
Note that, if A is a field, then b is integral over A if and only if b is algebraic

over A.
B is called integral over A, or an integral extension of A, if and only if b is

integral over A for every b ∈ B.

We can state now the
4.9. Normalization Lemma. Let A be a finitely generated K–algebra and
an integral domain. Let r := tr.d.K(y1, . . . , yn)/K. Then there exist elements
z1, . . . , zr ∈ A, algebraically independent over K, such that A is integral over
K[z1, . . . , zr].

Proof. See, for instance, Lang [6]. �

We start now the proof of the Nullstellensatz.

1st Step.
Let K be an algebraically closed field, let M ⊂ K[x1, . . . , xn] be a maximal

ideal. Then, there exist a1, . . . , an ∈ K such that M = 〈x1 − a1, . . . , xn − an〉.

Proof. Let K ′ be the quotient ring K[x1,...,xn]
M : it is a field because M is maximal,

and a finitely generated K–algebra (by the residues in K ′ of x1, . . . , xn). By the
Normalization Lemma, there exist z1, . . . , zr ∈ K ′, algebraically independent over
K ′, such that K ′ is integral over A := K[z1, . . . , zr]. We claim that A is a field:
let f ∈ A, f 6= 0; f ∈ K ′ so there exists f−1 ∈ K ′, and f−1 is integral over A; we
fix an integral equation for f−1 over A:

(f−1)s + as−1(f
−1)s−1 + . . .+ a0 = 0

where a0, . . . , as−1 ∈ A. We multiply this equation by fs−1:

f−1 + as−1 + . . .+ a0f
s−1 = 0

hence f−1 ∈ A. So A is both a field and a polynomial ring over K, so r = 0
and A = K. Therefore K ′ is an algebraic extension of K, which is algebraically

closed, so K ′ ' K. Let us fix an isomorphism ψ : K[x1,...,xn]
M

∼−→K and let p :

K[x1, . . . , xn]→ K[x1,...,xn]
M be the canonical epimorphism.
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Let ai = ψ(p(xi)), i = 1, . . . , n. The kernel of ψ◦p isM, and xi−ai ∈ ker(ψ◦p)
for any i. So 〈x1− a1, . . . , xn− an〉 ⊂ ker(ψ ◦ p) =M. Since 〈x1− a1, . . . , xn− an〉
is maximal (see Exercise 4.5.), we conclude the proof of the 1st Step.

2nd Step (Weak Nullstellensatz).
Let K be an algebraically closed field, let α ⊂ K[x1, . . . , xn] be a proper ideal.

Then V (α) 6= ∅ i.e. the polynomials of α have at least one common zero in AnK .

Proof. Since α is proper, there exists a maximal ideal M containing α. Then
V (α) ⊃ V (M). By 1st Step, M = 〈x1 − a1, . . . , xn − an〉, so V (M) = {P} with
P (a1, . . . , an), hence P ∈ V (α).

3rd Step (Rabinowitch method).
Let K be an algebraically closed field: we will prove that I(V (α)) ⊂

√
α.

Since the reverse inclusion always holds, this will conclude the proof.
Let F ∈ I(V (α)), F 6= 0 and let α = 〈G1, . . . , Gr〉. The assumption on

F means: if G1(P ) = . . . = Gr(P ) = 0, then F (P ) = 0. Let us consider the
polynomial ring in n + 1 variables K[x1, . . . , xn+1] and let β be the ideal β =
〈G1, . . . , Gr, xn+1F − 1〉: β has no zeroes in An+1, hence, by Step 1, 1 ∈ β, i.e.
there exist H1, . . . ,Hr+1 ∈ K[x1, . . . , xn+1] such that

1 = H1G1 + . . .+HrGr +Hr+1(xn+1F − 1).

We introduce the K-homomorphism ψ : K[x1, . . . , xn+1] → K(x1, . . . , xn)
defined by H(x1, . . . , xn+1)→ H(x1, . . . , xn,

1
F ).

The polynomials G1, . . . , Gr do not contain xn+1 so ψ(Gi) = Gi ∀ i = 1, . . . , r.
Moreover ψ(xn+1F − 1) = 0, ψ(1) = 1. Therefore

1 = ψ(H1G1 + . . .+HrGr +Hr+1(xn+1F − 1)) = ψ(H1)G1 + . . .+ ψ(Hr)Gr

where ψ(Hi) is a rational function with denominator a power of F . By multiplying
this relation by a common denominator, we get an expression of the form:

Fm = H ′1G1 + . . .+H ′rGr,

so F ∈
√
α. �

4.10. Corollaries. Let K be an algebraically closed field.
1. There is a bijection between algebraic subsets of An and radical ideals of
K[x1, . . . , xn]. The bijection is given by α → V (α) and X → I(X). In fact, if X
is closed in the Zariski topology, then V (I(X)) = X; if α is a radical ideal, then
I(V (α)) = α.
2. Let X,Y ⊂ An be closed sets. Then

(i) I(X ∩ Y ) =
√
I(X) + I(Y );

(ii) I(X ∪ Y ) = I(X) ∩ I(Y ) =
√
I(X)I(Y ).
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Proof. 2. follows from next lemma, using the Nullstellensatz.

4.11. Lemma. Let α, β be ideals of K[x1, . . . , xn]. Then

a)
√√

α =
√
α;

b)
√
α+ β =

√√
α+
√
β;

c)
√
α ∩ β =

√
αβ =

√
α ∩
√
β.

Proof.
a) if F ∈

√√
α, there exists r ≥ 1 such that F r ∈

√
α, hence there exists s ≥ 1

such that F rs ∈ α.
b) α ⊂

√
α, β ⊂

√
β imply α+ β ⊂

√
α+
√
β hence

√
α+ β ⊂

√√
α+
√
β.

Conversely, α ⊂ α+ β, β ⊂ α+ β imply
√
α ⊂
√
α+ β,

√
β ⊂
√
α+ β, hence√

α+
√
β ⊂
√
α+ β so

√√
α+
√
β ⊂

√√
α+ β =

√
α+ β.

c) αβ ⊂ α ∩ β ⊂ α (resp. ⊂ β) therefore
√
αβ ⊂

√
α ∩ β ⊂

√
α ∩
√
β. If

F ∈
√
α ∩
√
β, then F r ∈ α, F s ∈ β for suitable r, s ≥ 1, hence F r+s ∈ αβ, so

F ∈
√
αβ. �

Part 2.(i) of 4.10. implies that, iI(X ∩ Y ) 6= I(X) + I(Y ), if and only if
I(X) + I(Y ) is not radical.

We move now to projective space. There exist proper homogeneous ideals of
K[x0, x1, . . . , xn] without zeroes in Pn, also assuming K algebraically closed: for
example the maximal ideal 〈x0, x1, . . . , xn〉. The following characterization holds:

4.12. Proposition. Let K be an algebraically closed field and let I be a
homogeneous ideal of K[x0, x1, . . . , xn].

The following are equivalent:
(i) VP (I) = ∅;
(ii) either I = K[x0, x1, . . . , xn] or

√
I = 〈x0, x1, . . . , xn〉;

(iii) ∃d ≥ 1 such that I ⊃ K[x0, x1, . . . , xn]d, the subgroup of K[x0, x1, . . . , xn]
formed by the homogeneous polynomials of degree d.

Proof.
(i)⇒(ii) Let p : An+1 − {0} → Pn be the canonical surjection. We have:

VP (I) = p(V (I)−{0}), where V (I) ⊂ An+1. So if VP (I) = ∅, then either V (I) = ∅
or V (I) = {0}. If V (I) = ∅ then I(V (I)) = I(∅) = K[x0, x1, . . . , xn]; if V (I) = {0},
then I(V (I)) = 〈x0, x1, . . . , xn〉 =

√
I by the Nullstellensatz.

(ii)⇒(iii) Let
√
I = K[x0, x1, . . . , xn], then 1 ∈

√
I so 1r = 1 ∈ I(r ≥ 1). If√

I = 〈x0, x1, . . . , xn〉, then for any variable xk there exists an index ik ≥ 1 such
that xikk ∈ I. If d ≥ i0 + i1 + . . . + in, then any monomial of degree d is in I, so
K[x0, x1, . . . , xn]d ⊂ I.

(iii)⇒(i) because no point in Pn has all coordinates equal to 0. �

4.13. Theorem. Let K be an algebraically closed field and I be a homogeneous
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ideal of K[x0, x1, . . . , xn]. If F is a homogeneous non–constant polynomial such
that VP (F ) ⊃ VP (I) (i.e. F vanishes on VP (I), then F ∈

√
I.

Proof. We have p(V (I) − {0}) = VP (I) ⊂ VP (F ). Since F is non–constant, we
have also V (F ) = p−1(VP (F )) ∪ {0}, so V (F ) ⊃ V (I); by the Nullstellensatz
I(V (I)) =

√
I ⊃ I(V (F )) =

√
(F ) 3 F . �

4.14. Corollary (homogeneous Nullstellensatz). Let I be a homogeneous
ideal of K[x0, x1, . . . , xn] such that VP (I) 6= ∅, K algebraically closed. Then

√
I =

Ih(VP (I)). �

4.15. Definition. A homogeneous ideal of K[x0, x1, . . . , xn] such that
√
I =

〈x0, x1, . . . , xn〉 is called irrelevant.

4.16. Corollary. Let K be an algebraically closed field. There is a bijec-
tion between the set of projective algebraic subsets of Pn and the set of radical
homogeneous non–irrelevant ideals of K[x0, x1, . . . , xn]. �

Remark. Let X ⊂ Pn be an algebraic set, X 6= ∅. The affine cone of
X, denoted C(X), is the following subset of An+1: C(X) = p−1(X) ∪ {0}. If
X = VP (F1, . . . , Fr), with F1, . . . , Fr homogeneous, then C(X) = V (F1, . . . , Fr).
By the Nullstellensatz, if K is algebraically closed, I(C(X)) = Ih(X).

Exercises to §4.
1. Give a non-trivial example of an ideal α of K[x1, . . . , xn] such that α 6=

√
α.

2. Show that the following closed subsets of the affine plane Y = V (x2+y2−1)
and Y ′ = V (y − 1) are such that equality does not hold in the following relation:
I(Y ∩ Y ′) ⊃ I(Y ) + I(Y ′).

3. Let α ⊂ K[x1, . . . , xn] be an ideal. Prove that α =
√
α if and only if the

quotient ring K[x1, . . . , xn]/α does not contain any non–zero nilpotent.

4. Consider Z ⊂ Q. Prove that if an element y ∈ Q is integral over Z, then
y ∈ Z.

5. Let a1, . . . an ∈ K ( K any field). Prove that the ideal

I = 〈x1 − a1, . . . , xn − an〉

is maximal. (Hint: every polynomial F can be written in the form

F = F (a1, . . . , an) +
∑

Fi(a1, . . . , an)(xi − ai) + . . . ,

where Fi is the i-th partial derivative of F . If F /∈ I . . .
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Remember that it makes sense to consider derivatives of polynomials over any
field.)

6. Let us recall that a prime ideal of a ring R is an ideal P such that a 6∈ P,
b 6∈ P implies ab 6∈ P. Prove that any prime ideal is a radical ideal.

7*. Let I be a homogeneous ideal of K[x1, . . . , xn] satisfying the following
condition: if F is a homogeneous polynomial such that F r ∈ I for some positive
integer r, then F ∈ I. Prove that I is a radical ideal.

5. The projective closure of an affine algebraic set.

Let X ⊂ An be Zariski closed. Fix an index i ∈ {0, . . . , n} and embed An into Pn

as the open subset Ui. So X ⊂ An
φi
↪→ Pn.

5.1. Definition. The projective closure of X, X, is the closure of X in the
Zariski topology of Pn.

Since the map φi is a homeomorphism (see Proposition 3.2.), we have: X ∩
An = X because X is closed in An. The points of X ∩ Hi, where Hi = VP (xi),
are called the “ points at infinity” of X in the fixed embedding.

Note that, if K is an infinite field, then the projective closure of An is Pn:
indeed, let F be a homogeneous polynomial vanishing along An = U0. We can
write F = F0x

d
0 +F1x

d−1
0 + . . .+Fd. By assumption, for every P (a1, . . . , an) ∈ An,

P ∈ VP (F ), i.e. F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). So aF ∈ I(An). We
claim that I(An) = (0): if n = 1, this follows from the principle of identity of
polynomials, because K is infinite. If n ≥ 2, assume that F (a1, ..., an) = 0 for
all (a1, ..., an) ∈ Kn and consider F (a1, ..., an−1, x): either it has positive degree
in x for some choice of (a1, ..., an), but then it has finitely many zeroes against
the assumption; or it is always constant in x, so F belongs to K[x1, ..., xn−1] and
we can conclude by induction. So the claim is proved. We get therefore that
F0 = F1 = . . . = Fd = 0 and F = 0.

5.2. Proposition. Let X ⊂ An be an affine algebraic set, X be the projective
closure of X. Then

Ih(X) = hI(X) := 〈hF |F ∈ I(X)〉.

Proof. Assume An = U0 ⊂ Pn.
Let F ∈ Ih(X) be a homogeneous polynomial. If P (a1, . . . , an) ∈ X, then

[1, a1, . . . , an] ∈ X, so F (1, a1, . . . , an) = 0 = aF (a1, . . . , an). Hence aF ∈ X.
There exists k ≥ 0 such that F = (xk0)h(aF ) (see Proposition 3.2), so F ∈ hI(X).
Hence Ih(X) ⊂ hI(X).
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Conversely, if G ∈ I(X) and P (a1, . . . , an) ∈ X, then G(a1, . . . , an) = 0 =
hG(1, a1, . . . , an), so hG ∈ Ih(X) (here X is seen as a subset of Pn). So hI(X) ⊂
Ih(X). Since Ih(X) = Ih(X) (see Exercise 5.1), we have the claim.

�

In particular, if X is a hypersurface and I(X) = 〈F 〉, then Ih(X) = 〈hF 〉.
Next example will show that, in general, it is not true that, if I(X) =

〈F1, . . . , Fr〉, then hI(X) = 〈hF1, . . . ,
hFr〉. Only in the last twenty years, thanks

to the development of symbolic algebra and in particular of the theory of Groeb-
ner bases, the problem of characterizing the systems of generators of I(X), whose
homogeneization generates hI(X), has been solved.

5.3. Example. The skew cubic.
Let K be an algebraically closed field. The affine skew cubic is the following

closed subset of A3: X = V (y − x2, z − x3) (we use variables x, y, z). X is the
image of the map φ : A1 → A3 such that φ(t) = (t, t2, t3). Note that φ : A1 → X
is a homeomorphism (see Exercise 2.4). The ideal α = 〈y − x2, y − x3〉 defines X
and is prime: indeed the quotient ring K[x, y, z]/α is isomorphic to K[x], hence
an integral domain. Therefore α is radical so α = I(X).

Let X be the projective closure of X in P3. We are going to prove that X
is the image of the map ψ : P1 → P3 such that ψ([λ, µ]) = [λ3, λ2µ, λµ2, µ3]. We
identify A1 with the open subset of P1 defined by λ 6= 0 i.e. U0, and A3 with
the open subset of P3 defined by x0 6= 0 (U0 too). Note that ψ|A1 = φ, because
ψ([1, t]) = [1, t, t2, t3] = via the identification of A3 with U0 = (t, t2, t3) = φ(t).
Moreover ψ([0, 1]) = [0, 0, 0, 1]. So ψ(P1) = X ∪ {[0, 0, 0, 1]}.

If G is a homogeneous polynomial of K[x0, x1, . . . , x3] such that X ⊂ VP (G),
then G(1, t, t2, t3) = 0 ∀t ∈ K, so G(λ3, λ2µ, λµ2, µ3) = 0 ∀µ ∈ K, ∀λ ∈ K∗.
Since K is infinite, then G(λ3, λ2µ, λµ2, µ3) is the zero polynomial in λ and µ, so
G(0, 0, 0, 1) = 0 and VP (G) ⊃ ψ(P1), therefore X ⊃ ψ(P1).

Conversely, it is easy to prove that ψ(P1) is Zariski closed, in fact that ψ(P1) =
VP (x2

1 − x0x2, x1x2 − x0x3, x
2
2 − x1x3). So ψ(P1) = X.

The three polynomials F0 := x1x3 − x2
2 , F1 := x1x2 − x0x3, F2 := x0x2 − x2

1

are the 2× 2 minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
with entries in K[x0, x1, . . . , x3]. Let F = y−x2, G = z−x3 be the two generators
of I(X); hF = x0x2−x2

1 , hG = x2
0x3−x3

1 , hence VP (hF, hG) = VP (x0x2−x2
1 , x

2
0x3−

x3
1) 6= X, because VP (hF, hG) contains the whole line VP (x0, x1).

We shall prove now the non-trivial fact:

5.4. Proposition. Ih(X) = 〈F0, F1, F2〉.
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Proof. For all integer number d ≥ 0, let Ih(X)d := Ih(X) ∩K[x0, x1, . . . , x3]d: it
is a K-vector space of dimension ≤

(
d+3

3

)
. We define a K-linear map ρd having

Ih(X)d as kernel:
ρd : K[x0, x1, . . . , x3]d → K[λ, µ]3d

such that ρd(F ) = F (λ3, λ2µ, λ2µ2, µ3). Since ρd is clearly surjective, we compute

dim Ih(X)d =

(
d+ 3

3

)
− (3d+ 1) = (d3 + 6d2 − 7d)/6.

For d ≥ 2, we define now a second K-linear map

φd : K[x0, x1, . . . , x3]d−2 ⊕K[x0, x1, . . . , x3]d−2 ⊕K[x0, x1, . . . , x3]d−2 → Ih(X)d

such that φd(G0, G1, G2) = G0F0 + G1F1 + G2F2. Our aim is to prove that φd is
surjective. The elements of its kernel are called the syzygies of degree d among
the polynomials F0, F1, F2. Two obvious syzygies of degree 3 are constructed by
developing, according to the Laplace rule, the determinant of the matrix obtained
repeating one of the rows of M , for examplex0 x1 x2

x0 x1 x2

x1 x2 x3


We put H1 = (x0, x1, x2) and H2 = (x1, x2, x3), they both belong to kerφ3. Note
that H1 and H2 give raise to syzygies of all degrees ≥ 3, in fact we can construct
a third linear map

ψd : K[x0, x1, . . . , x3]d−3 ⊕K[x0, x1, . . . , x3]d−3 → kerφd

putting ψd(A,B) = H1A+H2B = (x0, x1, x2)A+(x1, x2, x3)B = (x0A+x1B, x1A+
x2B, x2A+ x3B).

Claim. ψd is an isomorphism.
Assuming the claim, we are able to compute dim kerφd = 2

(
d
3

)
, therefore

dim Im φd = 3

(
d+ 1

3

)
− 2

(
d

3

)
which coincides with the dimension of Ih(X)d previously computed. This proves
that φd is surjective for all d and concludes the proof of the Proposition.

Proof of the Claim. Let (G0, G1, G2) belong to kerφd. This means that the
following matrix N with entries in K[x0, x1, . . . , x3] is degenerate:

N :=

G0 G1 G2

x0 x1 x2

x1 x2 x3


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Therefore, the rows of N are linearly dependent over the quotient field of the
polynomial ring K(x0, . . . , x3). Since the last two rows are independent, there
exist reduced rational functions a1

a0
, b1b0 ∈ K(x0, x1, x2, x3), such that

G0 =
a1

a0
x0 +

b1
b0
x1 =

a1b0x0 + a0b1x1

a0b0

and similarly

G1 =
a1b0x1 + a0b1x2

a0b0
, G2 =

a1b0x2 + a0b1x3

a0b0

The Gi’s are polynomials, therefore the denominator a0b0 divides the numerator
in each of the three expressions on the right hand side. Moreover, if p is a prime
factor of a0, then p divides the three products b0x0, b0x1, b0x2, hence p divides b0.
We can repeat the reasoning for a prime divisor of b0, so obtaining that a0 = b0
(up to invertible constants). We get:

G0 =
a1x0 + b1x1

b0
, G1 =

a1x1 + b1x2

b0
, G2 =

a1x2 + b1x3

b0
,

therefore b0 divides the numerators

c0 := a1x0 + b1x1, c1 := a1x1 + b1x2, c2 := a1x2 + b1x3.

Hence b0 divides also x1c0 − x0c1 = b1(x2
1 − x0x1) = −b1F2, and similarly x2c0 −

x0c2 = b1F1, x2c1 − x1c2 = −b1F0. But F0, F1, F2 are irreducible and coprime, so
we conclude that b0 | b1. But b0 and b1 are coprime, so finally we get b0 = a0 = 1.
�

As a by-product of the proof of Proposition 5.4 we have the minimal free
resolution of the R-module Ih(X), where R = K[x0, x1, . . . , x3]:

0→ R⊕2 ψ−→ R⊕3 φ−→ Ih(X)→ 0

where ψ is represented by the transposed of the matrix M and φ by the triple of
polynomials (F0, F1, F2).

Exercises to §5.
1*. Let X ⊂ An be a closed subset, X be its projective closure in Pn. Prove

that Ih(X) = Ih(X).

2. Find a system of generators of the ideal of the affine skew cubic X, such
that, if you homogeneize them, you get a system of generators for Ih(X).

6. Irreducible components.
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6.1. Definition. Let X 6= ∅ be a topological space. X is irreducible if the
following condition holds: if X1, X2 are closed subsets of X such that X = X1∪X2,
then either X = X1 or X = X2. Equivalently, X is irreducible if for all pair of non–
empty open subsets U , V we have U ∩ V 6= ∅. By definition, ∅ is not irreducible.

6.2. Proposition. X is irreducible if and only if any non–empty open subset U
of X is dense.

Proof. LetX be irreducible, let P be a point ofX and IP be an open neighbourhood
of P in X. IP and U are non–empty and open, so IP ∩ U 6= ∅, therefore P ∈ U .
This proves that U = X.

Conversely, assume that open subsets are dense. Let U , V 6= ∅ be open
subsets. Let P ∈ U be a point. By assumption P ∈ V = X, so V ∩ U 6= ∅ (U is
an open neighbourhood of P ). �

Examples.
1. If X = {P} a unique point, then X is irreducible.
2. Let K be an infinite field. Then A1 is irreducible, because proper closed

subsets are finite sets. The same holds for P1.
3. Let f : X → Y be a continuous map of topological spaces. If X is

irreducible and f is surjective, then Y is irreducible.
4. Let Y ⊂ X be a subset, give it the induced topology. Then Y is irreducible

if and only if the following holds: if Y ⊂ Z1 ∪ Z2, with Z1 and Z2 closed in X,
then either Y ⊂ Z1 or Y ⊂ Z2; equivalently: if Y ∩ U 6= ∅, Y ∩ V 6= ∅, with U , V
open subsets of X, then Y ∩ U ∩ V 6= ∅.

6.3. Proposition. Let X be a topological space, Y a subset of X. Y is
irreducible if and only if Y is irreducible.

Proof. Note first that if U ⊂ X is open and U ∩Y = ∅ then U ∩Y = ∅. Otherwise,
if P ∈ U ∩Y , let A be an open neighbourhood of P : then A∩Y 6= ∅. In particular,
U is an open neighbourhood of P so U ∩ Y 6= ∅.

Let Y be irreducible. If U and V are open subsets of X such that U ∩ Y 6= ∅,
V ∩ Y 6= ∅, then U ∩ Y 6= ∅ and V ∩ Y 6= ∅ so Y ∩ U ∩ V 6= ∅ by irreducibility of
Y . Hence Y ∩ (U ∩ V ) 6= ∅. So Y is irreducible. If Y is irreducible, we get the
irreducibility of Y in a completely analogous way. �

6.4. Corollary. Let X be an irreducible topological space and U be a non–empty
open subset of X. Then U is irreducible.

Proof. By Proposition 6.2 U = X which is irreducible. By Proposition 6.3 U is
irreducible. �

For algebraic sets (both affine and projective) irreducibility can be expressed
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in a purely algebraic way.

6.5. Proposition. Let X ⊂ An ( resp. Pn) be an algebraic set. X is irreducible
if and only if I(X) (resp. Ih(X)) is prime.

Proof. Assume first that X is irreducible, X ⊂ An. Let F,G polynomials of
K[x1, . . . , xn] such that FG ∈ I(X): then

V (F ) ∪ V (G) = V (FG) ⊃ V (I(X)) = X

hence either X ⊂ V (F ) or X ⊂ V (G). In the former case, if P ∈ X then F (P ) = 0,
so F ∈ I(X), in the second case G ∈ I(X); hence I(X) is prime.

Assume now that I(X) is prime. Let X = X1∪X2 be the union of two closed
subsets. Then I(X) = I(X1) ∩ I(X2) (see §4). Assume that X1 6= X, then I(X1)
strictly contains I(X) (otherwise V (I(X1)) = V (I(X)). So there exists F ∈ I(X1)
such that F 6∈ I(X). But for every G ∈ I(X2), FG ∈ I(X1)∩I(X2) = I(X) prime:
since F 6∈ I(X), then G ∈ I(X). So I(X2) ⊂ I(X) hence I(X2) = I(X).

If X ⊂ Pn, the proof is similar, taking into account the following:

6.6. Lemma Let P ⊂ K[x0, x1, . . . , xn] be a homogeneous ideal. Then P is prime
if and only if, for every pair of homogeneous polynomials F,G such that FG ∈ P,
either F ∈ P or G ∈ P.

Proof of the Lemma. Let H,K be any polynomials such that HK ∈ P. Let
H = H0 +H1 + . . .+Hd, K = K0 +K1 + . . .+Ke (with Hd 6= 0 6= Ke) be their
expressions as sums of homogeneous polynomials. Then HK = H0K0 + (H0K1 +
H1K0) + . . . + HdKe: the last product is the homogeneous component of degree
d+ e of HK. P being homogeneous, HdKe ∈ P; by assumption either Hd ∈ P or
Ke ∈ P. In the former case, HK −HdK = (H −Hd)K belongs to P while in the
second one H(K −Ke) ∈ P. So in both cases we can proceed by induction. �

We list now some consequences of the previous Proposition.

1. Let K be an infinite field. Then An and Pn are irreducible, because
I(An) = Ih(Pn) = (0).

2. Let Y ⊂ Pn be closed. Y is irreducible if and only if its affine cone C(Y )
is irreducible.

3. Let Y = V (F ) ⊂ An, be a hypersurface over an algebraically closed field
K. If F is irreducible, then Y is irreducible.

4. Let K be algebraically closed. There is a bijection between prime ideals of
K[x1, . . . , xn] and irreducible algebraic subsets of An. In particular, the maximal
ideals correspond to the points. Similarly, there is a bijection between homo-
geneous non–irrelevant prime ideals of K[x0, x1, . . . , xn] and irreducible algebraic
subsets of Pn.
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6.7. Definition. A topological space X is called noetherian if it satisfies the
following equivalent conditions:

(i) the ascending chain condition for open subsets;

(ii) the descending chain condition for closed subsets;

(iii) any non–empty set of open subsets of X has maximal elements;

(iv) any non–empty set of closed subsets of X has minimal elements.

The proof of the equivalence is standard.

Example. An is noetherian: if the following is a descending chain of closed
subsets

Y1 ⊃ Y2 ⊃ . . . ⊃ Yk ⊃ . . . ,

then

I(Y1) ⊂ I(Y2) ⊂ . . . ⊂ I(Yk) ⊂ . . .

is an ascending chain of ideals of K[x1, . . . , xn] hence stationary from a suitable m
on; therefore V (I(Ym)) = Ym = V (I(Ym)) = Ym+1 = . . ..

6.8. Proposition. Let X be a noetherian topological space and Y be a non–
empty closed subset of X. Then Y can be written as a finite union Y = Y1 ∪
. . . ∪ Yr of irreducible closed subsets. The maximal Yi’s in the union are uniquely
determined by Y and called the “ irreducible components” of Y . They are the
maximal irreducible subsets of Y .

Proof. By contradiction. Let S be the set of the non–empty closed subsets of X
which are not a finite union of irreducible closed subsets: assume S 6= ∅. By
noetherianity S has minimal elements, fix one of them Z. Z is not irreducible, so
Z = Z1 ∪ Z2, Zi 6= Z for i = 1, 2. So Z1, Z2 6∈ S, hence Z1, Z2 are both finite
unions of irreducible closed subsets, so such is Z: a contradiction.

Now assume that Y = Y1 ∪ . . . ∪ Yr, with Yi 6⊆ Yj if i 6= j and Yi irreducible
closed for all i. If there is another similar expression Y = Y ′1 ∪ . . . ∪ Y ′s , Y ′i 6⊆ Y ′j
for i 6= j, then Y ′1 ⊂ Y1 ∪ . . . Yr, so Y ′1 =

⋃r
i=1(Y ′1 ∪ Yi), hence Y ′1 ⊂ Yi for some

i, and we can assume i = 1. Similarly, Y1 ⊂ Y ′j , for some j, so Y ′1 ⊂ Y1 ⊂ Y ′j ,

so j = 1 and Y1 = Y ′1 . Now let Z = Y − Y1 = Y2 ∪ . . . ∪ Yr = Y ′2 ∪ . . . ∪ Y ′s and
proceed by induction.

�

6.9. Corollary. Any algebraic subset of An (resp. of Pn) is in a unique way the
finite union of its irreducible components. �

Note that the irreducible components of X are its maximal algebraic subsets.
They correspond to the minimal prime ideals over I(X). Since I(X) is radical,
these minimal prime ideals coincide with the primary ideals appearing in the pri-
mary decomposition of I(X).
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6.10. Definition. An irreducible closed subset of An is called an affine variety.
Similarly, an irreducible closed subset of Pn is a projective variety. A locally closed
subset in Pn is the intersection of an open and a closed subset. An irreducible
locally closed subset of Pn is a quasi–projective variety.

6.11. Proposition. Let X ⊂ An and Y ⊂ Am be affine varieties. Then X × Y
is irreducible, i.e. a subvariety of An+m.

Proof. Let X × Y = W1 ∪ W2, with W1,W2 closed. For all P ∈ X the map
{P} × Y → Y which takes (P,Q) to Q is a homeomorphism, so {P} × Y is
irreducible. {P} × Y = (W1 ∩ ({P} × Y ))∪ (W2 ∩ ({P} × Y )), so ∃i ∈ {1, 2} such
that {P} × Y ⊂ Wi. Let Xi = {P ∈ X | {P} × Y ⊂ Wi}, i = 1, 2. Note that
X = X1 ∪X2.

Claim. Xi is closed in X.

Let Xi(Q) = {P ∈ X | (P,Q) ∈ Wi}, Q ∈ Y . We have: (X × {Q}) ∩ Wi =
Xi(Q) × {Q} ' Xi(Q); X × {Q} and Wi are closed in X × Y , so Xi(Q) × {Q}
is closed in X × Y and also in X × {Q}, so Xi(Q) is closed in X. Note that
Xi =

⋂
Q∈Y X

i(Q), hence Xi is closed, which proves the Claim.

Since X is irreducible, X = X1 ∪X2 implies that either X = X1 or X = X2,
so either X × Y = W1 or X × Y = W2. �

Exercises to §6.

1. Let X 6= ∅ be a topological space. Prove that X is irreducible if and only
if all non–empty open subsets of X are connected.

2*. Prove that the cuspidal cubic Y ⊂ A2
C of equation x3−y2 = 0 is irreducible.

(Hint: express Y as image of A1 in a continuous map...)

3. Give an example of two irreducible subvarieties of P3 whose intersection is
reducible.

4. Find the irreducible components of the following algebraic sets over the
complex field:

a) V (y4 − x2, y4 − x2y2 + xy2 − x3) ⊂ A2;

b) V (y2 − xz, z2 − y3) ⊂ A3.

5*. Let Z be a topological space and {Uα}α∈I be an open covering of Z such
that Uα ∩ Uβ 6= ∅ for α 6= β and that all Uα’s are irreducible. Prove that Z is
irreducible.
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7. Dimension.

Let X be a topological space.

7.1. Definition. The topological dimension of X is the supremum of the lengths
of the chains of distinct irreducible closed subsets of X, where by definiton the
following chain has length n:

X0 ⊂ X1 ⊂ X2 ⊂ . . . ⊂ Xn.

The topological dimension of X is denoted by dimX. It is also called combi-
natorial or Krull dimension.

Example.
1. dimA1 = 1: the maximal length chains have the form {P} ⊂ A1.
2. dimAn = n: a chain of length n is

{0} = V (x1, . . . , xn) ⊂ V (x1, . . . , xn−1) ⊂ . . . ⊂ V (x1) ⊂ An;

note that V (x1, . . . , xi) is irreducible for any i ≤ n, because the ideal 〈x1, . . . , xi〉
is prime. Indeed the quotient ring K[x1, . . . , xn]/〈x1, . . . , xi〉 is isomorphic to
K[xi+1, . . . , xn]. Therefore dimAn ≥ n. On the other hand, from every chain
of irreducible closed subsets of An, passing to their ideals, we get a chain of the
same length of prime ideals in K[x1, . . . , xn].

We define the Krull dimension of a ring A, and denote it by dimA, to be the
supremum of the lengths of the chains of distinct prime ideals of A. Therefore, we
can reformulate the previous fact by saying that dimAn ≤ dimK[x1, . . . , xn]. We
will see in a next chapter that dimK[x1, . . . , xn] = n. More in general, if A is a
noetherian ring, then dimA[x] = dimA+ 1.

3. Let X be irreducible. Then dimX = 0 if and only if X is the closure of
every point of it.

We prove now some useful relations between the dimension of X and the
dimensions of its subspaces.

7.2. Proposition.
1. If Y ⊂ X, then dimY ≤ dimX. In particular, if dimX is finite, then also

dimY is (in this case, the number dimX − dimY is called the codimension of Y
in X).

2. If X =
⋃
i∈I Ui is an open covering, then dimX = sup{dimUi}.

3. If X is noetherian and X1, . . . , Xs are its irreducible components, then
dimX = supi dimXi.

4. If Y ⊂ X is closed, X is irreducible, dimX is finite and dimX = dimY ,
then Y = X.

Proof.
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1. Let Y0 ⊂ Y1 ⊂ . . . ⊂ Yn be a chain of irreducible closed subsets of Y . Then
their closures are irreducible and form the following chain: Y0 ⊆ Y1 ⊆ . . . ⊆ Yn.
Note that for all i Yi ∩ Y = Yi, because Yi is closed into Y , so if Yi = Yi+1, then
Yi = Yi+1. Therefore the two chains have the same length and we can conclude
that dimY ≤ dimX.

2. Let X0 ⊂ X1 ⊂ . . . ⊂ Xn be a chain of irreducible closed subsets of X. Let
P ∈ X0 be a point: there exists an index i ∈ I such that P ∈ Ui. So ∀k = 0, . . . , n
Xk ∩ Ui 6= ∅: it is an irreducible closed subset of Ui, irreducible because open in
Xk which is irreducible. Consider X0 ∩Ui ⊂ X1 ∩Ui ⊂ . . . ⊂ Xn ∩Ui; it is a chain
of length n, because Xk ∩ Ui = Xk: in fact Xk ∩ Ui is open in Xk hence dense.
Therefore, for all chain of irreducible closed subsets of X, there exists a chain of
the same length of irreducible closed subsets of some Ui. So dimX ≤ sup dimUi.
By 1., equality holds.

3. Any chain of irreducible closed subsets of X is completely contained in an
irreducible component of X. The conclusion follows as in 2.

4. If Y0 ⊂ Y1 ⊂ . . . ⊂ Yn is a chain of maximal length in Y , then it is a
maximal chain in X, because dimX = dimY . Hence X = Yn ⊂ Y . �

7.3. Corollary. dimPn = dimAn.

Proof. Because Pn = U0 ∪ . . . ∪ Un, and Ui is homeomorphic to An for all i. �

If X is noetherian and all its irreducible components have the same dimension
r, then X is said to have pure dimension r.

Note that the topological dimension is invariant by homeomorphism. By
definition, a curve is an algebraic set of pure dimension 1; a surface is an algebraic
set of pure dimension 2.

We want to study the dimensions of affine algebraic sets. The following defi-
nition results to be very important.

7.4. Definition. Let X ⊂ An be an algebraic set. The coordinate ring of X is

K[X] := K[x1, . . . , xn]/I(X).

It is a finitely generated K–algebra that has no non–zero nilpotents, because I(X)
is radical. This can be expressed by saying that K[X] is a reduced ring. There
is the canonical epimorphism K[x1, . . . , xn] → K[X] such that F → [F ]. The
elements of K[X] can be interpreted as polynomial functions on X: to a poly-
nomial F , we can associate the function f : X → K such that P (a1, . . . , an) →
F (a1, . . . , an).

Two polynomials F , G define the same function on X if, and only if, F (P ) =
G(P ) for every point P ∈ X, i.e. if F − G ∈ I(X), which means exactly that F
and G have the same image in K[X].

K[X] is generated as K–algebra by [x1], . . . , [xn]: these can be interpreted as
the functions on X called coordinate functions, and generally denoted t1, . . . , tn.
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In fact ti : X → K is the function which associates to P (a1, . . . , an) the constant
ai. Note that the function f can be interpreted as F (t1, . . . , tn): the polynomial
F evalued at the n– tuple of the coordinate functions.

In the projective space we can do an analogous construction. If Y ⊂ Pn is
closed, then the homogeneous coordinate ring of Y is

S(Y ) := K[x0, x1, . . . , xn]/Ih(Y ).

It is also a finitely generated K–algebra, but its elements have no interpretation
as functions on Y . They are functions on the cone C(Y ).

7.5. Definition. Let R be a ring. The Krull dimension of R is the supremum
of the lengths of the chains of prime ideals of R

P0 ⊂ P1 ⊂ . . . ⊂ Pr.

Similarly, the heigth of a prime ideal P is the sup of the lengths of the chains of
prime ideals contained in P: it is denoted htP.

7.6. Proposition. Let K be an algebraically closed field. Let X be an affine
algebraic set contained in An. Then dimX = dimK[X].

Proof.
By the Nullstellensatz and by 6.5 the chains of irreducible closed subsets of

X correspond bijectively to the chains of prime ideals of K[x1, . . . , xn] containing
I(X), hence to the chains of prime ideals of the quotient ring K[X]. �

The dimension theory for commutative rings contains some important theo-
rems about dimension of K–algebras. The following two results are very useful.

7.7. Theorem. Let K be any field.
1. Let B be a finitely generated K–algebra and an integral domain. Then

dimB = tr.d.Q(B)/K, where Q(B) is the quotient field of B. In particular dimB
is finite.

2. Let B be as above and P ⊂ B be any prime ideal. Then dimB =
htP + dimB/P.

Proof. For 1. see Portelli’s notes. For a proof of 2., see for instance [4], Ch. II,
Proposition 3.4. It relies on the normalization lemma and the lying over theorem.
�

7.8. Corollary. Let K be an algebraically closed field.
1. dimAn = dimPn = n.
2. If X is an affine variety, then dimX = tr.d.K(X)/K, where K(X) denotes

the quotient field of K[X].
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2. If X ⊂ An is closed and irreducible, then dimX = n− htI(X). �

The following is an important characterization of the algebraic subsets of An
of codimension 1.

7.9. Proposition. Let X ⊂ An be closed. Then X is a hypersurface if and only
if X is of pure dimension n− 1.

Proof. We give here an elementary direct proof. It can be proved more quickly
using the Krull principal ideal theorem.

Let X ⊂ An be a hypersurface, with I(X) = (F ) = (F1 . . . Fs), where
F1, . . . , Fs are the irreducible factors of F all of multiplicity one. Then V (F1),. . .,
V (Fs) are the irreducible components of X, whose ideals are (F1), . . ., (Fs). So it
is enough to prove that ht(Fi) = 1, for i = 1, . . . , s.

If P ⊂ (Fi) is a prime ideal, then either P = (0) or there exists G ∈ P, G 6= 0.
In the second case, let A be an irreducible factor of G belonging to P: A ∈ (Fi)
so A = HFi. Since A is irreducible, either H or Fi is invertible; Fi is irreducible,
so H is invertible, hence (A) = (Fi) ⊂ P. Therefore either P = (0) or P = (Fi),
and ht(Fi) = 1.

Conversely, assume that X is irreducible of dimension n− 1. Since X 6= An,
there exists F = F1 . . . Fs ∈ I(X), F 6= 0. Hence X ⊂ V (F ) = V (F1)∪ . . .∪V (Fs).
By the irreducibility of X, some irreducible factor of F , call it Fi, also vanishes
along X. Therefore X ⊂ V (Fi), which is irreducible of dimension n − 1, by the
first part. So X = V (Fi) (by Proposition 7.2, 3). �

This proposition does not generalise to higher codimension. There exist codi-
mension 2 algebraic subsets of An whose ideal is not generated by two polynomials.
An example in A3 is the curve X parametrised by (t3, t4, t5). A system of gen-
erators of I(X) is 〈x3 − yz, y2 − xz, z2 − x2y〉. One can easily show that I(X)
cannot be generated by two polynomials. For a discussion of this and other similar
examples, see [4], Chapter V.

7.10. Proposition. Let X ⊂ An, Y ⊂ Am be irreducible closed subsets. Then
dimX × Y = dimX + dimY .

Proof. Let r = dimX, s = dimY ; let t1, . . . , tn (resp. u1, . . . , um) be coordinate
functions on An (resp. Am). We can assume that t1, . . . , tr be a transcendence ba-
sis of Q(K[X]) and u1, . . . , us be a transcendence basis of Q(K[Y ]). By definition,
K[X × Y ] is generated as K–algebra by t1, . . . , tn, u1, . . . , um: we want to show
that t1, . . . , tr, u1, . . . , us is a transcendence basis of Q(K[X×Y ]) over K. Assume
that F (x1, . . . , xr, y1, . . . , ys) is a polynomial which vanishes on t1, . . . , tr, u1, . . . , us,
i.e. F defines the zero function on X × Y . Then, ∀ P ∈ X, F (P ; y1, . . . , ys)
is zero on Y , i.e. F (P ;u1, . . . , us) = 0. Since u1, . . . , us are algebraically in-
dependent, every coefficient ai(P ) of F (P ; y1, . . . , ys) is zero, ∀ P ∈ X. Since
t1, . . . , tr are algebraically independent, the polynomials ai(x1, . . . , xr) are zero, so
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F (x1, . . . , xr, y1, . . . , ys) = 0. So t1, . . . , tr, u1, . . . , us are algebraically independent.
Since this is certainly a maximal algebraically free set, it is a transcendence basis.

�

Exercises to §7.
1*. Prove that a proper closed subset of an irreducible curve is a finite set.

Deduce that any bijection between irreducible curves is a homeomorphism.

2*. Let X ⊂ A2 be the cuspidal cubic of equation: x3 − y2 = 0, let K[X] be
its coordinate ring. Prove that all elements of K[X] can be written in a unique
way in the form f(x) + yg(x), where f, g are polynomial in the variable x. Deduce
that K[X] is not isomorphic to a polynomial ring.

8. Regular and rational functions.

a) Regular functions

Let X ⊂ Pn be a locally closed subset and P be a point of X. Let φ : X → K be
a function.

8.1. Definition. φ is regular at P if there exists a suitable neighbourhood of
P in which φ can be expressed as a quotient of homogeneous polynomials of the
same degree; more precisely, if there exist an open neighbourhood U of P in X and
homogeneous polynomials F , G ∈ K[x0, x1, . . . , xn] with degF = degG, such that
U ∩ VP (G) = ∅ and φ(Q) = F (Q)/G(Q), for all Q ∈ U . Note that the quotient
F (Q)/G(Q) is well defined.

φ is regular on X if φ is regular at every point P of X.

The set of regular functions on X is denoted O(X): it contains K (identified with
the set of constant functions), and can be given the structure of a K–algebra, by
the definitions:

(φ+ ψ)(P ) = φ(P ) + ψ(P )

(φψ)(P ) = φ(P )ψ(P ),

for P ∈ X. (Check that φ+ ψ and φψ are indeed regular on X.)

8.2. Proposition. Let φ : X → K be a regular function. Let K be identified
with A1 with Zariski topology. Then φ is continuous.

Proof. It is enough to prove that φ−1(c) is closed in X, ∀ c ∈ K. For all P ∈ X,
choose an open neighbourhood UP and homogeneous polynomials FP , GP such
that φ|P = FP /GP . Then

φ−1(c) ∩ UP = {Q ∈ UP |FP (Q)− cGP (Q) = 0} = UP ∩ VP (FP − cGP )
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is closed in UP . The proposition then follows from:

8.3. Lemma. Let T be a topological space, T = ∪i∈IUi be an open covering of
T , Z ⊂ T be a subset. Then Z is closed if and only if Z ∩Ui is closed in Ui for all
i.

Proof. Assume that Ui = X \ Ci and Z ∩ Ui = Zi ∩ Ui, with Ci and Zi closed in
X.

Claim: Z =
⋂
i∈I(Zi ∪ Ci), hence it is closed.

In fact: if P ∈ Z, then P ∈ Z ∩ Ui for a suitable i. Therefore P ∈ Zi ∩ Ui, so
P ∈ Zi ∪ Ci. If P /∈ Zj ∩ Uj for some j, then P /∈ Uj so P ∈ Cj and therefore
P ∈ Zj ∪ Cj .

Conversely, if P ∈
⋂
i∈I(Zi ∪Ci), then ∀ i, either P ∈ Zi or P ∈ Ci. Since ∃j

such that P ∈ Uj , hence P /∈ Cj , so P ∈ Zj , so P ∈ Zj ∩ Uj = Z ∩ Uj .
�

8.4. Corollary.

1. Let φ ∈ O(X): then φ−1(0) is closed. It is denoted V (φ) and called the
set of zeroes of φ.

2. Let X be a quasi–projective variety and φ, ψ ∈ O(X). Assume that there
exists U , open non –empty subset such that φ|U = ψ|U . Then φ = ψ.

Proof. φ− ψ ∈ O(X) so V (φ− ψ) is closed. By assumption V (φ− ψ) ⊃ U , which
is dense, because X is irreducible. So V (φ− ψ) = X.

�

If X ⊂ An is locally closed, we can use on X both homogeneous and non–
homogeneous coordinates. In the second case, a regular function is locally rep-
resented as a quotient F/G, with F and G ∈ K[x1, . . . , xn]. In particular all
polynomial functions are regular, so, if X is closed, K[X] ⊂ O(X).

If α ⊂ K[X] is an ideal, we can consider V (α) :=
⋂
φ∈α V (φ): it is closed into

X. Note that α is of the form α = α/I(X), where α is the inverse image of α in
the canonical epimorphism, it is an ideal of K[x1, . . . , xn] containing I(X), hence
V (α) = V (α) ∩X = V (α).

If K is algebraically closed, from the Nullstellensatz it follows that, if α is
proper, then V (α) 6= ∅. Moreover the following relative form of the Nullstellensatz
holds: if f ∈ K[X] and f vanishes at all points P ∈ X such that g1(P ) = . . . =
gm(P ) = 0 (g1, . . . , gm ∈ K[X]), then fr ∈ 〈g1, . . . , gm〉 ⊂ K[X], for some r ≥ 1.

8.5. Theorem. Let K be an algebraically closed field. Let X ⊂ AnK be closed
in the Zariski topology. Then O(X) ' K[X]. It is an integral domain if and only
if X is irreducible.

Proof. Let f ∈ O(X).
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(i) Assume first that X is irreducible. For all P ∈ X fix an open neigh-
bourhood UP of P and polynomials FP , GP such that VP (GP ) ∩ UP = ∅ and
f |UP

= FP /GP . Let fP , gP be the functions in K[X] defined by FP and GP .
Then gP f = fP holds on UP , so it holds on X (by Corollary 8.3, because X is
irreducible). Let α ⊂ K[X] be the ideal α = 〈gP 〉P∈X ; α has no zeroes on X,
because gP (P ) 6= 0, so α = K[X]. Therefore there exists hP ∈ K[X] such that
1 =

∑
P∈X hP gP (sum with finite support). Hence in O(X) we have the relation:

f = f
∑
hP gP =

∑
hP (gP f) =

∑
hP fP ∈ K[X].

(ii) Let X be reducible: for any P ∈ X, there exists R ∈ K[x1, . . . , xn] such
that R(P ) 6= 0 and R ∈ I(X\UP ), so r ∈ O(X) is zero outside UP . So rgP f = fP r
on X and we conclude as above by replacing gP with gP r and fP with fP r.

�

The characterization of regular functions on projective varieties is completely dif-
ferent: we will see in §12 that, if X is a projective variety, then O(X) ' K, i.e.
the unique regular functions are constant.

This gives the motivation for introducing the following weaker concept.

b) Rational functions

8.6. Definition. Let X be a quasi–projective variety. A rational function on X
is a germ of regular functions on some open non–empty subset of X.

Precisely, let K be the set {(U, f)|U 6= ∅, open subset of X, f ∈ O(U)}. The
following relation on K is an equivalence relation:

(U, f) ∼ (U ′, f ′) if and only if f |U∩U ′ = f ′|U∩U ′ .

Reflexive and symmetric properties are quite obvious. Transitive property: let
(U, f) ∼ (U ′, f ′) and (U ′, f ′) ∼ (U ′′, f ′′). Then f |U∩U ′ = f ′|U∩U ′ and f ′|U ′∩U ′′ =
f ′′|U ′∩U ′′ , hence f |U∩U ′∩U ′′ = f ′′|U∩U ′∩U ′′ . U ∩ U ′ ∩ U ′′ is a non–empty open
subset of U ∩ U ′′ (which is irreducible and quasi–projective), so by Corollary 8.4
f |U ′∩U ′′ = f ′′|U ′∩U ′′ .

Let K(X) := K/ ∼: its elements are by definition rational functions on X.
K(X) can be given the structure of a field in the following natural way.

Let 〈U, f〉 denote the class of (U, f) in K(X). We define:

〈U, f〉+ 〈U ′, f ′〉 = 〈U ∩ U ′, f + f ′〉,

〈U, f〉〈U ′, f ′〉 = 〈U ∩ U ′, ff ′〉

(check that the definitions are well posed!).
There is a natural inclusion: K → K(X) such that c → 〈X, c〉. Moreover, if

〈U, f〉 6= 0, then there exists 〈U, f〉−1 = 〈U \ V (f), f−1〉: the axioms of a field are
all satisfied.
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There is also an injective map: O(X)→ K(X) such that φ→ 〈X,φ〉.

8.7. Proposition. If X ⊂ An is affine, then K(X) ' Q(O(X)) = K(t1, . . . , tn),
where t1, . . . , tn are the coordinate functions on X.

Proof. The isomorphism is as follows:

(i) ψ : K(X)→ Q(O(X))

If 〈U, φ〉 ∈ K(X), then there exists V ⊂ U , open and non–empty, such that φ |V =
F/G, where F,G ∈ K[x1, . . . , xn] and V (G) ∩ V = ∅. We set ψ(〈U, φ〉) = f/g.

(ii) ψ′ : Q(O(X))→ K(X)

If f/g ∈ Q(O(X)), we set ψ′(f/g) = 〈X \ V (g), f/g〉.
It is easy to check that ψ and ψ′ are well defined and inverse each other. �

8.8. Corollary. If X is an affine variety, then dimX is equal to the transcendence
degree over K of its field of rational functions..

8.9. Proposition. If X is quasi–projective and U 6= ∅ is an open subset, then
K(X) ' K(U).

Proof. We have the maps: K(U)→ K(X) such that 〈V, φ〉 → 〈V, φ〉, and K(X)→
K(U) such that 〈A,ψ〉 → 〈A ∩ U,ψ |A∩U 〉: they are K–homomorphisms inverse
each other. �

8.10. Corollary. If X is a projective variety contained in Pn, if i is an index
such that X ∩ Ui 6= ∅ (where Ui is the open subset where xi 6= 0), then dimX =
dimX ∩ Ui = tr.d.K(X)/K.

Proof. By Proposition 7.2 dimX = sup dim(X ∩ Ui). By 8.8 and 8.9, if X ∩ Ui is
non–empty, dim(X ∩ Ui) = tr.d.K(X ∩ Ui)/K = tr.d.K(X)/K is independent of
i. �

If 〈U, φ〉 ∈ K(X), we can consider all possible representatives of it, i.e. all
pairs 〈Ui, φi〉 such that 〈U, φ〉 = 〈Ui, φi〉. Then U =

⋃
i Ui is the maximum open

subset of X on which φ can be seen as a function: it is called the domain of
definition (or of regularity) of 〈U, φ〉, or simply of φ. It is sometimes denoted
domφ. If P ∈ U , we say that φ is regular at P.

We can consider the set of rational functions on X which are regular at P : it
is denoted by OP,X . It is a subring of K(X) containing O(X), called the local ring
of X at P . In fact, OP,X is a local ring, whose maximal ideal, denoted MP,X , is
the set of rational functions φ such that φ(P ) is defined and φ(P ) = 0. To see
this, observe that an element of OP,X can be represented as 〈U,F/G〉: its inverse
in K(X) is 〈U \ VP (G), G/F 〉, which belongs to OP,X if and only if F (P ) 6= 0.
We’ll see in 8.12 that OP,X is the localization K[X]IX(P ).
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As in Proposition 8.9 for the fields of rational functions, also for the local rings
of points it can easily be proved that, if U 6= ∅ is an open subset of X containing
P , then OP,X ' OP,U . So the ring OP,X only depends on the local behaviour of
X in the neighbourhood of P .

The residue field ofOP,X is the quotientOP,X/MP,X : it is a field which results
to be naturally isomorphic to the base field K. In fact consider the evaluation
map OP,X → K such that φ goes to φ(P ): it is surjective with kernel MP,X , so
OP,X/MP,X ' K.

8.11. Examples.

1. Let Y ⊂ A2 be the curve V (x3
1 − x2

2). Then F = x2, G = x1 define the
function φ = x2/x1 which is regular at the points P (a1, a2) such that a1 6= 0.
Another representation of the same function is: φ = x2

1/x2, which shows that
φ is regular at P if a2 6= 0. If φ admits another representation F ′/G′, then
G′x2 − F ′x1 vanishes on an open subset of X, which is irreducible (see Exercise
6.2), hence G′x2 − F ′x1 vanishes on X, and therefore G′x2 − F ′x1 ∈ 〈x3

1 − x2
2〉.

This shows that there are essentially only the above two representations of φ. So
φ ∈ K(X) and its domain of regularity is Y \ {0, 0}.

2. The stereographic projection.
Let X ⊂ P2 be the curve VP (x2

1+x2
2−x2

0). Let f := x1/(x0−x2) denote the germ of
the regular function defined by x1/(x0−x2) on X \VP (x0−x2) = X \{[1, 0, 1]} =
X \ {P}. On X we have x2

1 = (x0 − x2)(x0 + x2) so f is represented also as
(x0 + x2)/x1 on X \ VP (x1) = X \ {P,Q}, where Q = [1, 0,−1]. If we identify K
with the affine line VP (x2) \ VP (x0) (the points of the x1–axis lying in the affine
plane U0), then f can be interpreted as the stereographic projection of X centered
at P , which takes A[a0, a1, a2] to the intersection of the line AP with the line
VP (x2). To see this, observe that AP has equation a1x0 + (a2− a0)x1− a1x2 = 0;
and AP ∩ VP (x2) is the point [a0 − a2, a1, 0].

8.12. The algebraic characterization of the local ring OP,X .
Let us recall the construction of the ring of fractions of a ring A with respect

to a multiplicative subset S.
Let A be a ring and S ⊂ A be a multiplicative subset. The following relation

in A× S is an equivalence relation:

(a, s) ' (b, t) if and only if ∃u ∈ S such that u(at− bs) = 0.

Then the quotient A× S/' is denoted S−1A or AS and [(a, s)] is denoted a
s . AS

becomes a commutative ring with unit with operations a
s + b

t = at+bs
st and a

s
b
t = ab

st
(check that they are well–defined). With these operations, AS is called the ring of
fractions of A with respect to S, or the localization of A in S.

There is a natural homomorphism j : A → S−1A such that j(a) = a
1 , which

makes S−1A an A–algebra. Note that j is the zero map if and only if 0 ∈ S. More
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precisely if 0 ∈ S then S−1A is the zero ring: this case will always be excluded in
what follows. Moreover j is injective if and only if every element in S is not a zero
divisor. In this case j(A) will be identified with A.

Examples.
1. Let A be an integral domain and set S = A \ {0}. Then AS = Q(A): the

quotient field of A.
2. If P ⊂ A is a prime ideal, then S = A \ P is a multiplicative set and AS is

denoted AP and called the localization of A at P.
3. If f ∈ A, then the multiplicative set generated by f is

S = {1, f, f2, . . . , fn, . . .} :

AS is denoted Af .
4. If S = {x ∈ A | x is regular}, then AS is called the total ring of fractions

of A: it is the maximum ring in which A can be canonically embedded.

It is easy to verify that the ring AS enjoys the following universal property:
(i) if s ∈ S, then j(s) is invertible;
(ii) if B is a ring with a given homomorphism f : A→ B such that if s ∈ S,

then f(s) is invertible, then f factorizes through AS , i.e. there exists a unique
homomorphism f such that f ◦ j = f .

We will see now the relations between ideals of AS and ideals of A.
If α ⊂ A is an ideal, then αAS = {as | a ∈ α} is called the extension of α in

AS and denoted also αe. It is an ideal, precisely the ideal generated by the set
{a1 | a ∈ α}.

If β ⊂ AS is an ideal, then j−1(β) =: βc is called the contraction of β and is
clearly an ideal.

We have:

8.13. Proposition.
1. ∀α ⊂ A : αec ⊃ α;
2. ∀β ⊂ AS : β = βce;
3. αe is proper if and only if α ∩ S = ∅;
4. αec = {x ∈ A | ∃s ∈ S such that sx ∈ α}.

Proof.
1. and 2. are straightforward.
3. if 1 = a

s ∈ αe, then there exists u ∈ S such that u(s − a) = 0, i.e.
us = ua ∈ S ∩ α. Conversely, if s ∈ S ∩ α then 1 = s

s ∈ α
e.

4.

αec = {x ∈ A | j(x) =
x

1
∈ αe} =
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= {x ∈ A | ∃a ∈ α, t ∈ S such that
x

1
=
a

t
} =

= {x ∈ A | ∃a ∈ α, t, u ∈ S such that u(xt− a) = 0}.

Hence, if x ∈ αec, then: (ut)x = ua ∈ α. Conversely: if there exists s ∈ S such
that sx = a ∈ α, then x

1 = a
s , i.e. j(x) ∈ αe. �

If α is an ideal of A such that α = αec, α is called saturated with S. For
example, if P is a prime ideal and S∩P = ∅, then P is saturated and Pe is prime.
Conversely, if Q ⊂ AS is a prime ideal, then Qc is prime in A.

Therefore: there is a bijection between the set of prime ideals of AS and the
set of prime ideals of A not intersecting S. In particular, if S = A \ P, P prime,
the prime ideals of AP correspond bijectively to the prime ideals of A contained
in P, hence AP is a local ring with maximal ideal Pe, denoted PAP , and residue
field AP/PAP . Moreover dimAP = htP.

In particular we get the characterization of OP,X . Let X ⊂ An be an affine
variety, let P be a point of X and I(P ) ⊂ K[x1, . . . , xn] be the ideal of P . Let
IX(P ) := I(P )/I(X) be the ideal of K[X] formed by regular functions on X
vanishing at P . Then we can construct the localization

O(X)IX(P ) = {f
g
|f, g ∈ O(X), g(P ) 6= 0} ⊂ K(X) :

it is canonically identified with OP,X . In particular: dimOP,X = ht IX(P ) =
dimO(X) = dimX.

There is a bijection between prime ideals of OP,X and prime ideals of O(X)
contained in IX(P ); they also correspond to prime ideals ofK[x1, . . . , xn] contained
in I(P ) and containing I(X).

If X is affine, it is possible to define the local ring OP,X also if X is reducible,
simply as localization of K[X] at the maximal ideal IX(P ). The natural map j
from K[X] to OP,X is injective if and only if K[X] \ IX(P ) does not contain any
zero divisor. A non-zero function f is a zero divisor in K[X] if there exists a
non-zero g such that fg = 0, i.e. X = V (f)∪ V (g) is an expression of X as union
of proper closed subsets. For j to be injective it is required that every zero divisor
f belongs to IX(P ), which means that all the irreducible components of X pass
through P .

Exercises to §8.
1. Prove that the affine varieties and the open subsets of affine varieties are

quasi–projective.

2. Let X = {P,Q} be the union of two points in an affine space over K.
Prove that O(X) is isomorphic to K ×K.
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9. Regular and rational maps.

In the following K is an algebraically closed field.

a) Regular maps.

Let X,Y be quasi–projective varieties (or more generally locally closed sets). Let
φ : X → Y be a map.

9.1. Definition. φ is a regular map or a morphism if
(i) φ is continuous;

(ii) φ preserves regular functions, i.e. for all U ⊂ Y (U open and non–empty) and
for all f ∈ O(U), then f ◦ φ ∈ O(φ−1(U)):

X
φ−→ Y

↑ ↑
φ−1(U)

φ|−→ U
f→ K

Note that:
a) for all X the identity map 1X : X → X is regular;

b) for all X, Y , Z and regular maps X
φ→ Y , Y

ψ→ Z, the composite map ψ ◦ φ is
regular.

An isomorphism of varieties is a regular map which possesses regular inverse,
i.e. a regular φ : X → Y such that there exists a regular ψ : Y → X verifying
the conditions ψ ◦ φ = 1X and φ ◦ ψ = 1Y . In this case X and Y are said to be
isomorphic, and we write: X ' Y .

If φ : X → Y is regular, there is a natural K–homomorphism φ∗ : O(Y ) →
O(X), called the comorphism associated to φ, defined by: f → φ∗(f) := f ◦ φ.

The construction of the comorphism is functorial, which means that:
a) 1∗X = 1O(X);
b) (ψ ◦ φ)∗ = φ∗ ◦ ψ∗.

This implies that, if X ' Y , then O(X) ' O(Y ). In fact, if φ : X → Y is an
isomorphism and ψ is its inverse, then φ◦ψ = 1Y , so (φ◦ψ)∗ = ψ∗ ◦φ∗ = (1Y )∗ =
1O(Y ) and similarly ψ ◦ φ = 1X implies φ∗ ◦ ψ∗ = 1O(X).

9.2. Examples.
1) The homeomorphism φi : Ui → An of Proposition 3.2 is an isomorphism.

2) There exist homeomorphisms which are not isomorphisms. Let Y = V (x3−
y2) ⊂ A2. We have seen (see Exercise 7.2) that K[X] 6' K[A1], hence Y is not
isomorphic to the affine line. Nevertheless, the following map is regular, bijective
and also a homeomorphism (see Exercise 7.1):
φ : A1 → Y such that t→ (t2, t3);



42 Mezzetti

φ−1 : Y → A1 is defined by (x, y)→
{
y
x if x 6= 0
0 if (x, y) = (0, 0).

Note that φ−1 is not regular at the point (0, 0).

9.3. Proposition. Let φ : X → Y ⊂ An be a map. Then φ is regular if and only
if φi := ti ◦ φ is a regular function on X, for all i = 1, . . . , n, where t1, . . . , tn are
the coordinate functions on Y .

Proof. If φ is regular, then φi = φ∗(ti) is regular by definition.

Conversely, assume that φi is a regular function on X for all i. Let Z ⊂ Y
be a closed subset and we have to prove that φ−1(Z) is closed in X. Since any
closed subset of An is an intersection of hypersurfaces, it is enough to consider
φ−1(Y ∩ V (F ) with F ∈ K[x1, . . . , xn]:

φ−1(V (F )∩Y ) = {P ∈ X|F (φ(P )) = F (φ1, . . . , φn)(P ) = 0} = V (F (φ1, . . . , φn)).

But note that F (φ1, . . . , φn) ∈ O(X): it is the composition of F with the regular
functions φ1, . . . , φn. Hence φ−1(V (F ) ∩ Y ) is closed, so we can conclude that φ
is continuous. If U ⊂ Y and f ∈ O(U), for any point P of U choose an open
neighbourhood UP such that f = FP /GP on UP .

So f ◦φ = FP (φ1, . . . , φn)/GP (φ1, . . . , φn) on φ−1(UP ), hence it is regular on
each φ−1(UP ) and by consequence on φ−1(U).

�

If φ : X → Y is a regular map and Y ⊂ An, by Proposition 9.2. we can
represent φ in the form φ = (φ1, . . . , φn), where φ1, . . . , φn ∈ O(X) and φi =
φ∗(ti). φ1, . . . , φn are not arbitrary in O(X) but such that Im φ ⊂ Y . If Y is
closed in An, let us recall that t1, . . . , tn generate O(Y ), hence φ1, . . . , φn generate
φ∗(O(Y )) as K-algebra. This observation is the key for the following important
result.

9.4. Theorem. Let X be a locally closed algebraic set and Y be an affine
algebraic set. Let Hom(X,Y ) denote the set of regular maps from X to Y and
Hom(O(Y ),O(X)) denote the set of K– homomorphisms from O(Y ) to O(X).

Then the map Hom(X,Y )→ Hom(O(Y ),O(X)), such that φ : X → Y goes
to φ∗ : O(Y )→ O(X), is bijective.

Proof. Let Y ⊂ An and let t1, . . . , tn be the coordinate functions on Y , so O(Y ) =
K[t1, . . . , tn]. Let u : O(Y )→ O(X) be a K–homomorphism: we want to define a
morphism u] : X → Y whose associated comorphism is u. By the remark above,
if u] exists, its components have to be u(t1), . . . , u(tn). So we define

u] : X → An
P → (u(t1)(P )), . . . , u(tn)(P )).
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This is a morphism by Proposition 9.3. We claim that u](X) ⊂ Y . Let F ∈ I(Y )
and P ∈ X: then

(F (u](P )) = F (u(t1)(P ), . . . , u(tn)(P )) =

= F (u(t1), . . . , u(tn))(P ) =

= u(F ((t1, . . . , tn))(P ) because u is K-homomorphism =

= u(0)(P ) =

= 0(P ) = 0.

So u] is a regular map from X to Y .
We consider now (u])∗ : O(Y ) → O(X): it takes a function f to f ◦ u] =

f(u(t1), . . . , u(tn)) = u(f), so (u])∗ = u. Conversely, if φ : X → Y is regular, then
(φ∗)] takes P to (φ∗(t1)(P ), . . . , φ∗(tn)(P )) = (φ1(P ), . . . , φn(P )), so (φ∗)] = φ.

�

Note that, by definition, 1]O(X) = 1X , for all affineX; moreover (v◦u)] = u]◦v]

for all u : O(Z)→ O(Y ), v : O(Y )→ O(X), K–homomorphisms of affine algebraic
sets: this means that also this construction is functorial.

The previous results can be rephrased using the language of categories. We
introduce a category C whose objects are the affine algebraic sets over a fixed
algebraically closed field K and the morphisms are the regular maps. We con-
sider also a second category C′ with objects the K-algebras and morphisms the
K-homomorphisms. Then there is a contravariant functor that operates on the
objects sending X to O(X) = K[X], and on the morphisms sending φ to the
associated comorphisms φ∗.

If we restrict the class of objects of C′ taking only the finitely generated
reduced K-algebras (a full subcategory of the previous one), then this functor be-
comes an equivalence of categories. Indeed the construction of the comorphism es-
tablishes a bijection between the Hom sets HomC(X,Y ) and HomC′(O(Y ),O(X)).
Moreover, for any finitely generated K-algebra A, there exists an affine algebraic
set X such that A is K-isomorphic to O(X). To see this, we choose a finite set of
generators of A, such that A = K[ξ1, . . . , ξn]. Then we can consider the surjective
K-homomorphism Ψ from the polynomial ring K[x1, . . . , xn] to A sending xi to ξi
for any i. In view of the fundamental theorem of homomorphism, it follows that
A ' K[x1, . . . , xn]/ ker Ψ. The assumption that A is reduced then implies that
X := V (ker Ψ) ⊂ An is an affine algebraic set with I(X) = ker Ψ and A ' O(X).

We note that changing system of generators for A changes the homomorphism
Ψ, and by consequence also the algebraic set X, up to isomorphism. For instance
let A be a polynomial ring in one variable t: if we choose only t as system of
generators, we get X = A1, but if we choose t, t2, t3 we get the affine skew cubic
in A3.

As a consequence of the previous discussion we have the following:
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9.5. Corollary. Let X, Y be affine algebraic sets. Then X ' Y if and only if
O(X) ' O(Y ). �

If X and Y are quasi–projective varieties and φ : X → Y is regular, it is not
always possible to define a comorphism K(Y )→ K(X). If f is a rational function
on Y with domf = U , it can happen that φ(X) ∩ domf = ∅, in which case f ◦ φ
does not exist. Nevertheless, if we assume that φ is dominant, i.e. φ(X) = Y ,
then certainly φ(X) ∩ U 6= ∅, hence 〈φ−1(U), f ◦ φ〉 ∈ K(X). We obtain a K–
homomorphism, which is necessarily injective, K(Y )→ K(X), also denoted by φ∗.
Note that in this case, we have: dimX ≥ dimY . As above, it is possible to check
that, if X ' Y , then K(X) ' K(Y ), hence dimX = dimY . Moreover, if P ∈ X
andQ = φ(P ), then φ∗ induces a mapOQ,Y → OP,X , such that φ∗MQ,Y ⊂MP,X .
Also in this case, if φ is an isomorphism, then OQ,Y ' OP,X .

We will see now how to express in practice a regular map when the target is
contained in a projective space. Let X ⊂ Pn be a quasi–projective variety and
φ : X → Pm be a map.

9.6. Proposition. φ is a morphism if and only if, for any P ∈ X, there exist
an open neighbourhood UP of P and n + 1 homogeneous polynomials F0, . . . , Fm
of the same degree, in K[x0, x1, . . . , xn], such that, if Q ∈ UP , then φ(Q) =
[F0(Q), . . . , Fm(Q)]. In particular, for any Q ∈ UP , there exists an index i such
that Fi(Q) 6= 0.

Proof. “⇒” Let P ∈ X, Q = φ(P ) and assume that Q ∈ U0. Then U := φ−1(U0)
is an open neighbourhood of P and we can consider the restriction φ|U : U → U0,
which is regular. Possibly after restricting U , using non–homogeneous coordi-
nates on U0, we can assume that φ|U = (F1/G1, . . . , Fm/Gm), where (F1, G1),
. . ., (Fm, Gm) are pairs of homogeneous polynomials of the same degree such
that VP (Gi) ∩ U = ∅ for all index i. We can reduce the fractions Fi/Gi to a
common denominator F0, so that degF0 = degF1 = . . . = degFm and φ|U =
(F1/F0, . . . , Fm/F0) = [F0, F1, . . . , Fm], with F0(Q) 6= 0 for Q ∈ U .

“⇐” Possibly after restricting UP , we can assume Fi(Q) 6= 0 for all Q ∈ UP
and suitable i. Let i = 0: then φ|UP

: UP → U0 operates as follows: φ|UP
(Q) =

(F1(Q)/F0(Q), . . . , Fm(Q)/F0(Q)), so it is a morphism by Proposition 9.3. From
this remark, one deduces that also φ is a morphism. �

9.7. Examples.

1. Let X ⊂ P2, X = VP (x2
1 + x2

2 − x2
0), the projective closure of the unitary

circle. We define φ : X → P1 by

[x0, x1, x2]→
{

[x0 − x2, x1] if (x0 − x2, x1) 6= (0, 0);
[x1, x0 + x2] if (x1, x0 + x2) 6= (0, 0).
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φ is well–defined because on X x2
1 = (x0 − x2)(x0 + x2). Moreover

(x1, x0 − x2) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0, 1]},

(x0 + x2, x1) 6= (0, 0)⇔ [x0, x1, x2] ∈ X \ {[1, 0,−1]}.

The map φ is the natural extension of the rational function f : X\{[1, 0, 1]} →
K such that [x0, x1, x2]→ x1/(x0−x2) (Example 8.9, 2). Now the point P [1, 0, 1],
the centre of the stereographic projection, goes to the point at infinity of the line
VP (x2).

By geometric reasons φ is invertible and φ−1 : P1 → X takes [λ, µ] to [λ2 +
µ2, 2λµ, λ2 − µ2] (note the connection with the Pitagorean triples!).

Indeed: the line through P and [λ, µ, 0] has equation: µx0 − λx1 − µx2 = 0.
Its intersections with X are represented by the system:{

µx0 − λx1 − µx2 = 0
x2

1 + x2
2 − x2

0 = 0

Assuming µ 6= 0 this system is equivalent to the following:{
µx0 − λx1 − µx2 = 0
µ2x2

0 = µ2(x2
1 + x2

2) = (λx1 + µx2)2.

Therefore, either x1 = 0 and x0 = x2, or

{
(µ2 − λ2)x1 − 2λµx2 = 0
µx0 = λx1 + µx2

, which gives

the required expression.

2. Affine transformations.
Let A = (aij) be a n× n–matrix with entries in K, let B = (b1, . . . , bn) ∈ An

be a point. The map τA : An → An defined by (x1, . . . , xn) → (y1, . . . , yn), such
that

{yi =
∑
j

aijxj + bi, i = 1, . . . , n,

is a regular map called an affine transformation of An. In matrix notation τA
is Y = AX + B. If A is of rank n, then τA is said non–degenerate and is an
isomorphism: the inverse map τ−1

A is represented by X = A−1Y −A−1B. More in
general, an affine transformation from An to Am is a map represented in matrix
form by Y = AX + B, where A is a m × n matrix and B ∈ Am. It is injective if
and only if rkA = n and surjective if and only if rkA = m.

The isomorphisms of an algebraic set X in itself are called automorphisms
of X: they form a group for the usual composition of maps, denoted Aut X. If
X = An, the non–degenerate affine transformations form a subgroup of Aut An.

If n = 1 and the characteristic of K is 0, then Aut A1 coincides with this
subgroup. In fact, let φ : A1 → A1 be an automorphism: it is represented by a
polynomial F (x) such that there exists G(x) satisfying the condition G(F (t)) = t
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for all t ∈ A1, i.e. G(F (x)) = x in the polynomial ring K[x]. Then, taking
derivatives, we get G′(F (x))F ′(x) = 1, which implies F ′(t) 6= 0 for all t ∈ K, so
F ′(x) is a non–zero constant. Hence, F is linear and G is linear too.

If n ≥ 2, then Aut An is not completely described. There exist non–linear
automorphisms of degree d, for all d. For example, for n = 2: let φ : A2 → A2

be given by (x, y) → (x, y + P (x), where P is any polynomial of K[x]. Then
φ−1 : (x′, y′) → (x′, y′ − P (x′)). A very important open problem is the Jacobian
conjecture, stating that, in characteristic zero, a regular map φ : An → An is
an automorphism if and only if the Jacobian determinant | J(φ) | is a non-zero
constant.

3. Projective transformations.

Let A be a (n+1)× (n+1)–matrix with entries in K. Let P [x0, . . . , xn] ∈ Pn:
then [a00x0 + . . .+a0nxn, . . . , an0x0 + . . .+annxn] is a point of Pn if and only if it
is different from [0, . . . , 0]. So A defines a regular map τ : Pn → Pn if and only if
rkA = n+1. If rkA = r < n+1, then A defines a regular map whose domain is the
quasi–projective variety Pn \ P(kerA). If rkA = n+ 1, then τ is an isomorphism,
called a projective transformation. Note that the matrices λA, λ ∈ K∗, all define
the same projective transformation. So PGL(n+ 1,K) := GL(n+ 1,K)/K∗ acts
on Pn as the group of projective transformations.

If X,Y ⊂ Pn, they are called projectively equivalent if there exists a projective
transformation τ : Pn → Pn such that τ(X) = Y .

9.8. Theorem. Fundamental theorem on projective transformations.

Let two (n+2)–tuples of points of Pn in general position be fixed: P0, . . . , Pn+1

and Q0, . . . , Qn+1. Then there exists one isomorphic projective transformation τ
of Pn in itself, such that τ(Pi) = Qi for all index i.

Proof. Put Pi = [vi], Qi = [wi], i = 0, . . . , n+ 1. So {v0, . . . , vn} and {w0, . . . , wn}
are two bases of Kn+1, hence there exist scalars λ0, . . . , λn, µ0, . . . , µn such that

vn+1 = λ0v0 + . . .+ λnvn, wn+1 = µ0w0 + . . .+ µnwn,

where the coefficients are all different from 0, because of the general position
assumption. We replace vi with λivi and wi with µiwi and get two new bases, so
there exists a unique automorphism of Kn+1 transforming the first basis in the
second one and, by consequence, also vn+1 in wn+1. This automorphism induces
the required projective transformation on Pn. �

An immediate consequence of the above theorem is that projective subspaces
of the same dimension are projectively equivalent. Also two subsets of Pn formed
both by k points in general position are projectively equivalent if k ≤ n + 2. If
k > n+ 2, this is no longer true, already in the case of four points on a projective
line. The problem of describing the classes of projective equivalence of k–tuples
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of points of Pn, for k > n + 2, is one the first problems of the classical invariant
theory. The solution in the case k = 4, n = 1 is given by the notion of cross–ratio.

4. Let X ⊂ An be an affine variety, then XF = X \ V (F ) is isomorphic to
a closed subset of An+1, i.e. to Y = V (xn+1F − 1, G1, . . . , Gr), where I(X) =
〈G1, . . . , Gr〉. Indeed, the following regular maps are inverse each other:

φ : XF → Y such that (x1, . . . , xn)→ (x1, . . . , xn, 1/F (x1, . . . , xn)),

ψ : Y → XF such that (x1, . . . , xn, xn+1)→ (x1, . . . , xn).

Hence, XF is a quasi–projective variety contained in An, not closed in An, but
isomorphic to a closed subset of another affine space.

From now on, the term affine variety will denote a quasi–projective variety
isomorphic to some affine closed set.

If X is an affine variety and precisely X ' Y , with Y ⊂ An closed, then
O(X) ' O(Y ) = K[t1, . . . , tn] is a finitely generated K–algebra. In particular,
if K is algebraically closed and α is an ideal strictly contained in O(X), then
V (α) ⊂ X is non–empty, by the relative form of the Nullstellensatz. From this
observation, we can deduce that the quasi–projective variety of next example is
not affine.

5. A2 \ {(0, 0)} is not affine.

Set X = A2 \{(0, 0)}: first of all we will prove that O(X) ' K[x, y] = O(A2),
i.e. any regular function on X can be extended to a regular function on the whole
plane.

Indeed: let f ∈ O(X): if P 6= Q are points of X, then there exist polynomials
F,G, F ′, G′ such that f = F/G on a neighbourhood UP of P and f = F ′/G′ on
a neighbourhood UQ of Q. So F ′G = FG′ on UP ∩ UQ 6= ∅, which is open also
in A2, hence dense. Therefore F ′G = FG′ in K[x, y]. We can clearly assume that
F and G are coprime and similarly for F ′ and G′. So by the unique factorization
property, it follows that F ′ = F and G′ = G. In particular f admits a unique
representation as F/G on X and G(P ) 6= 0 for all P ∈ X. Hence G has no zeroes
on A2, so G = c ∈ K∗ and f ∈ O(X).

Now, the ideal 〈x, y〉 has no zeroes in X and is proper: this proves that X is
not affine.

We have exploited the fact that a polynomial in more than one variables has
infinitely many zeroes, a fact that allows to generalise the previous observation.

On the other hand, the following property holds:

9.9. Proposition. Let X ⊂ Pn be quasi–projective. Then X admits an open
covering by affine varieties.

Proof. Let X = X0 ∪ . . . ∪ Xn be the open covering of X where Xi = Ui ∩ X
= {P ∈ X|P [a0, . . . , an], ai 6= 0}. So, fixed P , there exists an index i such that
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P ∈ Xi. We can assume that P ∈ X0: X0 is open in some affine variety Y of An
(identified with U0); set X0 = Y \ Y ′, where Y , Y ′ are both closed. Since P 6∈ Y ′,
there exists F such that F (P ) 6= 0 and V (F ) ⊃ Y ′. So P ∈ Y \ V (F ) ⊂ Y \ Y ′
and Y \ V (F ) is an affine open neighbourhood of P in Y \ Y ′ = X0 ⊂ X.

�

6. The Veronese maps.
Let n, d be positive integers; put N(n, d) =

(
n+d
d

)
− 1. Note that

(
n+d
d

)
is

equal to the number of (monic) monomials of degree d in the variables x0, . . . , xn,
that is equal to the number of n+ 1–tuples (i0, . . . , in) such that i0 + . . .+ in = d,
ij ≥ 0. Then in PN(n,d) we can use coordinates {vi0...in}, where i0, . . . , in ≥ 0 and
i0 + . . .+ in = d. For example: if n = 2, d = 2, then N(2, 2) =

(
4
2

)
− 1 = 5. In P5

we can use coordinates v200, v110, v101, v020, v011, v002.
For all n, d we define the map vn,d : Pn → PN(n,d) such that [x0, . . . , xn] →

[vd00...0, vd−1,10...0, . . . , v0...00d] where vi0...in = xi00 x
i1
1 . . . xinn : vn,d is clearly a mor-

phism, its image is denoted Vn,d and called the Veronese variety of type (n, d). It
is in fact the projective variety of equations:

(∗){vi0...invj0...jn − vh0...hn
vk0...kn ,∀i0 + j0 = h0 + k0, i1 + j1 = h1 + k1, . . .

We prove this statement in the particular case n = d = 2; the general case is
similar.

First of all, it is clear that the points of vn,d(Pn) satisfy the system (∗).
Conversely, assume that P [v200, v110, . . .] ∈ P5 satisfies the equations (∗), which
become: 

v200v020 = v2
110

v200v002 = v2
101

v002v020 = v2
011

v200v011 = v110v101

v020v101 = v110v011

v110v002 = v011v101

Then, at least one of the coordinates v200, v020, v002 is different from 0.
Therefore, if v200 6= 0, then P = v2,2([v200, v110, v101]); if v020 6= 0, then

P = v2,2([v110, v020, v011]); if v002 6= 0, then P = v2,2([v101, v011, v002]). Note that,
if two of these three coordinates are different from 0, then the points of P2 found
in this way have proportional coordinates, so they coincide.

We have also proved in this way that v2,2 is an isomorphism between P2 and
V2,2, called the Veronese surface of P5. The same happens in the general case.

If n = 1, v1,d : P1 → Pd takes [x0, x1] to [xd0, x
d−1
0 x1, . . . , x

d
1]: the image is

called the rational normal curve of degree d, it is isomorphic to P1. If d = 3, we
find the skew cubic.

Let now X ⊂ Pn be a hypersurface of degree d: X = VP (F ), with

F =
∑

i0+...+in=d

ai0...inx
i0
0 . . . xinn .
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Then vn,d(X) ' X: it is the set of points

{vi0...in ∈ PN(n,d)|
∑

i0+...+in=d

ai0...invi0...in = 0 and [vi0...in ] ∈ Vn,d}.

It coincides with Vn,d ∩ H, where H is a hyperplane of PN(n,d): a hyperplane
section of the Veronese variety. This is called the linearisation process, allowing to
“ transform” a hypersurface in a hyperplane, modulo the Veronese isomorphism.

The Veronese surface V of P5 enjoys a lot of interesting properties. Most of
them follow from its property of being covered by a 2-dimensional family of conics,
which are precisely the images via v2,2 of the lines of the plane.

To see this, we’ll use as coordinates in P5 w00, w01, w02, w11, w12, w22, so that
v2,2 sends [x0, x1, x2] to the point of coordinates wij = xixj . With this choice of
coordinates, the equations of V are obtained by annihilating the 2 × 2 minors of
the symmetric matrix:

M =

w00 w01 w02

w01 w11 w12

w02 w12 w22


Let ` be a line of P2 of equation b0x0 + b1x1 + b2x2 = 0. Its image is the set of
points of P5 with coordinates wij = xixj , such that there exists a non-zero triple
[x0, x1, x2] with b0x0 + b1x1 + b2x2 = 0. But this last equation is equivalent to the
system:  b0x

2
0 + b1x0x1 + b2x0x2 = 0

b0x0x1 + b1x
2
1 + b2x1x2 = 0

b0x0x2 + b1x1x2 + b2x
2
2 = 0

It represents the intersection of V with the plane

(∗)

{
b0w00 + b1w01 + b2w02 = 0
b0w01 + b1w11 + b2w12 = 0
b0w02 + b1w12 + b2w22 = 0

,

so v2,2(`) is a plane curve. Its degree is the number of points in its intersection
with a general hyperplane in P5: this corresponds to the intersection in P2 of `
with a conic (a hypersurface of degree 2). Therefore v2,2(`) is a conic.

So the isomorphism v2,2 transforms the geometry of the lines in the plane
in the geometry of the conics on the Veronese surface. In particular, given two
distinct points on V , there is exactly one conic contained in V and passing through
them.

From this observation it is easy to deduce that the secant lines of V , i.e. the
lines meeting V at two points, are precisely the lines of the planes generated by
the conics contained in V , so that the (closure of the) union of these secant lines
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coincides with the union of the planes of the conics of V . This union results to be
the cubic hypersurface defined by the equation

detM = det

w00 w01 w02

w01 w11 w12

w02 w12 w22

 = 0.

Indeed a point of P5, of coordinates [wij ] belongs to the plane of a conic contained
in V if and only if there exists a non-zero triple [b0, b1, b2] which is solution of the
homogeneous system (*).

b) Rational maps

Let X,Y be quasi–projective varieties.

9.10. Definition. The rational maps from X to Y are the germs of regular maps
from open subsets of X to Y , i.e. equivalence classes of pairs (U, φ), where U 6= ∅
is open in X and φ : U → Y is regular, with respect to the relation: (U, φ) ∼ (V, ψ)
if and only if φ|U∩V = ψ|U∩V . The following Lemma guarantees that the above
defined relation satisfies the transitive property.

9.11. Lemma. Let φ, ψ : X → Y ⊂ Pn be regular maps between quasi-projective
varieties. If φ|U = ψ|U for U ⊂ X open and non–empty, then φ = ψ.

Proof. Let P ∈ X and consider φ(P ), ψ(P ) ∈ Y . There exists a hyperplane H such
that φ(P ) 6∈ H and ψ(P ) 6∈ H (otherwise the dual projective space P̌n would be the
union of its two hyperplanes consisting of hyperplanes of Pn passing through φ(P )
and ψ(P )). Up to a projective transformation, we can assume that H = VP (x0),
so φ(P ), ψ(P ) ∈ U0. Set V = φ−1(U0) ∩ ψ−1(U0): an open neighbourhood of P .
Consider the restrictions of φ and ψ from V to Y ∩ U0: they are regular maps
which coincide on V ∩ U , hence their coordinates φi, ψi, i = 1, . . . , n, coincide on
V ∩ U , hence on V . So φi|V = ψi|V . In particular φ(P ) = ψ(P ). �

A rational map from X to Y will be denoted φ : X 99K Y . As for rational
functions, the domain of definition of φ, dom φ, is the maximum open subset of
X such that φ is regular at the points of dom φ.

The following proposition follows from the characterization of rational func-
tions on affine varieties.

9.12. Proposition. Let X,Y be affine algebraic sets, with Y closed in An. Then
φ : X 99K Y is a rational map if and only if φ = (φ1, . . . , φn), where φ1, . . . , φn ∈
K(X). �

If X ⊂ Pn, Y ⊂ Pm, then a rational map X 99K Y is assigned by giving m+ 1
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homogeneous polynomials of K[x0, x1, . . . , xn] of the same degree, F0, . . . , Fm, such
that at least one of them is not identically zero on X.

A rational map φ : X 99K Y is called dominant if the image of X via φ is
dense in X, i.e. if φ(U) = X, where U = dom φ. If φ : X 99K Y is dominant
and ψ : Y 99K Z is any rational map, then dom ψ ∩ Imφ 6= ∅, so we can define
ψ ◦ φ : X 99K Z: it is the germ of the map ψ ◦ φ, regular on φ−1(dom ψ ∩ Imφ).

9.13. Definition. A birational map from X to Y is a rational map φ : X 99K Y
such that φ is dominant and there exists ψ : Y 99K X, a dominant rational map,
such that ψ ◦ φ = 1X and φ ◦ ψ = 1Y as rational maps. In this case, X and Y are
called birationally equivalent or simply birational.

If φ : X 99K Y is a dominant rational map, then we can define the comorphism
φ∗ : K(Y )→ K(X) in the usual way: it is an injective K–homomorphism.

9.14. Proposition. Let X, Y be quasi–projective varieties, u : K(Y ) → K(X)
be a K–homomorphism. Then there exists a rational map φ : X 99K Y such that
φ∗ = u.

Proof. Y is covered by open affine varieties Yα, α ∈ I (by Proposition 9.9): for all
index α, K(Y ) ' K(Yα) (Prop. 8.8) and K(Yα) ' K(t1, . . . , tn), where t1, . . . , tn
can be interpreted as coordinate functions on Yα. Then u(t1), . . . , u(tn) ∈ K(X)
and there exists U ⊂ X, non–empty open subset such that u(t1), . . . , u(tn) are all
regular on U . So u(K[t1, . . . , tn]) ⊂ O(U) and we can consider the regular map
u] : U → Yα ↪→ Y . The germ of u] gives a rational map X 99K Y . It is possible
to check that this rational map does not depend on the choice of Yα and U . �

9.15. Theorem. Let X, Y be quasi–projective varieties. The following are equiv-
alent:

(i) X is birational to Y ;

(ii) K(X) ' K(Y );

(iii) there exist non–empty open subsets U ⊂ X and V ⊂ Y such that U ' V .

Proof.

(i) ⇔ (ii) via the construction of the comorphism φ∗ associated to φ and of
u], associated to u : K(Y ) → K(X). One checks that both constructions are
functorial.

(i) ⇒ (iii) Let φ : X 99K Y , ψ : Y 99K X be inverse each other. Put
U ′ = dom φ and V ′ = dom ψ. By assumption, ψ ◦ φ is defined on φ−1(V ′)
and coincides with 1X there. Similarly, ψ ◦ φ is defined on ψ−1(U ′) and equal
to 1Y . Then φ and ψ establish an isomorphism between the corresponding sets
U := φ−1(ψ−1(U ′)) and V := ψ−1(φ−1(V ′)).

(iii) ⇒ (ii) U ' V implies K(U) ' K(V ); but K(U) ' K(X) and K(V ) '
K(Y ) (Prop.8.8), so K(X) ' K(Y ) by transitivity. �
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9.16. Corollary. If X is birational to Y , then dimX = dimY . �

9.17. Examples.
a) The cuspidal cubic Y = V (x3 − y2) ⊂ A2.
We have seen that Y is not isomorphic to A1, but in fact Y and A1 are

birational. Indeed, the regular map φ : A1 → Y , t → (t2, t3), admits a rational
inverse ψ : Y 99K A1, (x, y)→ y

x . ψ is regular on Y \ {(0, 0)}, ψ is dominant and
ψ◦φ = 1A1 , φ◦ψ = 1Y as rational maps. In particular, φ∗ : K(Y )→ K(X) is a field
isomorphism. Recall that K[Y ] = K[t1, t2], with t21 = t32, so K(Y ) = K(t1, t2) =
K(t2/t1), because t1 = (t2/t1)2 = t22/t

2
1 = t31/t

2
1 and t2 = (t2/t1)3 = t32/t

3
1 = t32/t

2
2,

so K(Y ) is generated by a unique transcendental element. Notice that φ and ψ
establish isomorphisms between A1 \ {0} and Y \ {(0, 0)}.

b)Rational maps from P1 to Pn.
Let φ : P1 99K Pn be rational: on some open U ⊂ P1,

φ([x0, x1]) = [F0(x0, x1), . . . , Fn(x0, x1)],

with F0, . . . , Fn homogeneous of the same degree, without non–trivial common
factors. Assume that Fi(P ) = 0 for a certain index i, with P = [a0, a1]. Then
Fi ∈ Ih(P ) = 〈a1x0−a0x1〉, i.e. a1x0−a0x1 is a factor of Fi. This remark implies
that ∀ Q ∈ P1 there exists i ∈ {0, . . . , n} such that Fi(Q) 6= 0, because otherwise
F0, . . . , Fn would have a common factor of degree 1. Hence we conclude that φ is
regular.

We have obtained that any rational map from P1 is in fact regular.

c) Projections.
Let φ : Pn 99K Pm be given in matrix form by Y = AX, where A is a

(m+ 1)× (n+ 1)-matrix, with entries in K. Then φ is a rational map, regular on
Pn \ P(KerA). Put Λ := P(KerA). If A = (aij), this means that Λ has cartesian
equations 

a00x0 + . . .+ a0nxn = 0
a10x0 + . . .+ a1nxn = 0
. . .
am0x0 + . . .+ amnxn = 0

The map φ has a geometric interpretation: it can be seen as the projection
of centre Λ to a complementar linear space. First of all, we can assume that rk
A = m+ 1, otherwise we replace Pm with P(Im A); hence dim Λ = n− (m+ 1).

Consider first the case Λ : x0 = . . . = xm = 0; we identify Pm with the
subspace of Pn of equations xm+1 = . . . = xn = 0, so Λ and Pm are complementar
subspaces, i.e. Λ ∩ Pm = ∅ and the linear span of Λ and Pm is Pn. Then, for
Q ∈ Pn \ Λ, φ(Q) = [x0, . . . , xm, 0, . . . , 0]: it is the intersection of Pm with the
linear span of Λ and Q. In fact, if Q[a0, . . . , an] then ΛQ has equations

{aixj − ajxi = 0, i, j = 0, . . . ,m (check!)
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so ΛQ ∩ Pm has coordinates [a0, . . . , am, 0, . . . , 0].
In the general case, if Λ = VP (L0, . . . , Lm), with L0, . . . , Lm linearly inde-

pendent forms, we can identify Pm with VP (Lm+1, . . . , Ln), where L0, . . . , Lm,
Lm+1, . . . , Ln is a basis of (Kn+1)∗. Then L0, . . . , Lm can be interpreted as coor-
dinate functions on Pm.

If m = n− 1, then Λ is a point P and φ, often denoted πP , is the projection
from P to a hyperplane not containing P .

d)Rational and unirational varieties.
A quasi–projective variety X is called rational if it is birational to a projective

space Pn, or equivalently to An. Indeed, in view of Thereom 9.15 (iii), Pn and An
are birationally equivalent.

By Theorem 9.15, X is rational if and only if K(X) ' K(Pn) = K(x1, . . . , xn)
for some n, i.e. K(X) is an extension of K generated by a transcendence basis
(a purely transcendental extension of K). In an equivalent way, X is rational if
there exists a rational map φ : Pn 99K X which is dominant and is an isomorphism
if restricted to a suitable open subset U ⊂ Pn. Hence X admits a birational
parametrization by polynomials in n parameters.

A weaker notion is that of unirational variety: X is unirational if there exists
a dominant rational map Pn 99K X i.e. if K(X) is contained in the quotient
field of a polynomial ring. Hence X can be parametrised by polynomials, but not
necessarily generically one–to–one.

It is clear that, if X is rational, then it is unirational. The converse implication
has been an important open problem, up to 1971, when it has been solved in the
negative, for varieties of dimension ≥ 3 (Clemens–Griffiths and Iskovskih–Manin).
Nevertheless rationality and unirationality are equivalent for curves (Theorem of
Lüroth, 1880) and for surfaces if charK = 0 (Theorem of Castelnuovo, 1894).

As an example of rational variety with an explicit rational parametrization
constructed geometrically, let us consider the following quadric of maximal rank
in P3: X = VP (x0x3 − x1x2), an irreducible hypersurface of degree 2. Let πP :
P3 99K P2 be the projection of centre P [1, 0, 0, 0], such that πP ([y0, y1, y2, y3]) =
[y1, y2, y3]. The restriction of πP to X is a rational map π̃P : X 99K P2, regular on
X \{P}. π̃P has a rational inverse: indeed consider the rational map ψ : P2 99K X,
[y1, y2, y3] → [y1y2, y1y3, y2y3, y

2
3 ]. The equation of X is satisfied by the points of

ψ(P2): (y1y2)y2
3 = (y1y3)(y2y3). ψ is regular on P2 \VP (y1y2, y3). Let us compose

ψ and π̃P :

[y0, . . . , y3] ∈ X πP→ [y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3 ];

y1y2 = y0y3 implies ψ ◦ πP = 1X . In the opposite order:

[y1, y2, y3]
ψ→ [y1y2, y1y3, y2y3, y

2
3 ]
πP→ [y1y3, y2y3, y

2
3 ] = [y1, y2, y3].

So X is birational to P2 hence it is a rational surface.
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Note that if we consider a projection πP whose centre P is not on the quadric,
we get a regular 2 : 1 map to the plane, certainly not birational.

e) A birational non–regular map from P2 to P2.
The following rational map is called the standard quadratic map:

Q : P2 99K P2, [x0, x1, x2]→ [x1x2, x0x2, x0x1].

Q is regular on U := P2 \ {A,B,C}, where A[1, 0, 0], B[0, 1, 0], C[0, 0, 1] are the
fundamental points (see Fig. 2)

Let a be the line through B and C: a = VP (x0), and similarly b = VP (x1),
c = VP (x2). Then Q(a) = A, Q(b) = B, Q(c) = C. Outside these three lines Q is
an isomorphism. Precisely, put U ′ = P2 \ {a ∪ b ∪ c}; then Q : U ′ → P2 is regular,
the image is U ′ and Q−1 : U ′ → U ′ coincides with Q. Indeed,

[x0, x1, x2]
Q→ [x1x2, x0x2, x0x1]

Q→ [x2
0x1x2, x0, x

2
1x2, x0x1x

2
2].

So Q ◦Q = 1P2 as rational map, hence Q is birational and Q = Q−1.

– Fig. 2 –

The set of the birational maps P2 99K P2 is a group, called the Cremona
group. At the end of XIX century, Max Noether proved that the Cremona group
is generated by PGL(3,K) and by the single standard quadratic map above. The
analogous groups for Pn, n ≥ 3, are much more complicated and a complete
description is still unknown.

We conclude this section with a theorem illustrating an application of the
linearisation procedure. We shall use the following notation: given a homogeneous
polynomial F ∈ K[x0, x1, . . . , xn], D(F ) := Pn \ VP (F ).
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9.16. Theorem. Let W ⊂ Pn be a closed projective variety. Let F be a homo-
geneous polynomial of degree d in K[x0, x1, . . . , xn] such that W * VP (F ). Then
W ∩D(F ) is an affine variety.

Proof. The assumption W * VP (F ) is equivalent to W∩D(F ) 6= ∅. Let us consider

the d-tuple Veronese embedding vn,d : Pn → PN(n,d), with N(n, d) =
(
n+d
d

)
− 1,

that gives the isomorphism Pn ' Vn,d. In this isomorphism the hypersurface
VP (F ) corresponds to a hyperplane section Vn,d ∩H, for a suitable hyperplane H
in PN(n,d). Therefore we have W ∩ D(F ) ' vn,d(W ∩ D(F )) = vn,d(W ) \ H =
vn,d(W ) ∩ (PN(n,d) \ H). There exists a projective isomorphism τ : PN(n,d) →
PN(n,d) such that τ(H) = H0, the fundamental hyperplane of equation x0 = 0.
Therefore, denoting X := vn,d(W ), we get X ∩ (PN(n,d) \H) ' τ(X) ∩ (PN(n,d) \
H0) = τ(X) ∩ U0, which proves the theorem. �

As a consequence of Theorem 9.16, we get that the open subsets of the form
W ∩D(F ) form a topology basis of affine varieties for W .

Exercises to §9.

1. Let φ : A1 → An be the map defined by t→ (t, t2, . . . , tn).

a) Prove that φ is regular and describe φ(A1);

b) prove that φ : A1 → φ(A1) is an isomorphism;

c) give a description of φ∗ and φ−1∗.

2. Let f : A2 → A2 be defined by: (x, y)→ (x, xy).

a) Describe f(A2) and prove that it is not locally closed in A2.

b) Prove that f(A2) is a constructible set in the Zariski topology of A2 (i.e.
a finite union of locally closed sets).

3. Prove that the Veronese variety Vn,d is not contained in any hyperplane of
PN(n,d).

4. Let GLn(K) be the set of invertible n × n matrices with entries in K.
Prove that GLn(K) can be given the structure of an affine variety.

5. Show the unicity of the projective transformation τ of Theorem 9.8.

6. Let φ : X → Y be a regular map and φ∗ its comorphism. Prove that the
kernel of φ∗ is the ideal of φ(X) in O(Y ). In the affine case, deduce that φ is
dominant if and only if φ∗ is injective.

7. Prove that O(XF ) is isomorphic to O(X)f , where X is an affine algebraic
variety, F a polynomial and f the function on X defined by F .
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10. Products of quasi–projective varieties, tensors and Grassmannians.

a) Products
Let Pn, Pm be projective spaces over the same field K. The cartesian product
Pn × Pm is simply a set: we want to define an injective map from Pn × Pm to a
suitable projective space, so that the image is a projective variety, which will be
identified with our product.

Let N = (n+1)(m+1)−1 and define σ : Pn×Pm → PN in the following way:
σ([x0, . . . , xn], [y0, . . . , ym]) = [x0y0, x0y1, . . . , xiyj , . . . , xnym]. Using coordinates
wij , i = 0, . . . , n, j = 0, . . . ,m, in PN , σ is defined by

{wij = xiyj , i = 0, . . . , n, j = 0, . . . ,m.

It is easy to observe that σ is a well–defined map.
Let Σn,m (or simply Σ) denote the image σ(Pn × Pm).

10.1. Proposition. σ is injective and Σn,m is a closed subset of PN .

Proof. If σ([x], [y]) = σ([x′], [y′]), then there exists λ 6= 0 such that x′iy
′
j = λxiyj

for all i, j. In particular, if xh 6= 0, yk 6= 0, then also x′h 6= 0, y′k 6= 0, and for all i
x′i = λyky′

k
xi, so [x0, . . . , xn] = [x′0, . . . , x

′
n]. Similarly for the second point.

To prove the second assertion, I claim: Σn,m is the closed set of equations:

(∗){wijwhk = wikwhj , i, h = 0, . . . , n; j, k = 0 . . . ,m.

It is clear that if [wij ] ∈ Σ, then it satisfies (*). Conversely, assume that [wij ]
satisfies (*) and that wαβ 6= 0. Then

[w00, . . . , wij , . . . , wnm] = [w00wαβ , . . . , wijwαβ , . . . , wnmwαβ ] =

= [w0βwα0, . . . , wiβwαj , . . . , wnβwαm] =

= σ([w0β , . . . , wnβ ], [wα0, . . . , wαm]).

�

σ is called the Segre map and Σn,m the Segre variety or biprojective space. Note
that Σ is covered by the affine open subsets Σij = Σ ∩Wij , where Wij = PN \
VP (wij). Moreover Σij = σ(Ui × Vj), where Ui × Vj is naturally identified with
An+m.

10.2. Proposition. σ|Ui×Vj
: Ui × Vj = An+m → Σij is an isomorphism of

varieties.

Proof. Assume by simplicity i = j = 0. Choose non–homogeneous coordinates on
U0: ui = xi/x0 and on V0: vj = yj/y0. So u1, . . . un, v1, . . . , vm are coordinates on
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U0 × V0. Take non–homogeneous coordinates also on W00: zij = wij/w00. Using
these coordinates we have:

σ|Ui×Vj
:(u1, . . . un, v1, . . . , vm)→ (v1, . . . , vm, u1, u1v1, . . . , u1vm, . . . , unvm)

||
([1, u1, . . . , un], [1, v1, . . . , vm])

i.e. σ(u1, . . . , vm) = (z01, . . . , znm), where
zi0 = ui, if i = 1, . . . , n;
z0j = vj , if j = 1, . . . ,m;
zij = uivj = zi0z0j otherwise.

Hence σ|U0×V0 is regular.
The inverse map takes (z01, . . . , znm) to (z10, . . . , zn0, z01, . . . , z0m), so it is also
regular. �

10.3. Corollary. Pn × Pm is irreducible and birational to Pn+m.

Proof. The first assertion follows from Ex.5, Ch.6, considering the covering of
Σ by the open subsets Σij . Indeed, Σij ∩ Σhk = σ((Ui × Vj) ∩ (Uh × Vk)) =
σ((Ui ∩ Uh)× (Vj ∩ Vk)), and Ui ∩ Uh 6= ∅ 6= Vj ∩ Vk.

For the second assertion, by Theorem 9.15, it is enough to note that Σn,m
and Pn+m contain isomorphic open subsets, i.e. Σij and An+m. �

From now on, we shall identify Pn × Pm with Σn,m. If X ⊂ Pn, Y ⊂ Pm are
any quasi–projective varieties, then X × Y will be automatically identified with
σ(X × Y ) ⊂ Σ.

10.4. Proposition. If X and Y are projective varieties (resp. quasi–projective
varieties), then X × Y is projective (resp. quasi–projective).

Proof.

σ(X × Y ) =
⋃
i,j

(σ(X × Y ) ∩ Σij) =

=
⋃
i,j

(σ(X × Y ) ∩ (Ui × Vj)) =

=
⋃
i,j

(σ((X ∩ Ui)× (Y ∩ Vj))).

If X and Y are projective varieties, then X∩Ui is closed in Ui and Y ∩Vj is closed
in Vj , so their product is closed in Ui × Vj ; since σ|Ui×Vj is an isomorphism, also
σ(X × Y ) ∩ Σij is closed in Σij , so σ(X × Y ) is closed in Σ, by Lemma 8.3.

If X,Y are quasi–projective, the proof is similar: X ∩ Ui is locally closed in
Ui and Y ∩ Vj is locally closed in Vj , so X ∩ Ui = Z \ Z ′, Y ∩ Vj = W \W ′, with
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Z,Z ′,W,W ′ closed. Therefore (Z\Z ′)×(W \W ′) = Z×W \((Z ′×W )∪(Z×W ′)),
which is locally closed.

As for the irreducibility, see Exercise 10.1. �

10.5. Example. P1 × P1

σ : P1 × P1 → P3 is given by {wij = xiyj , i = 0, 1, j = 0, 1. Σ has only one
non–trivial equation: w00w11 − w01w10, hence Σ is a quadric. The equation of Σ
can be written as

(∗)
∣∣∣∣w00 w01

w10 w11

∣∣∣∣ = 0.

Σ contains two families of special closed subsets parametrised by P1, i.e.

{σ(P × P1)}P∈P1 and {σ(P1 ×Q)}Q∈P1 .

If P [a0, a1], then σ(P × P1) is given by the equations:
w00 = a0y0

w01 = a0y1

w10 = a1y0

w11 = a1y1

hence it is a line. Cartesian equations of σ(P × P1) are:{
a1w00 − a0w10 = 0
a1w01 − a0w11 = 0;

they express the proportionality of the rows of the matrix (*) with coefficients
[a1,−a0]. Similarly, σ(P1 ×Q) is the line of equations{

a1w00 − a0w01 = 0
a1w10 − a0w11 = 0.

Hence Σ contains two families of lines, called the rulings of Σ: two lines of the
same ruling are clearly disjoint while two lines of different rulings intersect at one
point (σ(P,Q)). Conversely, through any point of Σ there pass two lines, one for
each ruling. Note that Σ is exactly the quadric surface of Example 9.17, d) and
that the projection of centre [1, 0, 0, 0] realizes an explicit birational map between
P1 × P1 and P2.

b) Tensors

The product of projective spaces has a coordinate-free description in terms of
tensors. Precisely, let Pn = P(V ) and Pm = P(W ). The tensor product V ⊗W of
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the vector spaces V,W is constructed as follows: let K(V ×W ) be the K-vector
space with basis V ×W obtained as the set of formal finite linear combinations
of type Σiai(vi, wi) with ai ∈ K. Let U be the vector subspace generated by all
elements of the form:

(v, w) + (v′, w)− (v + v′, w),
(v, w) + (v, w′)− (v, w + w′),
(λv,w)− λ(v, w),
(v, λw)− (λ(v, w),

with v, v′ ∈ V , w,w′ ∈W , λ ∈ K. The tensor product is by definition the quotient
V ⊗W := K(V ×W )/U . The class of a pair (v, w) is denoted v⊗w, and called a
decomposable tensor. So V ⊗W is generated by the decomposable tensors; more
precisely, a general element ω ∈ V ⊗W is of the form Σki=1vi ⊗ wi, with vi ∈ V ,
wi ∈ W . The minimum k such that an expression of this type exists is called the
tensor rank of ω.

There is a natural bilinear map ⊗ : V ×W → V ⊗W , such that (v, w)→ v⊗w.
It enjoys the following universal property: for any K-vector space Z with a bilinear
map f : V ×W → Z, there exists a unique linear map f̄ : V ⊗W → Z such that
f factorizes in the form f = f̄ ◦ ⊗.

If dimV = n, dimW = m, and bases B = (e1, . . . , en),B′ = (e′1, . . . , e
′
m)

are given, then (e1 ⊗ e′1, . . . , ei ⊗ e′j , . . . en ⊗ e′m) is a basis of V ⊗W : therefore
dimV ⊗W = nm.

If v = x1e1 + . . . xnen, w = y1e
′
1 + . . . yme

′
m, then v ⊗ w = Σxiyjei ⊗ e′j .

So, passing to the projective spaces, the map ⊗ defines precisely the Segre map
σ : P(V )×P(W )→ P(V ⊗W ), ([v], [w])→ [v⊗w]. Indeed in coordinates we have
([x0, . . . , xn], [y0, . . . , ym]) → [w00, . . . , wnm], with wij = xiyj . The image of ⊗ is
the set of decomposable tensors, or rank one tensors.

The tensor product V⊗W has the same dimension, and is therefore isomorphic
to the vector space of n×m matrices. The coordinates wij can be interpreted as
the entries of such a n ×m matrix. The equations of the Segre variety Σn,m are
the 2 × 2 minors of the matrix, therefore Σn,m can be interpreted as the set of
matrices of rank one.

The construction of the tensor product can be iterated, to construct V1⊗V2⊗
. . .⊗ Vr. The following properties can easily be proved:

1. V1 ⊗ (V2 ⊗ V3) ' (V1 ⊗ V2)⊗ V3;
2. V ⊗W 'W ⊗ V ;
3. V ∗ ⊗W ' Hom(V,W ), where f ⊗ w → (V →W : v → f(v)w).

Also the Veronese morphism has a coordinate free description, in terms of
symmetric tensors. Given a vector space V , for any d ≥ 0 the d-th symmetric
power of V , SdV or SymdV , is constructed as follows. We consider the tensor
product of d copies of V : V ⊗ . . .⊗ V = V ⊗d, and we consider its subvector space
U generated by tensors of the form v1 ⊗ . . . vd − vσ(1) ⊗ . . .⊗ vσ(d), where σ varies

in the symmetric group on d elements Sd. Then by definition SdV := V ⊗d/U .



60 Mezzetti

The equivalence class [v1 ⊗ . . .⊗ vd] is denoted as a product v1 . . . vd.
There is a natural multilinear and symmetric map V × . . .×V = V d → SdV ,

such that (v1, . . . , vd) → v1 . . . vd, which enjoys the universal property. SdV is
generated by the products v1 . . . vd.

SdV can also be interpreted as a subspace of V ⊗d, by considering the following
map, that is an isomorphism to the image:

SdV → V ⊗d, v1 . . . vd → Σσ∈Sd
1

d!
vσ(1) ⊗ . . .⊗ vσ(d).

If B = (e1, . . . , en) is a basis of V , then it is easy to check that a basis of SdV is
formed by the monomials of degree d in e1, . . . , en; therefore dimSdV =

(
n+d−1

d

)
.

For instance, in S2V the product v1v2 can be identified with 1
2 (v1⊗v2+v2⊗v1).

The symmetric algebra of V is SV := ⊕d≥0S
dV = K⊕V ⊕S2V ⊕. . .. An inner

product can be naturally defined to give it the structure of a K-algebra, which
results to be isomorphic to the polynomial ring in n variables, where n = dimV .

If charK = 0 the Veronese morphism can be interpreted in the following way:

vn,d : P(V )→ P(SdV ), [v] = [x0e0 + . . . xnen]→ [vd] = [(x0e0 + . . .+ xnen)d].

Moreover S2V can be interpreted as space of the symmetric d × d matrices,
and the Veronese variety Vn,2 as the subset of the symmetric matrices of rank one.

In a similar way it is possible to define the exterior powers of the vector space
V . One defines the d-th exterior power ∧dV as the quotient V ⊗d/Λ, where Λ is
generated by the tensors of the form v1⊗ . . .⊗ vi⊗ . . .⊗ vj ⊗ . . .⊗ vd, with vi = vj
for some i 6= j. The following notation is used: [v1 ⊗ . . .⊗ vd] = v1 ∧ . . . ∧ vd.

There is a natural multilinear alternating map V × . . . × V = V d → ∧dV ,
that enjoys the universal property. Given a basis of V as before, a basis of ∧dV
is formed by the tensors ei1 ∧ . . . ∧ eid , with 1 ≤ i1 < . . . < id ≤ n. Therefore
dim∧dV =

(
n
d

)
. The exterior algebra of V is the following direct sum: ∧V =

⊕d≥0 ∧d V = K ⊕ V ⊕ ∧2V ⊕ . . .. To define an inner product that gives it the
structure of algebra we can proceed as follows.

Step 1. Fixed v1, . . . , vq ∈ V , define f : V d → ∧d+pV posing f(x1, . . . , xd) =
x1 ∧ . . . ∧ xd ∧ v1 ∧ . . . ∧ vq. Since f results to be multilinear and alternating,
by the universal property we get a factorization of f through ∧dV , which gives a
linear map f̄ : ∧dV → ∧d+pV , extending f . For any ω ∈ ∧dV , we denote f̄(ω) by
ω ∧ v1 ∧ . . . ∧ vd.

Step 2. Fixed ω ∈ ∧dV , consider the map g : V p → ∧d+pV such that
g(y1, . . . , yp) = ω ∧ y1 ∧ . . . ∧ yp: it is multilinear and alternating, therefore it
factorizes through ∧pV and we get a linear map ḡ : ∧pV → ∧d+pV , extending g.
We denote ḡ(σ) := ω ∧ σ.
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Step 3. For any d, p ≥ 0 we have got a map ∧ : ∧dV × ∧pV → ∧d+pV , that
results to be bilinear, and extends to an inner product ∧ : (∧V ) × (∧V ) → ∧V ,
which gives ∧V the required structure of algebra.

10.6. Proposition. Let V be a vector space of dimension n.

(i) Vectors v1, . . . , vp ∈ V are linearly dependent if and only if v1∧. . .∧vp = 0.

(ii) Let v ∈ V be a non-zero vector, and ω ∈ ∧pV . Then ω∧v = 0 if and only
if there exists Φ ∈ ∧p−1V such that ω = Φ ∧ v. In this case we say that v divides
ω.

Proof. The proof of (i) is standard. If ω = Φ∧v, then ω∧v = (Φ∧v)∧v = Φ∧(v∧
v) = 0. Conversely, if ω ∧ v = 0, v 6= 0, we choose a basis of V , B = (e1, . . . , en)
with e1 = v. Write ω = Σi1<...<ipai1...ipei1 ∧ . . . ∧ eip . Then 0 = ω ∧ e1 =
Σi1<...<ip(+−)ai1...ipe1∧ei1 ∧ . . .∧eip . If i1 = 1, the corresponding summand does
not appear in this sum, so it remains a linear combination of linearly independent
tensors, which implies ai1...ip = 0 every time i1 > 1. Therefore ω = e1 ∧ Φ for a
suitable Φ.

�

10.7. Proposition. Let ω 6= 0 be an element of ∧pV . Then ω is totally
decomposable if and only if the subspace of V : W = {v ∈ V | v divides ω} has
dimension p.

Proof. If ω = x1∧ . . .∧xp 6= 0, then x1, . . . , xp are linearly independent and belong
to W . So we can extend them to a basis of V adding vectors xp+1, . . . , xn. If v ∈
W , v = α1x1+. . .+αnxn, and v divides ω, then ω∧v = 0, i.e. x1∧. . .∧xn∧(α1x1+
. . .+αnxn) = 0. This implies αp+1x1 ∧ . . .∧xp ∧xp+1 + . . .+αnx1 ∧ . . .∧xp ∧xn,
therefore αp+1 = . . . = αn = 0, so v ∈ 〈x1, . . . , xn〉.

Conversely, if (x1, . . . , xp) is a basis of W , we can complete it to a basis of V
and write ω = Σai1...ipxi1 ∧ . . .∧xip . But x1 divides ω, so ω∧x1 = 0. Replacing ω
with its explicit expression, we obtain that ai1...ip = 0 if 1 /∈ {i1, . . . , ip}. Repeating
this argument for x2, . . . , xp, it remains ω = a1...px1 ∧ . . . ∧ xp. �

With explicit computations, one can prove the following proposition.

10.8. Proposition. Let V be a vector space with dimV = n. Let B = (e1, . . . , en)
be a basis of V and v1, . . . , vn be any vectors. Then v1∧. . .∧vn = det(A)e1∧. . .∧en,
where A is the matrix of the coordinates of the vectors v1, . . . , vn with respect to
B.

10.9. Corollary. Let v1, . . . , vp ∈ V , with vj = Σaijej, j = 1, . . . , p. Then v1 ∧
. . .∧vp = Σi1<...<ipai1...ipei1∧ . . .∧eip , with ai1...ip = det(Ai1...ip), the determinant
of the p× p submatrix of A containing the columns of indices i1, . . . , ip.
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c) Grassmannians
Let V be a vector space of dimension n, and r be a positive integer, 1 ≤ r ≤ n.

The Grassmannian G(r, V ) is the set of the subspaces of V of dimension r. It can
be denoted also G(r, n).

There is a natural bijection between G(r, V ) and the set of the projective
subspaces of P(V ) of dimension r − 1, denoted G(r − 1,P(V )) or G(r − 1, n− 1).
Let W ∈ G(r, V ); if (w1, . . . , wr) and (x1, . . . , xr) are two bases of W , then w1 ∧
. . .∧wr = λx1∧xr, where λ ∈ K is the determinant of the matrix of the change of
basis. Therefore W uniquely determines an element of ∧rV up to proportionality.
This allows to define a map, called the Plücker map, ψ : G(r, V )→ P(∧rV ), such
that ψ(W ) = [w1 ∧ . . . wr].

10.10. Proposition. The Plücker map is injective.

Proof. Assume ψ(W ) = ψ(W ′), where W,W ′ are subspaces of V of dimension r
with bases (x1, . . . , xr) and (y1, . . . , yr). So there exists λ 6= 0 in K such that
x1 ∧ . . . ∧ xr = λy1 ∧ . . . ∧ yr. This implies x1 ∧ . . . ∧ xr ∧ yi = 0 for all i, so yi is
linearly dependent from x1, . . . , xr, so yi ∈ W . Therefore W ′ ⊂ W . The reverse
inclusion is similar. �

In coordinates, ψ(W ) is given by the minors of maximal order r of the matrix
of the coordinates of the vectors of a basis of W , with respect to a fixed basis of
V .

10.11. Examples.
(i) r = n− 1: ∧n−1V has dimension n, so it is isomorphic to the dual vector

space V ∗, associating to e1 ∧ . . .∧ êk ∧ . . .∧ en the linear form e∗k of the dual basis.
In this case the Plücker map is surjective, so G(n− 1, n) ' V ∗.

(ii) n = 4, r = 2: G(2, 4) or G(1, 3), the Grassmannian of lines of P3. In
this case ψ : G(1, 3) → P(∧2V ) ' P5. Let (e0, e1, e2, e3) be a basis of V . If
` is the line of P3 obtained by projectivisation of a subspace L ⊂ V of dimen-
sion 2, let L = 〈x, y〉; then ψ(`) = [x ∧ y]. Its Plücker coordinates are denoted
p01, p02, p03, p12, p13, p23, and pij = xiyj − xjyi, the 2× 2 minors of the matrix(

x0 x1 x2 x3

y0 y1 y2 y3

)
.

This time ψ is not surjective; its image is formed by the totally decomposable
tensors. They satisfy the equation of degree 2: p01p23−p02p13 +p03p12 = 0, which
represents a quadric of maximal rank in P5, called the Klein quadric. The fact
that this equation is satisfied can be seen by considering the 4× 4 matrix

x0 x1 x2 x3

y0 y1 y2 y3

x0 x1 x2 x3

y0 y1 y2 y3

 :
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its determinant is precisely the above equation.

For instance the line of equations x2 = x3 = 0, obtained projectivising the
subspace 〈e0, e1〉, has Plücker coordinates [1, 0, 0, 0, 0, 0].

In general we can prove the following theorem.

10.12. Theorem. The image of the Plücker map is a closed subset in P(∧rV ).

Proof. The image of the Plücker map is the set of the proportionality classes of
totally decomposable tensors. By Proposition 10.7, a tensor ω ∈ ∧rV is totally
decomposable if and only if the subspace W = {v ∈ V | v divides ω} has dimension
r. We consider the linear map Φ : V → ∧r+1V , such that Φ(v) = ω∧v. The kernel
of Φ is equal to W . So ω is totally decomposable if and only if the rank of Φ is n−r.
Fixed a basis B = (e1, . . . , en) of V , we write ω = Σi1<...<irai1...irei1 ∧ . . . ∧ eir .
We then consider the basis of ∧r+1V associated to B and we construct the matrix
A of Φ with respect to these bases: its minors of order n− p+ 1 are equations of
the image of ψ, and they are polynomials in the coordinates ai1...ir of ω. �

From now on we shall identify the Grassmannian with the projective algebraic
set that is its image in the Plücker map. The equations obtained in Theorem 10.12
are nevertheless not generators for the ideal of the Grassmannian. For instance,
in the case n = 4, r = 2, let ω = p01e0 ∧ e1 + p02e0 ∧ e2 + . . .. Then:

Φ(e0) = ω ∧ e0 = p12e0 ∧ e1 ∧ e2 + p13e0 ∧ e1 ∧ e3 + p23e0 ∧ e2 ∧ e3;

Φ(e1) = ω ∧ e1 = −p02e0 ∧ e1 ∧ e2 − p03e0 ∧ e1 ∧ e3 + p23e1 ∧ e2 ∧ e3;

Φ(e2) = ω ∧ e2 = p01e0 ∧ e1 ∧ e2 − p03e0 ∧ e2 ∧ e3 + p13e1 ∧ e2 ∧ e3;

Φ(e3) = ω ∧ e3 = p01e0 ∧ e1 ∧ e3 + p02e0 ∧ e2 ∧ e3 + p12e1 ∧ e2 ∧ e3.

So the matrix is 
p12 −p02 p01 0
p13 −p03 0 p01

p23 0 −p03 p02

0 p23 p13 p12

 .

Its 3 × 3 minors are equations defining G(1, 3), but the radical of the ideal
generated by these minors is in fact (p01p23 − p02p13 + p03p12).

To find equations for the Grassmannian and to prove that it is irreducible, it is
convenient to give an explicit open covering with affine open subsets. In P(∧rV ),
let Ui1...ir be the affine open subset where the Plücker coordinate pi1...ir 6= 0.
For semplicity assume i1 = 1, i2 = 2, . . . , ir = r, and put U = U1...r. If W ∈
G(r, n) ∩ U , and w1, . . . , wr is a basis of W , then the first minor of the matrix
M , of the coordinates of w1, . . . , wr with respect to a fixed basis of V , is non-
degenerate. So we can choose a new basis of W such that M is of the form

M =


1 0 . . . 0 α1,r+1 . . . α1,n

0 1 . . . 0 α2,r+1 . . . α2,n

. . . . . . . . . . . . . . . . . . . . .
0 0 . . . 1 αr,r+1 . . . αr,n

 .
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Conversely, any matrix of this form defines a subspace W ∈ G(r, n)∩U . So there
is a bijection between G(r, n) ∩ U and Kr(n−r), i.e. the affine space of dimension
r(n− r). The coordinates of W result to be equal to 1 and all minors of all orders
of the submatrix of the last n− r columns of M . Therefore they are expressed as
polynomials in the r(n−r) coordinates elements of M . This shows that G(r, n)∩U
is an affine rational subvariety of U . By homogenising the equations obtained in
this way, one gets equations for G(r, n).

In the case n = 4, r = 2, the matrix M becomes

M =

(
1 0 α13 α14

0 1 α23 α24

)
.

One gets 1 = p01, α23 = p02, α24 = p03,−α13 = p12,−α14 = p13, α13α24−α23α14 =
p23. If we make the substitutions and homogenise the last equation with respect
to p01, we find the equation of the Klein quadric.

We remark that G(r, n) ∩ Ui1...ir is the set of the subspaces W which are
complementar to the subspace of equations xi1 = . . . = xir = 0.

Concluding, the projective algebraic set G(r, n) has an affine open covering
with irreducible varieties isomorphic to Ar(n−r), and it is easy to check that they
have two by two non-empty intersection. Using Ex. 5 of §6, we deduce that G(r, n)
is a projective variety, of dimension r(n− r), and it is rational.

In the special case n ≥ 4, r = 2, using the Plücker coordinates [. . . , pij , . . .], the
equations of the Grassmannian G(2, n) are of the form pijphk−pihpjk+pikpjh = 0,
for any i < j < h < k.

Also in the case of G(2, n), as for Pn×Pm and Vn,2, there is an interpretation
in terms of matrices. Given a tensor in ∧2V with coordinates [pij ], we can consider
the skew-symmetric n×n matrix whose term of position i, j is indeed pij , with the
conditions pii = 0 and pji = −pij . In this way we can construct an isomorphism
between ∧2V and the vector space of skew-symmetric matrices of order n.

From tA = −A, it follows det(A) = (−1)n det(A). If n is odd, this implies
det(A) = 0. If n is even, one can prove that det(A) is a square. For instance if

n = 2, and A =

(
0 a
−a 0

)
, then det(A) = a2.

If n = 4, and P =


0 p12 p13 p14

−p12 0 p23 p24

−p13 −p23 0 p34

−p14 −p24 −p34 0

 , then det(P ) = (p12p34 −

p13p24 + p14p23)2.
In general, for a skew-symmetric matrix A of even order 2n, one defines the

pfaffian of A, pf(A), in one of the following equivalent ways:

(i) by recursion: if n = 1, pf

(
0 a
−a 0

)
= a2; if n > 1, one defines pf(A) =
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Σ2n
i=2(−1)ia1iPf(A1i), where A1i is the matrix obtained from A removing the rows

and the columns of indices 1 and i. Then one verifies that pf(A)2 = det(A).

(ii) Given the matrix A, one considers the tensor ω = Σ2n
i,j=1aijei ∧ ej ∈ K2n.

Then one defines the pfaffian as the unique constant such that pf(A)e1∧. . .∧e2n =
1
n!ω ∧ . . . ∧ ω.

For a skew-symmetric matrix of odd order, one defines the pfaffian to be 0.

10.13. Proposition. A 2-tensor ω ∈ ∧2V is totally decomposable if and only if
ω ∧ ω = 0.

Proof. If ω is decomposable, the conclusion easily follows. Conversely, if ω =
Σ2n
i,j=1aijei∧ej and ω∧ω = 0, then the pfaffians of the principal minors of order 4

of the matrix A corresponding to ω are all 0, therefore from definition (ii) it follows
that the pfaffians of the principal minors of all orders are 0, and also det(A) = 0.
In conclusion A has rank 2. Then one checks that ω is the ∧ product of two vectors
corresponding to two linearly independent rows of A. For instance, if a12 6= 0, then
ω = (a12e2 + . . .+ a1nen) ∧ (−a12e1 + a23e3 + . . .+ a2nen). �

The equations of G(2, n) are the pfaffians of the principal minors of order 4
of the matrix P . They are all zero if and only if the rank of P is 2. Therefore
the points of the Grassmannian G(2, n), for any n, can be interpreted as skew-
symmetric matrices of order n and rank 2.

The subvarieties of the Grassmannian G(r, n) correspond to subvarieties of Pn
covered by linear spaces of dimension r. Conversely, any subvariety of Pn covered
by linear spaces of dimension r gives rise to a subvariety of the Grassmannian.

10.14. Examples. 1. Pencils of lines. A pencil of lines in Pn is the set of lines
passing through a fixed point O and contained in a 2-plane π such that O ∈ π.
Assume that O has coordinates [y0, . . . , yn], and fix two points A,B ∈ π, different
from O. Let A = [a0, . . . , an], B[b0, . . . , bn]. Then a general line of the pencil is
generated by O and by a point of coordinates [. . . , λai + µbi, . . .]. Therefore the
Plücker coordinates of a general line of the pencil are pij = yi(λaj+µbj)−yj(λai+
µbi) = λqij + µq′ij , where qij , q

′
ij are the Plücker coordinates of the lines OA and

OB respectively. So the lines of the pencil are represented in the Grassmannian
by the points of a line. Conversely one can check that any line contained in a
Grassmannian of lines represents the lines of a pencil.

2. Lines a smooth quadric surface. Let Σ : x0x3− x1x2 = det

(
x0 x1

x2 x3

)
= 0

be the Segre quadric in P3. A line of the first ruling of Σ is characterised by a

constant ratio of the rows of the matrix

(
x0 x1

x2 x3

)
. Therefore it can be generated

by two points with coordinates [x0, x1, 0, 0], [0, 0, x0, x1]. The Plücker coordinates
of such a line are [0, x2

0, x0x1, x0x1, x
2
1, 0]. This describes a conic contained in
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G(1, 3). Similarly, the lines of the second ruling describe the points of another
conic, indeed the coordinates are [x2

0, 0, x0x2,−x0x2, 0, x
2
2]. These two conics are

disjoint and contained in disjoint planes.
3. One can prove that G(1, 3) contains two families of planes, and no linear

space of dimension > 2. The planes of one family correspond to stars of lines
in P3 (lines of P3 through a fixed point), while the planes of the second family
correspond to the lines contained in the planes of P3. The geometry of the lines
in P3 translates to give a decription of the geometry of the planes contained in
G(1, 3). Since on an algebraically closed field of characteristic 6= 2 two quadric
hypersurfaces are projectively equivalent if and only if they have the same rank,
one obtains a description of the geometry of all quadrics of maximal rank in P5.

Exercises to §10.
1. Using Ex. 5 of §6, prove that, if X ⊂ Pn, Y ⊂ Pm are irreducible projective

varieties, then X × Y is irreducible.

2. (*) Let X ⊂ An, Y ⊂ An. Show that X ∩ Y ' (X × Y )∩∆An , where ∆An

is the diagonal subvariety.

3. Let L,M,N be the following lines in P3:

L : x0 = x1 = 0,M : x2 = x3 = 0, N : x0 − x2 = x1 − x3 = 0.

Let X be the union of lines meeting L,M and N : write equations for X and
describe it: is it a projective variety? If yes, of what dimension and degree?

4. Let X,Y be quasi–projective varieties, identify X × Y with its image via

the Segre map. Check that the two projection maps X ×Y p1→ X, X ×Y p2→ Y are
regular. (Hint: use the open covering of the Segre variety by the Σij ’s.)

11. The dimension of an intersection.

Our aim in this section is to prove the following theorem:

11.1. Theorem. Let K be an algebraically closed field. Let X,Y ⊂ Pn be
quasi–projective varieties. Assume that X ∩ Y 6= ∅. Then if Z is any irreducible
component of X ∩ Y , then dimZ ≥ dimX + dimY − n.

The proof uses in an essential way the Krull’s principal ideal theorem (see for
instance Atiyah–MacDonald [1]).

The proof of Theorem 11.1 will be divided in three steps. Note first that we
can assume that X ∩Y intersects U0 ' An, so, possibly after restricting X and Y ,
we may work with closed subsets of the affine space. Put r = dimX, s = dimY .

Step 1. Assume that X = V (F ) is an irreducible hypersurface, with F ir-
reducible polynomial of K[x1, . . . , xn]. The irreducible components of X ∩ Y cor-
respond, by the Nullstellensatz, to the minimal prime ideals containing I(X ∩ Y )
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in K[x1, . . . , xn]. Let me recall that I(X ∩ Y )=
√
I(X) + I(Y )=

√
〈I(Y ), F 〉. So

those prime ideals are the minimal ones over 〈I(Y ), F 〉. They correspond bijec-
tively to minimal prime ideals containing 〈f〉 in O(Y ), where f is the regular
function on Y defined by F . We distinguish two cases:

- if Y ⊂ X = V (F ), then f = 0 and Y ∩X = Y ; s = dimY > r + s − n =
(n− 1) + s− n. So the theorem is true.

- if Y 6⊂ X, then f 6= 0, moreover f is not invertible, otherwise X ∩ Y = ∅:
hence the minimal prime ideals over 〈f〉 in O(Y ) have all height one, so for all Z,
irreducible component of X ∩ Y , dimZ = dimY − 1 = r + s− n (Theorem 7.7).

Step 2. Assume that I(X) is generated by n− r polynomials (where n− r is
the codimension of X): I(X) = 〈F1, . . . , Fn−r〉. Then we can argue by induction
on n − r: we first intersect Y with V (F1), whose irreducible components are
all hypersurfaces, and apply Step 1: all irreducible components of Y ∩ V (F1)
have dimension either s or s − 1. Then we intersect each of these components
with V (F2), and so on. We conclude that every irreducible component Z has
dimZ ≥ dimY − (n− r) = r + s− n.

Step 3. We use the isomorphism ψ : X ∩Y ' (X×Y )∩∆An (see Ex.2, §10).
Note that X × Y is irreducible by Proposition 6.11. ψ preserves the irreducible
components and their dimensions, so we consider instead of X and Y , the algebraic
sets X × Y and ∆An , contained in A2n. We have dimX × Y = r+ s (Proposition
7.10). ∆An is a linear subspace of A2n, so it satisfies the assumption of Step 2;
indeed it has dimension n in A2n and is defined by n linear equations. Hence, for
all Z we have: dimZ ≥ (r + s) + n− 2n = r + s− n. �

The above theorem can be seen as a generalization of the Grassmann relation
for linear subspaces. It is not an existence theorem, because it says nothing about
X ∩ Y being non–empty. But for projective varieties, the following more precise
version of the theorem holds:

11.2. Theorem. Let X,Y ⊂ Pn be projective varieties of dimensions r, s. If
r + s− n ≥ 0, then X ∩ Y 6= ∅.

Proof. Let C(X), C(Y ) be the affine cones associated to X and Y . Then C(X) ∩
C(Y ) is certainly non–empty, because it contains the origin O(0, 0, . . . , 0). Assume
we know that C(X) has dimension r + 1 and C(Y ) has dimension s + 1: then
by Theorem 11.1 all irreducible components Z of C(X) ∩ C(Y ) have dimension
≥ (r+ 1) + (s+ 1)− (n+ 1) = r+ s−n+ 1 ≥ 1, hence Z contains points different
from O. These points give rise to points of Pn belonging to X ∩ Y . It remains to
show:

11.3. Proposition. Let Y ⊂ Pn be a projective variety.

Then dimY = dimC(Y ) − 1. If S(Y ) denotes the homogeneous coordinate
ring, hence also dimY = dimS(Y )− 1.
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Proof. Let p : An+1 \ {O} → Pn be the canonical morphism. Let us recall that
C(Y ) = p−1(Y ) ∪ {O}. Assume that Y0 := Y ∩U0 6= ∅ and consider also C(Y0) =
p−1(Y0) ∪ {O}. Then we have:

C(Y0) = {(λ, λa1, . . . , λan) | λ ∈ K, (a1, . . . , an) ∈ Y0}.

So we can define a birational map between C(Y0) and Y0 × A1 as follows:

(y0, y1, . . . , yn) ∈ C(Y0)→ ((y1/y0, . . . , yn/y0), y0) ∈ Y0 × A1,

((a1, . . . , an), λ) ∈ Y0 × A1 → (λ, λa1, . . . , λan) ∈ C(Y0).

Therefore dimC(Y0) = dim(Y0 × A1) = dimY0 + 1. To conclude, it is enough to
remark that dimY = dimY0 and dimC(Y ) = dimC(Y0) = dimS(Y ). �

We observe that also C(Y ) and Y × P1 are birationally equivalent.

11.4. Corollaries.
1. If X,Y ⊂ P2 are projective curves over an algebraically closed field, then
X ∩ Y 6= ∅.
2. P1 × P1 is not isomorphic to P2.

Proof. 1. is a straightforward application of Theorem 11.2. To prove 2., assume
by contradiction that φ : P1 × P1 → P2 is an isomorphism. If L,L′ are skew lines
on P1 × P1, then φ(L), φ(L′) are rational disjoint curves of P2, which contradicts
1.

If X,Y ⊂ Pn are varieties of dimensions r, s, then r + s − n is called the
expected dimension of X ∩ Y . If all irreducible components Z of X ∩ Y have the
expected dimension, then we say that the intersection X ∩ Y is proper or that X
and Y intersect properly.

For example, two plane projective curves X,Y intersect properly if they don’t
have any common irreducible component. In this case, it is possible to predict the
number of points of intersections. Precisely, it is possible to associate to every
point P ∈ X ∩ Y a number i(P ), called the multiplicity of intersection of X and
Y at P , in such a way that

∑
P∈X∩Y i(P ) = dd′, where d is the degree of X and

d′ is the degree of Y . This result is known as Theorem of Bézout, and is the first
result of the branch of algebraic geometry called Intersection Theory. For a proof
of the Theorem of Bézout, see for instance the classical book of Walker [8], or the
book of Fulton on Algebraic Curves [5].

Let X be a closed subvariety of Pn (resp. of An) of codimension r. X is called
a complete intersection if Ih(X) (resp. I(X)) is generated by r polynomials.

Hence, if X is a complete intersection of codimension r, then X is certainly the
intersection of r hypersurfaces. Conversely, if X is intersection of r hypersurfaces,
then, by Theorem 11.1, using induction, we deduce that dimX ≥ n − r; even
assuming equality, we cannot conclude that X is a complete intersection, but
simply that I(X) is the radical of an ideal generated by r polynomials.
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11.5. Example. Let X ⊂ P3 be the skew cubic. The homogeneous ideal of X is
generated by the three polynomials F1, F2, F3, the 2× 2–minors of the matrix

M =

(
x0 x1 x2

x1 x2 x3

)
,

which are linearly independent polynomials of degree 2. Note that Ih(X) does not
contain any linear polynomial, because X is not contained in any hyperplane, and
that the homogeneous component of minimal degree 2 of Ih(X) is a vector space
of dimension 3. Hence Ih(X) cannot be generated by two polynomials, i.e. X is
not a complete intersection.

Nevertheless, X is the intersection of the surfaces VP (F ), VP (G), where

F = F1 =

∣∣∣∣x0 x1

x1 x2

∣∣∣∣ and G =

∣∣∣∣∣∣
x0 x1 x2

x1 x2 x3

x2 x3 x0

∣∣∣∣∣∣ .
Clearly F,G ∈ Ih(X) so X ⊂ VP (F ) ∩ VP (G). Conversely, observe that G =
x0F − x3(x0x3 − x1x2) + x2(x1x3 − x2

2). If P [x0, . . . , x3] ∈ VP (F ) ∩ VP (G), then
P is a zero of x0x

2
3 − 2x1x2x3 + x3

2, and therefore also of

x2(x0x
2
3 − 2x1x2x3 + x3

2) = x2
1x

2
3 − 2x1x

2
2x3 + x4

2 = (x1x3 − x2
2)2 = F 2

3 .

Hence P is a zero also of F3 = x1x3−x2
2. So P annihilates x3(x0x3−x1x2) = x3F2.

If P satisfies the equation x3 = 0, then it satisfies also x2 = 0 and x1 = 0, therefore
P = [1, 0, 0, 0] ∈ X. If x3 6= 0, then P ∈ VP (F1, F2, F3) = X.

The geometric description of this phenomenon is that the skew cubic X is the
set-theoretic intersection of a quadric and a cubic, which are tangent along X, so
their intersection is X counted with multiplicity 2.

This example motivates the following definition: X is a set–theoretic complete
intersection if codimX = r and the ideal of X is the radical of an ideal generated by
r polynomials. It is an open problem if all irreducible curves of P3 are set–theoretic
complete intersections. For more details, see [4].

Exercises to §11.
1. Let X ⊂ P2 be the union of three points not lying on a line. Prove that

the homogeneous ideal of X cannot be generated by two polynomials.

12. Complete varieties.

We work over an algebraically closed field K.
12.1. Definition. Let X be a quasi–projective variety. X is complete if, for
any quasi–projective variety Y , the natural projection on the second factor p2 :
X × Y → Y is a closed map. (Note that both projections p1, p2 are morphisms:
see Exercise 4 to §10.)
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Example. The affine line A1 is not complete: let X = Y = A1, p2 :
A1 × A1 = A2 → A1 is the map such that (x1, x2)→ x2. Then Z := V (x1x2 − 1)
is closed in A2 but p2(Z) = A1 \ {O} is not closed.

12.2. Proposition. (i) If f : X → Y is a regular map and X is complete, then
f(X) is a closed complete subvariety of Y .

(ii) If X is complete, then all closed subvarieties of X are complete.

Proof. (i) Let Γf ⊂ X×Y be the graph of f : Γf = {(x, f(x)) | x ∈ X}. It is clear
that f(X) = p2(Γf ), so to prove that f(X) is closed it is enough to check that Γf is
closed in X×Y . Let us consider the diagonal of Y : ∆Y = {(y, y) | y ∈ Y } ⊂ Y ×Y .
If Y ⊂ Pn, then ∆Y = ∆Pn∩(Y ×Y ), so it is closed because ∆Pn is the closed subset
defined in Σn,n by the equations wij − wji = 0, i, j = 0, . . . , n. There is a natural
map f ×1Y : X×Y → Y ×Y , (x, y)→ (f(x), y), such that (f ×1Y )−1(∆Y ) = Γf .
It is easy to see that f × 1Y is regular, so Γf is closed, so also f(X) is closed.

Let now Z be any variety and consider p2 : f(X) × Z → Z and the regular
map f × 1Z : X × Z → f(X)× Z. There is a commutative diagram:

X × Z p′2−→ Z
↓ f×1Z ↗ p2

f(X)× Z

If T ⊂ f(X)× Z, then (f × 1Z)−1(T ) is closed and p2(T ) = p′2((f × 1Z)−1(T )) is
closed because X is complete. We conclude that f(X) is complete.

(ii) Let T ⊂ X be a closed subvariety and Y be any variety. We have to prove
that p2 : T × Y → Y is closed. If Z ⊂ T × Y is closed, then Z is closed also in
X × Y , hence p2(Z) is closed because X is complete. �

12.3. Corollaries.
1. If X is a complete variety, then O(X) ' K.
2. If X is an affine complete variety, then X is a point.

Proof. 1. If f ∈ O(X), f can be interpreted as a regular map f : X → A1. By
Proposition 12.2, (i), f(X) is a closed complete subvariety of A1, which is not
complete. Hence f(X) has dimension < 1 and is irreducible, hence it is a point,
so f ∈ K.

2. By 1., O(X) ' K. But O(X) ' K[x1, . . . , xn]/I(X), hence I(X) is
maximal. By the Nullstellensatz, X is a point. �

12.4. Theorem. Let X be a projective variety. Then X is complete.

Proof. (sketch, see Šafarevič [7].)
1. It is enough to prove that p2 : Pn × Am → Am is closed, for all n,m. This

can be observed by using the local character of closedness and the affine open
coverings of quasi–projective varieties.
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2. If x0, . . . , xn are homogeneous coordinates on Pn and y1, . . . , ym are coor-
dinates on Am, then any closed subvariety of Pn×Am can be characterised as the
set of common zeroes of a set of polynomials in the variables x0, . . . , xn, y1, . . . , ym,
homogeneous in the first group of variables x0, . . . , xn.

3. Let Z ⊂ Pn × Am be closed. Then Z is the set of solutions of a system of
equations

{Gi(x0, . . . , xn; y1, . . . , ym) = 0, i = 1, . . . , t

where Gi is homogeneous in the x’s. A point P (y1, . . . , ym) is in p2(Z) if and only
if the system

{Gi(x0, . . . , xn; y0, . . . , ym) = 0, i = 1, . . . , t

has a solution in Pn, i.e. if the ideal of K[x0, . . . , xn] generated by G1(x; y),. . . ,
Gt(x; y) has at least one zero in Pn. Hence

p2(Z) = {(y1, . . . , ym)| ∀ d ≥ 1 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d} =

=
⋂
d≥1

{(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}.

Let {Mα}α=1,...,(n+d
d ) be the set of the monomials of degree d in K[x0, . . . , xn]; let

di = deg Gi(x; y); let {Nβ
i } be the set of the monomials of degree d−di; let finally

Td = {(y1, . . . , ym)| 〈G1(x; y), . . . , Gt(x; y)〉 6⊃ K[x0, . . . , xn]d}.
Then P (y1, . . . , ym) 6∈ Td if and only if Mα =

∑
iGi(x; y)Fi,α(x0, . . . , xn), for

all α and for suitable polynomials Fi,α homogeneous of degree d− di. So P 6∈ Td
if and only if, for all index α, Mα is a linear combination of the polynomials
{Gi(x; y)Nβ

i }, i.e. the matrix A of the coefficients of the polynomials Gi(x; y)Nβ
i

with respect to the basis {Mα} has maximal rank
(
n+d
d

)
. So Td is the set of zeroes

of the minors of a fixed order of the matrix A, hence it is closed. �

12.5. Corollary. Let X be a projective variety. Then O(X) ' K.

12.6. Corollary. Let X be a projective variety, φ : X → Y ⊂ Pn be any regular
map. Then φ(X) is a projective variety. In particular, if X ' Y , then Y is
projective.

In algebraic terms, Theorem 12.4 can be seen as a result in Elimination The-
ory. Indeed it can be reformulated by saying that, given a system of algebraic
equations in two sets of variables, x0, . . . , xn and y1, . . . , ym, homogeneous in the
first ones, it is possible to find another system of algebraic equations only in
y1, . . . , ym, such that ȳ1, . . . , ȳm is a solution of the second system if and only if
there exist x̄0, . . . , x̄n, that, together with ȳ1, . . . , ȳm, are a solution of the first
system. In other words, it is possible to eliminate a set of homogeneous variables
from any system of algebraic equations.



72 Mezzetti

12.7. Example. Let S = K[x0, . . . , xn]. Let d ≥ 1 be an integer number and
consider Sd, the vector space of homogeneous polynomials of degree d. As an
application of Theorem 12.4, we shall prove that the set of (proportionality classes
of) reducible polynomials is a projective algebraic set in P(Sd).

We denote by X ⊂ P(Sd) the set of reducible polynomials. For any integer
k, 0 < k < d, let Xk ⊆ X be the set of polynomials of the form F1F2 with
degF1 = k, degF2 = d−k. Then X =

⋃d−1
k=1Xk. Let fk : P(Sk)×P(Sd−k)→ P(Sd)

be the multiplication of polynomials, i.e. fk([F1], [F2]) = [F1F2] . fk is clearly a
regular map, and its image is Xk = Xd−k. Since the domain is a projective
variety, and precisely a Segre variety, it follows from Theorem 12.4 that Xk is also
projective.

In the special case d = 2, the quadratic polynomials, the equations of X = X1

are the minors of order 3 of the matrix associated to the quadric.

13. The fibres of a morphism.

In this section we will see the notion of finite morphism, the Theorem on the
dimension of the fibres of a morphism, and an application about the existence of
lines on a hypersurface of given degree in a projective space.

I’m only giving a sketch. For the proofs, see Atiyah-MacDonald [1] for the
algebraic part, and Šafarevič, [7] for the geometric part.

Let A ⊆ B be rings, A subring of B. B is called an integral extension of B if
any b ∈ B is integral over A.

13.1. Theorem. Let x ∈ B, let A[x] ⊆ B be the A-algebra generated by x.
The following are equivalent:
1) x is integral over A;
2) A[x] is a finite A-module;
3) there exists a subring C ⊂ B, with A[x] ⊂ C, such that C is a finite

A-module.

Proof. Atiyah-MacDonald.

13.2. Corollaries. Let A ⊆ B.
1. Let b1, . . . , bn ∈ B be integral over A. Then A[b1, . . . , bn] is a finite A-

module.
2. Let C = {b ∈ B | b integral over A}: it is a subring of B containing A,

called the integral closure of A in B. If C = A, then A is called integrally closed
in B.

3. Transitivity: Let A ⊂ B ⊂ C. If B is integral extension of A and C is
integral extension of B, then C is integral extension of A.

4. Let C be the integral closure of A in B. Then C is integrally closed in B.
5. Assume that A and B are both integral domains, and B is integral extension

of A. Then A is a field if and only if B is a field.
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6. Property of Lying Over - LO: let B be integral extension of A. If P ⊂ A
is a prime ideal, then there exists a prime ideal Q of B such that P = Q∩A.

We give now the geometric interpretation of the previous notions.

Let f : X → Y be a dominant morphism of affine varieties. Then the co-
morphism f∗ : K[Y ] → K[X] is injective: we will identify K[Y ] with its image
f∗K[Y ] ⊂ K[X].

13.3. Definition. f is a finite morphism if K[X] is an integral extension of K[Y ].

Finite morphisms enjoy the following properties, which are consequences of
Corollaries 13.2.

13.4. Proposition.

1. The composition of finite morphisms is a finite morphism;

2. let y ∈ Y , then f−1(y) is a finite set;

3. Finite morphisms are surjective, i.e. f−1(y) is non-empty for any y ∈ Y ;

4. Finite morphisms are closed maps.

An example of non-finite morphism is the projection V (xy−1)→ A1. Instead
the projection p2 : V (y − x2)→ A1 is finite.

One can prove that being a finite morphism is a local property, in the following
sense: let f : X → Y be a morphism of affine varieties. Then f is finite if and
only if any y ∈ Y has an affine open neighbourhood V , such that U := f−1(V ) is
affine, and the restriction f |: U → V is a finite morphism. This property allows
to give the definition of finite morphisms between arbitrary varieties. They always
have the property that all the fibres are finite, where we call fibres of a morphism
the inverse images of the points of the codomain.

13.5. Examples.

1. Let X ⊂ Pn be a closed algebraic set, let Λ ⊂ Pn be a linear subspace
of dimension d such that X ∩ Λ = ∅. Then the restriction of the projection
πΛ : X → Pn−d−1 defines a finite morphism from X to πΛ(X).

2. Let X ⊂ Pn be a closed algebraic set and F0, . . . , Fr be homogeneous
polynomials of the same degree without any common zero on X. Then φ : X → Pr
defined by the polynomials F0, . . . , Fr is a finite morphism to the image.

3. Geometric interpretation of the Normalisation Lemma: Let X ⊂ An be
an affine variety of dimension d. Then there exists a finite morphism X → Ad.
Moreover it can be taken to be a projection.

For general morphism, the following theorem gives informations about the
behaviour of the fibres.
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13.6. Theorem on the dimension of the fibres.

Let f : X → Y be a surjective morphism of algebraic sets. Let n = dimX,
m = dimY . Then:

1. n ≥ m;

2. for any y ∈ Y , and for any irreducible component F of f−1(y), dimF ≥
n−m;

3. there exists a non-empty open subset U ⊂ Y , such that dim f−1(y) = n−m
for any y ∈ U .

As a consequence of this theorem, it is possible to prove the following useful
proposition:

13.7. Proposition. Let f : X → Y be a surjective morphism of projective
algebraic sets. Assume that Y is irreducible and that all fibres of f are ireducible
and of the same dimension, then also X is irreducible.

As an application, we will study the existence of lines on hypersurfaces of
fixed degree. Let S = K[x0, . . . , xn], let d ≥ 1 be an integer number, then P(Sd)
is a projective space of dimension N =

(
n+d
d

)
− 1, parametrising the hypersur-

faces of degree d in Pn. Among them there are reducible and even non-reduced
hypersurfaces (i.e. those corresponding to non square-free polynomials). Let us
introduce the incidence correspondence line-hypersurface as follows. We consider
the product variety G(1, n)×P(Sd), whose points are the pairs (`, [F ]), where ` is
a line in Pn and F ∈ Sd, that we can identify with the hypersurface VP (F ). The
incidence variety in G(1, n)× P(Sd) is Γd := {(`, [F ]) | ` ⊂ VP (F )}.

13.8. Proposition. Γd is a projective algebraic set, i.e. it is the set of zeroes
of a set of bihomogeneous polynomials in the Plücker coordinates pij and in the
coefficients ai0...in of F .

Proof. Let P = (pij) be the skew-symmetric matrix, whose elements are the co-
ordinates of a line `: it has rank two and from Proposition 10.13 it follows that
each non-zero row of P contains the coordinates of a point of `. So the rows of P
are a system of generators of a vector plane W , such that ` = P(W ). Hence the
coordinates of any point of ` are linear combinations of the rows of P , of the form
(x0 = Σiλip0i, . . . , xn = Σiλipni). A line ` is contained in VP (F ) if and only if
the equation F (Σiλip0i, . . . ,Σiλipni) = 0 is an identity in λ0, . . . , λn. Therefore,
Γd is the set of common zeroes of the coefficients of the monomials of degree d in
λ0, . . . , λn: they are homogeneous of degree 1 in the coefficients of F and of degree
d in the pij ’s. �
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13.8. Example. Let n = d = 3, F = x3
0 − x1x2x3 ∈ S3. We put

x0 = λ1p01 + λ2p02 + λ3p03

x1 = −λ0p01 + λ2p12 + λ3p13

x2 = −λ0p02 − λ1p12 + λ3p23

x3 = −λ0p03 − λ1p13 − λ2p23

then we replace in F , and we get the identity (λ1p01 +λ2p02 +λ3p03)3− (−λ0p01 +
λ2p12 +λ3p13)(−λ0p02−λ1p12 +λ3p23)(−λ0p03−λ1p13−λ2p23) = 0. By equating
to zero the coefficients of the 20 monomials of degree 3 in λ0, . . . , λ3 we get the
equations representing the lines contained in VP (F ).

As a matter of fact, for this particular surface finding the lines contained in
it is particularly simple. Indeed, we can distinguish the lines contained in the
hyperplane “at infinity” from the lines which are projective closure of a line in A3.
The first ones are contained in x0 = 0, and it is clear that there are only three of
them: x0 = x1 = 0, x0 = x2 = 0, x0 = x3 = 0. To find the others we dehomogenise
F and get the equation x1x2x3 − 1 = 0, and consider the parametrisation of a
general line in A3: xi = ait + bi, i = 1, 2, 3. By substituting, we immediately see
that there are no solutions. We conclude that the surface contains only three lines.

We consider now the restrictions to Γd of the two projections, and we get
φ1 : Γd → G(1, n), φ2 : Γd → P(Sd). We have:

1. φ1(Γd) = G(1, n), because any line ` is contained in some hypersurface
of degree d; up to a change of coordinates, we can assume that ` : x0 = x1 =
. . . = xn−2 = 0. So ` ⊂ VP (F ) if and only if F (0, . . . , 0, xn−1, xn) ≡ 0, if and
only if the coefficients of the monomials containing only xn−1, xn vanish, i.e. F is
of the form x0G0 + . . . + xn−2Gn−2. So φ−1

1 (`) is a linear subspace of dimension
N − (d+ 1). In particular we have that the fibres of φ1 are all irreducible and of
the same dimension. By applying Theorem 13.6, we obtain that Γd is irreducible
of dimension dimG(1, n) + dimφ−1

1 (`) = 2(n− 1) +N − (d+ 1).
2. Consider now φ2 : Γd → P(Sd) = PN . If dim Γd > N , then φ2 cannot be

surjective. This happens if

2(n− 1) +N − (d+ 1) < N if and only if d > 2n− 3.

We have proved the following theorem.

13.9. Theorem. If d > 2n − 3, there is an open non-empty subset U ⊂ P(Sd),
such that if [F ] ∈ U then the hypersurface VP (F ) does not contain any line; shortly,
a “general” hypersurface of degree d in Pn does not contain any line. The hyper-
surfaces containing a line form a proper closed subset in P(Sd).

13.10. Example. Let n = 3, the case of surfaces in P3. Theorem 13.9 says
that a general surface of degree ≥ 4 does not contain lines. Let us analyse the
cases d = 1, 2, 3.
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• d = 1: the surface is a plane, the lines in a plane form a P2.

• d = 2: the surface is a quadric, any quadric contains lines, and precisely, if
its rank is 4, it contains two families of dimension 1 parametrised by two conics in
G(1, 3); if the rank is 3, the quadric is a cone, and it contains a family of dimension
1 of lines, parametrised by a conic in G(1, 3). In both cases of rank 3, 4 the fibres
of φ2 have dimension 1. If the rank is 2 or 1, the quadric is a pair of distinct planes
or one plane with multiplicity 2, and the fibre of φ2 has dimension 2.

• d = 3: in this case N = 19 = dim Γd. Two cases can occur: either φ2

is surjective, and a general fibre has dimension 0, or it is not surjective, so if a
cubic surface contains a line, it contains by consequence infinitely many lines. But
in Example 13.8 we have seen an explicit example of a cubic surface containing
finitely many lines; this shows that the first possibility occurs, i.e. a general cubic
surface contains finitely many lines.

It is a classical fact that a general cubic contains exactly 27 lines, whose con-
figuration is completely described (see for instance Hartshorne [3]). In particular,
among these 27 lines there are many pairs of skew lines. It is a nice application of
the theory we have developed so far to prove that such a cubic surface is rational.

13.11. Theorem. Let S ⊂ P3 be a cubic surface containing two skew lines. Then
S is rational.

Proof. Let `, `′ be two skew lines contained in S. For any point P ∈ P3, P /∈ `∪ `′,
there is exactly one line rP passing through P and meeting both ` and `′: rP
is the intersection of the two planes passing through P and containing ` and `′

respectively. So we can consider the rational map f : P3 99K `× `′ ' P1×P1, such
that f(P ) is the pair of points of intersection of rP with ` and `′. We consider
now the restriction f̄ of f to S, and we get a birational map. Indeed, for any pair
of points x ∈ ` and x′ ∈ `′, the line joining x and x′, if not contained in S, meets
S in a third point. Since not all lines meeting ` and `′ can be contained in S,
this defines the rational inverse of f̄ . Therefore S is birational to P1 × P1, that is
birational to P2. By transitivity we conclude that S is rational. �

14. The tangent space.

We define the tangent space TX,p at a point P of an affine variety X as the union
of the lines passing through P and “ touching” X at P . Then we will find a “local”
characterization of TX,p, only depending on the local ring OX,p: this will allow to
define the tangent space at a point of any quasi–projective variety.

Assume first that X ⊂ An is closed and P = O = (0, . . . , 0). Let L be a line
through P : if A(a1, . . . , an) is another point of L, then a general point of L has
coordinates (ta1, . . . , tan), t ∈ K. If I(X) = (F1, . . . , Fm), then the intersection
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X ∩ L is determined by the following system of equations in the indeterminate t:

F1(ta1, . . . , tan) = . . . = Fm(ta1, . . . , tan) = 0.

The solutions of this system of equations are the roots of the greatest common
divisor G(t) of the polynomials F1(ta1, . . . , tan), . . . , Fm(ta1, . . . , tan) in K[t]. We
may factorize G(t) as G(t) = cte(t−α1)e1 . . . (t−αs)es , where e > 0 if and only if
P ∈ X ∩ L, and α1, . . . , αs 6= 0. The number e is by definition the intersection
multiplicity at P of X and L. If G(t) is identically zero, then L ⊂ X and the
intersection multiplicity is, by definition, +∞.

Note that the polynomial G(t) doesn’t depend on the choice of the generators
F1, . . . , Fm of I(X), but only on the ideal I(X) and on L.

14.1. Definition. The line L is tangent to the variety X at P if the inter-
section multiplicity of L and X at P is at least 2 (in particular if L ⊂ X). The
tangent space to X at P is the union of the lines that are tangent to X at P ;
it is denoted TP,X .

We will see now that TP,X is an affine subspace of An. Assume that P ∈ X:
then the polynomials Fi may be written in the form Fi = Li + Gi, where Li is
a homogeneous linear polynomial (possibly zero) and Gi contains only terms of
degree ≥ 2. Then

Fi(ta1, . . . , tan) = tLi(a1, . . . , an) +Gi(ta1, . . . , tan),

where the last term is divisible by t2. So L is tangent to X at P if and only if
Li(a1, . . . , an) = 0 for all i = 1, . . . ,m.

Therefore a point A(a1, . . . , an) belongs to TP,X if and only if

L1(a1, . . . , an) = . . . = Lm(a1, . . . , an) = 0.

This shows that TP,X is a linear subspace of An, whose equations are the linear
components of the equations defining X.

14.2. Examples.
(i) TO,An = An, because I(An) = (0).
(ii) If X is a hypersurface, I(X) = (F ), F = L + G, then TO,X = V (L):

so TO,X is either a hypersurface if L 6= 0, or the whole space An if L = 0. For
instance, if X is the affine plane cuspidal cubic V (x3 − y2) ⊂ A2, TO,X = A2.

Assume now that P ∈ X has coordinates (y1, . . . , yn). With a linear trans-
formation we may translate P to the origin (0, . . . , 0), taking as new coordinates
functions on An x1 − y1, . . . , xn − yn. This corresponds to considering the K-
isomorphism K[x1, . . . , xn] −→ K[x1 − y1, . . . , xn − yn], which takes a polynomial
F (x1, . . . , xn) to its Taylor expansion

G(x1 − y1, . . . , xn − yn) = F (y1, . . . , yn) + dPF + d
(2)
P F + . . . ,
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where d
(i)
P F denotes the ith differential of F at P : it is a homogeneous polynomial

of degree i in the variables x1 − y1, . . . , xn − yn. In particular the linear term is

dPF =
∂F

∂x1
(P )(x1 − y1) + . . .+

∂F

∂xn
(P )(xn − yn).

We get that, if I(X) = (F1, . . . , Fm), then TP,X is the linear subspace of An defined
by the equations

dPF1 = . . . = dPFm = 0.

The affine space An, which may identified with Kn, has a natural structure
of K-vector space with origin P , so in a natural way TP,X is a vector subspace
(with origin P ). The functions x1− y1, . . . , xn− yn form a basis of the dual space
(Kn)∗ and their restrictions generate T ∗P,X . Note moreover that dimT ∗P,X = k
if and only if n − k is the maximal number of polynomials linearly independent
among dPF1, . . . , dPFm. If dPF1, . . . , dPFn−k are these polynomials, then they
form a base of the orthogonal T⊥P,X of the vector space TP,X in (Kn)∗, because
they vanish on TP,X .

Let us define now the differential of a regular function. Let f ∈ O(X) be a
regular function on X. We want to define the differential of f at P . Since X is
closed in An, f is induced by a polynomial F ∈ K[x1, . . . , xn] as well as by all
polynomials of the form F + G with G ∈ I(X). Fix P ∈ X: then dP (F + G) =
dPF + dPG so the differentials of two polynomials inducing the same function f
on X differ by the term dPG with G ∈ I(X). By definition, dPG is zero along
TP,X , so we may define dpf as a regular function on TP,X , the differential of f at
P : it is the function on TP,X induced by dPF . Since dPF is a linear combination
of x1 − y1, . . . , xn − yn, dpf can also be seen as an element of T ∗P,X .

There is a natural map dp : O(X) → T ∗P,X , which sends f to dpf . Because
of the rules of derivation, it is clear that dP (f + g) = dP f + dP g and dP (fg) =
f(P )dP g + g(P )dP f . In particular, if c ∈ K, dp(cf) = cdP f . So dp is a linear
map of K-vector spaces. We denote again by dP the restriction of dP to IX(P ),
the maximal ideal of the regular functions on X which are zero at P . Since clearly
f = f(P )+(f−f(P )) then dP f = dP (f−f(P )), so this restriction doesn’t modify
the image of the map.

14.3. Proposition. The map dP : IX(P ) → T ∗P,X is surjective and its kernel is

IX(P )2. Therefore T ∗P,X ' IX(P )/IX(P )2 as K-vector spaces.

Proof. Let φ ∈ T ∗P,X be a linear form on TP,X . φ is the restriction of a linear
form on Kn: λ1(x1 − y1) + . . .+ λn(xn − yn), with λ1, . . . , λn ∈ K. Let G be the
polynomial of degree 1 λ1(x1− y1) + . . .+ λn(xn− yn): the function g induced by
G on X is zero at P and coincides with its own differential, so dp is surjective.
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Let now g ∈ IX(P ) such that dpg = 0, g induced by a polynomial G. Note that
dPG may be interpreted as a linear form on Kn which vanishes on TP,X , hence as
an element of T⊥P,X . So dPG = c1dpF1+. . .+cmdpFm (c1, . . . , cm suitable elements
of K). Let us consider the polynomial G− c1F1− . . .− cmFm: since its differential
at P is zero, it doesn’t have any term of degree 0 or 1 in x1 − y1, . . . , xn − yn, so
it belongs to I(P )2. Since G− c1F1 − . . .− cmFm defines the function g on X, we
conclude that g ∈ IX(P )2. �

14.4. Corollary. The tangent space TP,X is isomorphic to (IX(P )/IX(P )2)∗ as
an abstract K-vector space. �

14.5. Corollary. If φ : X → Y is an isomorphism of affine varieties and P ∈ X,
then the tangent spaces TP,X and Tφ(P ),Y are isomorphic.

Proof. φ induces the comorphism φ∗ : O(Y ) → O(X), which is an isomorphism
such that φ∗IY (φ(P )) = IX(P ) and φ∗IY (φ(P ))2 = IX(P )2. So there is an induced
homomorphism

IY (φ(P ))/IY (φ(P ))2 → IX(P )/IX(P )2

which is an isomorphism of K-vector spaces. By dualizing we get the claim. �

The above map from TP,X to Tφ(P ),Y is called the differential of φ at P and
is denoted by dPφ.

Now we would like to find a “more local” characterization of TP,X . To this
end we consider the local ring of P in X: OP,X . We recall that O(X) has the
natural map to OP,X , which is the localization O(X)IX(P ). It is natural to extend
the map dP : O(X)→ T ∗P,X to OP,X setting

dP (
f

g
) =

g(P )dP f − f(P )dP g

g(P )2
.

As in the proof of Proposition 14.3 one proves that the map dP : OP,X → T ∗P,X
induces an isomorphismMP,X/M2

P,X → T ∗P,X , whereMP,X is the maximal ideal

of OP,X . So by duality we have: TP,X ' (MP,X/M2
P,X)∗. This proves that the

tangent space TP,X is a local invariant of P in X.

14.6. Definition. Let X be any quasi-projective variety, P ∈ X. The Zariski
tangent space of X at P is the vector space (MP,X/M2

P,X)∗.

It is an abstract vector space, but if X ⊂ An is closed, taking the dual of
the comorphism associated to the embedding of X in An, we have an embedding
of TP,X into TP,An = An. If X ⊂ Pn and P ∈ Ui = An, then TP,X ⊂ Ui: its
projective closure is called the embedded tangent space to X at P .
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As we have seen the tangent space TP,X is invariant by isomorphism. In
particular its dimension is invariant. If X ⊂ An is closed, I(X) = (F1, . . . , Fm),
then dimTP,X = n − r, where r is the maximal number of linearly independent
elements in the set {dPF1, . . . , dpFm}.

Since dPFi = ∂Fi

∂x1
(P )(x1 − y1) + . . . + ∂Fi

∂xn
(P )(xn − yn), r is the rank of the

following m× n matrix, the Jacobian matrix of X at P :

J(P ) =

 ∂F1

∂x1
(P ) . . . ∂F1

∂xn
(P )

. . . . . . . . .
∂Fm

∂x1
(P ) . . . ∂Fm

∂xn
(P )

 .

The generic Jacobian matrix of X is instead the following matrix with entries
in O(X):

J =

 ∂F1

∂x1
. . . ∂F1

∂xn

. . . . . . . . .
∂Fm

∂x1
. . . ∂Fm

∂xn

 .

The rank of J is ρ when all minors of order ρ + 1 are functions identically
zero on X, while some order ρ minor is different from zero at some point. Hence,
for all P ∈ X rk J(P ) ≤ ρ, and rk J(P ) < ρ if and only if all minors of order ρ of
J vanish at P . It is then clear that there is a non-empty open subset of X where
dimTP,X is minimal, equal to n− ρ, and a proper (possibly empty) closed subset
formed by the points P such that dimTP,X > n− ρ.

14.7. Definition. The points of an irreducible variety X for which dimTP,X =
n− ρ (the minimal) are called smooth or non-singular or simple points of X. The
remaining points are called singular (or multiple). X is called smooth if all its
points are smooth.

If X is quasi-projective, the same argument may be repeated for any affine
open subset.

14.8. Example. Let X ⊂ An be the irreducible hypersurface V (F ). Then
J = ( ∂F∂x1

. . . ∂F∂xn
) is a row matrix. So rk J = 0 or 1. If rk J = 0, then ∂F

∂xi
= 0 in

O(X) for all i. So ∂F
∂xi
∈ I(Y ) = (F ). Since the degree of ∂F

∂xi
is ≤ degF − 1, it

follows that ∂F
∂xi

= 0 in the polynomial ring. If the characteristic of k is zero this

means that F a constant: a contradiction. If char K = p, then F ∈ K[xp1, . . . , x
p
n];

since K is algebraically closed, then F = Gp for a suitable G, but this is impossible
because F is irreducible. So always rk J = 1 = ρ. Hence for P general in X,
i.e. for P varying in a suitable non-empty open subset, dimTP,X = n − 1. For
some particular points, the singular points of X, we can find dimTP,X = n, i.e.
TP,X = An.

So in the case of a hypersurface dimTP,X ≥ dimX for every point P in X,
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and equality holds in the smooth locus of X. In general, one reduces to the case
of hypersurfaces using the following theorem:

14.9. Theorem. Every quasi-projective irreducible variety X is birational to a
hypersurface in some affine space.

Proof. We observe that we can reduce the proof to the case in which X is affine,
closed in An. Let m = dimX. We have to prove that the field of rational functions
K(X) is isomorphic to a field of the form K(t1, . . . , tm+1), where t1, . . . , tm+1

satisfy only one non-trivial relation F (t1, . . . , tm+1) = 0, where F is an irreducible
polynomial with coefficients in K. This will follow from the “Abel’s primitive
element Theorem” concerning extensions of fields. To state it, we need some
preliminaries.

Let K ⊂ L be an extension of fields. Let a ∈ L be algebraic over K, and let
fa ∈ K[x] be its minimal polynomial: it is irreducible and monic. Let E be the
splitting field of fa.

14.10. Definition. An element a, algebraic over K, is separable if fa does not
have any multiple root in E, i.e. if fa and its derivative f ′a don’t have any common
factor of positive degree. Otherwise a is inseparable. If K ⊂ L is an algebraic
extension of fields, it is called separable if any element of L is separable.

In view of the fact that fa is irreducible, and that the GCD of two poly-
nomials is independent of the field where one considers the coefficients, if a is
inseparable, then f ′a is the zero polynomial. If char K = 0, this implies that
fa is constant, which is a contradiction. So in characteristic 0, any algebraic
extension is separable. If char K = p > 0, then fa ∈ K[xp], and fa is called
an inseparable polynomial. In particular algebraic inseparable elements can ex-
ist only in positive characteristic. On the other hand, if char (K) = p > 0 and
K is algebraically closed, is fa = a0 + a1x

p + a2x
2p + . . . + akx

kp, then all co-
efficients are p-th powers in K, i.e. ai = bpi for suitable elements bi; therefore
fa = bp0 + bp1x

p + bp2x
2p + . . . + bpkx

kp = (b0 + b1x + b2x
2 + . . . + bkx

k)p, and this
contradicts the irreducibility of fa.

14.11. Abel’s primitive element Theorem Let K ⊆ L = K(y1, . . . , ym) be
an algebraic finite extension. If L is a separable extension, then there exists α ∈ L,
called a primitive element of L, such that L = K(α) is a simple extension.

We can now prove Theorem 14.9. The field of rational functions of X is of
the form K(X) = Q(K[X]) = K(t1, . . . , tn), where t1, . . . , tn are the coordinate
functions on X and tr.d.K(X)/K = m. Possibly after renumbering them, we can
assume that the first m coordinate functions t1, . . . , tm are algebraically indepen-
dent over K, and K(X) is an algebraic extension of L := K(t1, . . . , tm). So in
our situation we can apply Theorem 14.11: there exists a primitive element α
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such that K(X) = L(α) = K(t1 . . . , tm, α). So there exists an irreducible polyno-
mial f ∈ L[x] such that K(X) = L[x]/(f). Multiplying f by a suitable element of
K[t1, . . . , tm], invertible in L, we can eliminate the denominator of f and replace f
by a polynomial g ∈ K[t1, . . . , tm, x] ⊂ L[x]. Now K[t1, . . . , tm, x]/(g) is contained
in L[x](g) = K(X), and its quotient field is again K(X). But K[t1, . . . , tm, x]/(g)
is the coordinate ring of the hypersurface Y ⊂ Am+1 of equation g = 0. Moreover
X and Y are birationally equivalent. This concludes the proof. �

One can show that the coordinate functions on Y , t1, . . . , tm+1, can be chosen
to be linear combinations of the original coordinate functions on X: this means
that Y is obtained as a suitable birational projection of X.

14.12. Theorem. The dimension of the tangent space at a non-singular point of
an irreducible variety X is equal to dimX.

Proof. It is enough to prove the claim under the assumption that X is affine. Let
Y be an affine hypersurface birational to X (existing by the previous theorem) and
φ : X 99K Y be a birational map. There exist open non-empty subsets U ⊂ X and
V ⊂ Y such that φ : U → Y is an isomorphism. The set of smooth points of Y is an
open subset W of Y such that W∩V is non-empty and dimTP,Y = dimY = dimX
for all P ∈W∩V . But φ−1(W∩V ) ⊂ U is open non-empty and dimTQ,X = dimX
for all Q ∈ φ−1(W ∩ V ). This proves the theorem. �

We would like now to study a variety X in a neighbourhood of a smooth
point. We have seen that P is smooth for X if and only if dimTP,X = dimX.
Assume X affine: in this case the local ring of P in X is OP,X ' O(X)IX(P ). But
by Theorem 7.7 we have: dimOP,X = htMP,X = htIX(P ) = dimO(X) = dimX
and dimTP,X = dimKMP,X/M2

P,X . Therefore P is smooth if and only if

dimKMP,X/M2
P,X = dimOP,X

(the first one is a dimension as K-vector space, the second one is a Krull dimen-
sion). By the Nakayama’s Lemma a base of MP,X/M2

P,X corresponds bijectively
to a minimal system of generators of the ideal MP,X (observe that the residue
field of OP,X is K). Therefore P is smooth for X if and only ifMP,X is minimally
generated by r elements, where r = dimX, in other words if and only if OP,X is
a regular local ring.

For example, if X is a curve, P is smooth if and only if TP,X has dimension
1, i.e. MP,X is principal: MP,X = (t). This means that the equation t = 0 only
defines the point P , i.e. P has one local equation in a suitable neighborhood of P .

Let P be a smooth point of X and dimX = n. Functions u1, . . . , un ∈ OP,X
are called local parameters at P if u1, . . . , un ∈MP,X and their residues ū1, . . . , ūn
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in MP,X/M2
P,X (= T ∗P,X) form a base, or equivalently if u1, . . . , un is a minimal

set of generators of MP,X . Recalling the isomorphism

dP :MP,X/M2
P,X → T ∗P,X

we deduce that u1, . . . , un are local parameters if and only if dP ū1, . . . , dP ūn are
linearly independent forms on TP,X (which is a vector space of dimension n), if
and only if the system of equations on TP,X

dP ū1 = . . . = dP ūn = 0

has only the trivial solution P (which is the origin of the vector space TP,X .

Let u1, . . . , un be local parameters at P . There exists an open affine neighbor-
hood of P on which u1, . . . , un are all regular. We replace X by this neighborhood,
so we assume that X is affine and that u1, . . . , un are polynomial functions on X.
Let Xi be the closed subset V (ui) of X: it has codimension 1 in X, because ui is
not identically zero on X (u1, . . . , un is a minimal set of generators of MP,X).

14.13. Proposition. In this notation, P is a smooth point of Xi, for all i =
1, . . . , n and

⋂
TP,Xi

= {P}.
Proof. Assume that Ui is a polynomial inducing ui, then Xi = V (Ui) ∩ X =
V (I(X) + (Ui)). So I(Xi) ⊃ I(X) + (Ui). By considering the linear parts of
the polynomials of the previous ideal, we get: TP,Xi ⊂ TP,X ∩ V (dPUi). By the
assumption on the ui, it follows that TP,X ∩ V (dPU1) ∩ . . . ∩ V (dPUn) = {P}.
Since dimTP,X = n, we can deduce that TP,X ∩ V (dPUi) is strictly contained in
TP,X , and dimTP,X ∩ V (dPUi) = n− 1. So dimTP,Xi

≤ n− 1 = dimXi, hence P
is a smooth point on Xi, equality holds and TP,Xi

= TP,X ∩ V (dPUi). Moreover⋂
TP,Xi = {P}. �

Note that
⋂
Xi has no positive-dimensional component passing through P :

otherwise the tangent space to T at P would be contained in TP,Xi
for all i, against

the fact that
⋂
TP,Xi

= {P}.

14.13. Definition. Let X be a smooth variety. Subvarieties Y1, . . . , Yr of X are
called transversal at P , P ∈

⋂
Yi, if the intersection of the tangent spaces TP,Yi

has dimension as small as possible, i.e. if codimTP,X
(
⋂
TP,Yi) =

∑
codimXYi.

Taking TP,X as ambient variety, one gets the relation:

dim
⋂
TP,Yi

≥
∑

dimTP,Yi
− (r − 1) dimTP,X ;

hence

codimTP,X
(
⋂
TP,Yi

) = dimTP,X − dim
⋂
TP,Yi

≤
∑

(dimTP,X − dimTP,Yi
) =
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=
∑

codimTP,X
(TP,Yi

) ≤
∑

codimXYi.

If equality holds, P is a smooth point for Yi for all i, moreover we get that P is a
simple point for the set

⋂
Yi.

For example if X is a surface and P ∈ X is smooth, there is a nbhd U of
P such that P is the transversal intersection of two curves in U , corresponding
to local parameters u1, u2. If P is singular we need three functions u1, u2, u3 to
generate the maximal ideal MP,X .
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