
Simulations with ROOT - 2

2

General distributions

• In general it is not sufficient to have uniform random numbers.
• In many problems it is necessary to have number distributed

according to other p.d.f. (e.g. Gaussian, exponential, Poisson, …)
• IN ROOT are available in the TRandom class generators with

several p.d.f.
– Binomial
– BreitWigner
– Circle
– Exp
– Gauss
– Landau
– Poisson
– Rannor
– Rndm
– Sphere
– Uniform

3

General distributions

• But, what if you want to generate a number xi distributed
according to a certain distribution f(x)?

• It is possible to use at least two techniques:

– Rejection

– Inversion

4

Inversion Method

• Inversion method
– This method is applicable for relatively simple (i.e. can be easily

inverted) distribution functions:

● Normalize the distribution function, so that it becomes a
“probability distribution function”

● Integrate the PDF analytically from minimum x (xmin) to an
arbitrary x (x)

➢This represents the probability of choosing a value less than
x

● Equate this to a uniform random number and solve for x, given
a uniform random number λ

∫
xmin

x

f (x)dx

∫
xmin

xmax

f (x)dx

=λ
This method is fully efficient, since each
random number λ gives an x value

5

Inversion Method

• Example: Generate x
between 0 and 4 according
to:

⇒ Generate x according to x = 4λ2

f (x)=
1

√ x

∫
xmin

x

x
−
1
2 dx

∫
0

4

x
−
1
2dx

=λ

xmin
1 /2−2 x1 /2

0−2⋅41/2
=λ=

x1/2

2

Inversion.C

6

Inversion Method : Results for 10000 trials

TH1F *h = new TH1F("h","h",100,0,4);
Double_t l = 0;
 for(Int_t i = 0; i<10000; i++){
 l = gRandom->Rndm();
 h->Fill(4*l*l);
 }

7

Rejection Method

• Algorithm:
– Chose trial x, given a uniform random number λ1:

xtrial = xmin + (xmax – xmin) λ1

– Decide whether to accept the trial value:

● If f(xtrial) > λ2 fbig then accept

Where fbig ≥ f(x) for all x, xmin ≤ x ≤ xmax.

– Repeat the algorithm until the trial value is accepted. This algorithm can
be visualized as throwing darts

fbig

xmin xmax

8

Rejection Method

• u1, u2 are two numbers distributed according to a uniform distribution in [0,1]

xT, yT are extracted:

– xT = xmin + (xmax – xmin) u1

– yT = fbig u2 , with fbig ≥ f(x) ∀ x ∈ [xmin,xmax]

• xT accepted if f(xT) > yT

9

Rejection Method : Example

• Example: Generate x between 0 and 4 according to:

f (x)=
1

√ x

Reiezione.C

TF1 *f1 = new
TF1("f1","1./sqrt(x)",0,4);
Double_t fMax = 4;

Double_t u1 = 0;
Double_t u2 = 0;

Double_t xT = 0;
Double_t yT = 0;
TH1F *h = new TH1F("h","h",100,0,4);
for(Int_t i = 0; i<10000; i++){
 u1 = gRandom->Rndm();
 u2 = gRandom->Rndm();

 xT = xmin + (xmax-xmin)*u1;
 yT = u2*fMax;
 if(f1->Eval(xT) > yT)
 h -> Fill(xT);
}

10

Rejection Method : Results for 10000 trials

11

Rejection Method : Integral

● This procedure also gives an estimate of the integral of f(x)

I=∫
xmin

xmax

f (x)dx≈
naccept
n trial

f big (xmin− xmax)

12

Limits of the rejection method

• In general this method has a limited efficiency

• Is not suited if the function presents peaks

• Cannot be used if the function have poles or
integration limits that tend to ∞
– What if the rejection technique is impractical and

you can't invert the integral of the distribution
function?

13

Importance sampling

• Importance Sampling: replace the distribution
function f(x) by an approximate form fa(x) for which
the inversion technique can be applied.

• Generate trial values for x with inversion technique
according to fa(x), and accept the trial value with the
probability proportional to the weight:

• The rejection technique is just a special case where
fa(x) is chosen to be constant

14

Esercitazione 12 - Exercise 1

● Write a class that inherits with public inheritance from the
ROOT TRandom3 class. In the class, the inversion and rejection
methods for the function

 f(θ) = (sin2 θ a + a cos2 θ)-1

in the range 0 ≤ θ ≤ 2π have to be implemented as two class
function.

● Write a macro that uses the implemented class and compare the
rejection and the inversion technique:

● Generate 1000000 values for each method using a = 0,5 and a = 0,001

● Plot the results obtained for each a and overlay the distribution curves f(x)
properly normalized

● Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the
use the TStopwatch class)

MyRandom3.{h, cxx} InversionRejection.C

15

Result for a = 0,5

16

Result for a = 0,001

17

Execution time

18

Notes of the Inversion method (exercise)

The integral function contain the arctan function: this function
return values between -π/2 e π/2.

If we represent the function we have a periodic function:

19

Notes of the Inversion method (exercise)

● The function f(x) is periodic and has to be integrated with an
appropriated normalization factor

F (x)=k∫
− π
2

x
d θ

a cos2θ+sin2θ
=
k
a
∫
− π
2

x
d θ

acos2θ(1+ tan
2
θ

a)

F (x)=
k

√a
∫
−∞

tan x
√ a

d z

1+z2
=
k

√a
atan(

tan x

√a)+
k

√a
π
2

z≡
tanθ

√ a
⇒dz=

1

√acos2θ
d θ

20

Notes of the Inversion method (exercise)

● The normalization constant is

● If you extract u with a uniform distribution between 0 and 1 you
can obtain a requested function as

● To move the function in the [0,2π] interval :
● Extract a second number w uniformly distributed in [0,1]

● If w < 0.5 → x = x+π (2nd and 3rd quadrant)

● Else

● if x<0 → x+=2π (4th quadrant)

● Else

● if X>=0 → x = x (1st quadrant)

F (x→ π
2
)=

k
√x

π
2

+
k
√x

π
2
≡1⇒ k=√ a

π

u=
1
π arctan(tan x√a)+ 12⇒ x=arctan [√a tan (πu−

π
2)]

21

Public Inheritance from the
TRandom3 class

Default and Copy Constructor

Function definition

Alternative method to initialize
data members outside the
constructor

22

Exercise 1 - Easy version

● Write a macro that implement the inversion and rejection method
for the function

 f(θ) = (sin2 θ a + a cos2 θ)-1

in the range 0 ≤ θ ≤ 2π.
● Compare the rejection and the inversion technique:

● Generate 1000000 values for each method using a = 0,5 and a = 0,001

● Plot the results obtained for each a and overlay the distribution curves f(x)
properly normalized

● Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the
use the TStopwatch class)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

