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General distributions

• In general it is not sufficient to have uniform random numbers. 
• In many problems it is necessary to have number distributed 

according to other p.d.f. (e.g. Gaussian, exponential, Poisson, …)
• IN ROOT are available in the TRandom class generators with 

several p.d.f.
– Binomial
– BreitWigner
– Circle
– Exp
– Gauss
– Landau
– Poisson
– Rannor
– Rndm
– Sphere 
– Uniform
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General distributions

• But, what if you want to generate a number xi distributed 
according to a certain distribution f(x)?

• It is possible to use at least two techniques:

– Rejection 

– Inversion
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Inversion Method

• Inversion method
– This method is applicable for relatively simple (i.e. can be easily 

inverted ) distribution functions:

● Normalize the distribution function, so that it becomes a 
“probability distribution function”

● Integrate the PDF analytically from minimum x (xmin) to an 
arbitrary x (x) 

➢This represents the probability of choosing a value less than 
x

● Equate this to a uniform random number and solve for x, given 
a uniform random number λ

∫
xmin

x

f ( x)dx

∫
xmin

xmax

f (x )dx

=λ
This method is fully efficient, since each 
random number λ gives an x value
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Inversion Method

• Example: Generate x 
between 0 and 4 according 
to:  

⇒ Generate x according to x = 4λ2

f (x)=
1

√ x

∫
xmin

x

x
−
1
2 dx

∫
0

4

x
−
1
2dx

=λ

xmin
1 /2−2 x1 /2

0−2⋅41/2
=λ=

x1/2

2

Inversion.C
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Inversion Method : Results for 10000 trials

TH1F *h = new TH1F("h","h",100,0,4);
Double_t l = 0;
  for(Int_t i = 0; i<10000; i++){
    l = gRandom->Rndm();
    h->Fill(4*l*l);
  }
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Rejection Method

• Algorithm:
– Chose trial x, given a uniform random number λ1:

xtrial = xmin + (xmax – xmin) λ1

– Decide whether to accept the trial value:

● If f(xtrial) >  λ2 fbig then accept

Where fbig ≥ f(x) for all x,  xmin ≤ x ≤ xmax. 

– Repeat the algorithm until the trial value is accepted. This algorithm can 
be visualized as throwing darts

fbig

xmin xmax
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Rejection Method

• u1, u2 are two numbers distributed according to a uniform distribution in [0,1]

xT, yT are extracted:

– xT = xmin + (xmax – xmin) u1 

– yT = fbig u2 , with fbig ≥ f(x) ∀ x ∈ [xmin,xmax]

• xT accepted if f(xT) > yT
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Rejection Method : Example

• Example: Generate x between 0 and 4 according to:  

f (x)=
1

√ x

Reiezione.C

TF1 *f1 = new 
TF1("f1","1./sqrt(x)",0,4);
Double_t fMax = 4;

Double_t u1 = 0;
Double_t u2 = 0;
 
Double_t xT = 0;
Double_t yT = 0;
TH1F *h = new TH1F("h","h",100,0,4);
for(Int_t i = 0; i<10000; i++){
   u1 = gRandom->Rndm();
   u2 = gRandom->Rndm();

   xT = xmin + (xmax-xmin)*u1;
   yT = u2*fMax; 
   if(f1->Eval(xT) > yT)
    h -> Fill(xT);
}
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Rejection Method : Results for 10000 trials
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Rejection Method : Integral

● This procedure also gives an estimate of the integral of f(x)

I=∫
xmin

xmax

f (x)dx≈
naccept
n trial

f big (xmin− xmax)
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Limits of the rejection method 

• In general this method has a limited efficiency 

• Is not suited if the function presents peaks 

• Cannot be used if the function have poles or 
integration limits that tend to ∞
– What if the rejection technique is impractical and 

you can't invert the integral of the distribution 
function?
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Importance sampling

• Importance Sampling: replace the distribution 
function f(x) by an approximate form fa(x) for which 
the inversion technique can be applied.  

• Generate trial values for x with inversion technique 
according to fa(x), and accept the trial value with the 
probability proportional to the weight:

• The rejection technique is just a special case where 
fa(x) is chosen to be constant
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Esercitazione 12  - Exercise 1

● Write a class that inherits with public inheritance from the 
ROOT TRandom3 class. In the class, the inversion and rejection 
methods for the function

                                    f(θ) = (sin2 θ  a + a cos2 θ)-1 

in the range 0 ≤ θ ≤ 2π have to be implemented as two class 
function. 

● Write a macro that uses the implemented class and compare the 
rejection and the inversion technique:

● Generate 1000000 values for each method using a = 0,5 and  a = 0,001

● Plot the results obtained for each a and overlay the distribution curves f(x) 
properly normalized

● Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the 
use the TStopwatch class)

MyRandom3.{h, cxx} InversionRejection.C
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Result for a = 0,5
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Result for a = 0,001
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Execution time
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Notes of the Inversion method (exercise)

The integral function contain the arctan function: this function 
return values between  -π/2 e π/2.

If we represent the function we have a periodic function:
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Notes of the Inversion method (exercise)

● The function f(x) is periodic and has to be integrated with an 
appropriated normalization factor

F (x)=k∫
− π
2

x
d θ

a cos2θ+sin2θ
=
k
a
∫
− π
2

x
d θ

acos2θ(1+ tan
2
θ

a )

F (x)=
k

√a
∫
−∞

tan x
√ a

d z

1+z2
=
k

√a
atan(

tan x

√a )+
k

√a
π
2

z≡
tanθ

√ a
⇒dz=

1

√acos2θ
d θ
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Notes of the Inversion method (exercise)

● The normalization constant is

● If you extract u with a uniform distribution between 0 and 1 you 
can obtain a requested function as

● To move the function in the [0,2π] interval  :
● Extract a second number w uniformly distributed in [0,1]

● If w < 0.5 → x = x+π (2nd and 3rd quadrant)

● Else 

● if x<0 → x+=2π (4th quadrant)

● Else 

● if X>=0 →  x = x  (1st quadrant)

F (x→ π
2
)=

k
√x

π
2

+
k
√x

π
2
≡1⇒ k=√ a

π

u=
1
π arctan( tan x√a )+ 12⇒ x=arctan [√a tan (πu−

π
2 )]
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Public Inheritance from the 
TRandom3 class

Default and Copy Constructor

Function definition

Alternative method to initialize 
data members outside the 
constructor 
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Exercise 1  - Easy version

● Write a macro that implement the inversion and rejection method 
for the function

                                    f(θ) = (sin2 θ  a + a cos2 θ)-1 

in the range 0 ≤ θ ≤ 2π.
● Compare the rejection and the inversion technique:

● Generate 1000000 values for each method using a = 0,5 and  a = 0,001

● Plot the results obtained for each a and overlay the distribution curves f(x) 
properly normalized

● Compare the CPU time request for the 4 runs (hint: in ROOT it is possible the 
use the TStopwatch class)
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