ISTITUZIONI DI ANALISI E GEOMETRIA MOD A PROVA SCRITTA DEL 02/07/19

(1) Stabilire se esiste ed eventualmente calcolare

$$\lim_{n \to +\infty} \int_{(0,+\infty)} \frac{e^{-x^2}}{1 + (x-n)^2} dx .$$

(2) Sia (X, \mathcal{A}, μ) uno spazio con misura finito. Sia f una funzione misurabile nonegativa su X. Sia 1 e sia <math>p' il suo esponente coniugato. Si ponga

$$\nu(E) = \int_{E} f d\mu , \forall E \in \mathcal{A} .$$

Provare:

(a) se $f \in L^p(X)$, allora

$$\nu(E) \le \mu(E)^{\frac{1}{p'}} ||f||_p , \forall E \in \mathcal{A} ,$$

(b) se vale

$$\nu(E) \le \mu(E)^{\frac{1}{p'}}, \forall E \in \mathcal{A}$$

allora $f \in L^q(X)$ per ogni q < p.

(3) Sia $E \subset \mathbb{R}^n$ misurabile e di misura nulla. Sia $f : \mathbb{R}^n \to \mathbb{R}$ continua in ogni punto $x \in \mathbb{R}^n \setminus E$. Provare che f è misurabile.