Stereochemistry - Chirality

Chapter 5 Organic Chemistry, 8th Edition John E. McMurry

Isomerism

- The two major classes of isomers are constitutional isomers and stereoisomers.
 - Constitutional/structural isomers have different IUPAC names, different physical and chemical properties, and may have different functional groups.
 - Stereoisomers differ only in the way the atoms are oriented in space. They have identical IUPAC names (except for a prefix like *cis* or *trans*). They always have the same functional group(s).
- A particular three-dimensional arrangement is called a configuration. Stereoisomers differ in configuration.

Stereoisomers

Chirality

- Every object has a mirror image: mirror images may or may not be superimposable.
- Some molecules are like hands. Left and right hands are mirror images, but they are not identical, or superimposable.

• A molecule (or object) that is not superimposable on its mirror image is said to be chiral.

Chirality

- A and B are stereoisomers—specifically, they are enantiomers.
- A carbon atom with four different groups is a tetrahedral stereogenic center.

Tartaric acid

Louis Pasteur

Chirality

Chirality and Symmetry

- To locate a stereogenic center, examine each tetrahedral carbon atom in a molecule, and look at the four groups—not the four atoms—bonded to it.
- Always omit from consideration all C atoms that cannot be tetrahedral stereogenic centers. These include
 - CH₂ and CH₃ groups
 - Any sp or sp² hybridized C

 Larger organic molecules can have two, three or even hundreds of stereogenic centers.

Palytoxin: 64 chiral centers

Cyclic Compounds

- Stereogenic centers may also occur at carbon atoms that are part of a ring.
- To find stereogenic centers on ring carbons, always draw the rings as flat polygons, and look for tetrahedral carbons that are bonded to four different groups.

Cyclic Compounds

Stereoisomeris from Hindered Rotation

Allenes

Chirality and Symmetry

- A sterogenic center is a sufficient but not necessary condition for chirality.
- With one stereogenic center, a molecule will always be chiral.
- With two or more stereogenic centers, a molecule may or may not be chiral.
- Achiral molecules usually contain a plane of symmetry but chiral molecules do not.
- A plane of symmetry is a mirror plane that cuts the molecule in half, so that one half of the molecule is a reflection of the other half.

- Naming enantiomers with the prefixes *R* or *S* is called the Cahn-Ingold-Prelog system.
- **Priority rule 1**. The atom of highest atomic number gets the highest priority (1).

$$4 \longrightarrow H$$

$$3 \longrightarrow F - C - Br \leftarrow 1$$

$$2 \longrightarrow CI$$

• **Priority rule 2.** If two atoms on a stereogenic center are the same, assign priority based on the atomic number of the atoms bonded to these atoms. *One* atom of higher atomic number determines the higher priority.

• **Priority rule 3.** If two isotopes are bonded to the stereogenic center, assign priorities in order of decreasing mass number. Thus, in comparing the three isotopes of hydrogen, the order of priorities is:

6	Mass number	Priority
T (tritium)	3 (1 proton + 2 neutrons)	1
D (deuterium)	2 (1 proton + 1 neutron)	2
H (hydrogen)	1 (1 proton)	3

• **Priority rule 4.** To assign a priority to an atom that is part of a multiple bond, treat a multiply bonded atom as an equivalent number of singly bonded atoms. For example, the C of a C=O is considered to be bonded to two O atoms.

How To, continued . . .

- Step [2] Orient the molecule with the lowest priority group (4) *back* (on a *dash*), and visualize the relative positions of the remaining three groups (priorities 1, 2, and 3).
 - For each enantiomer of 2-butanol, look toward the lowest priority group, drawn behind the plane, down the C-H bond.

Step [3]

Trace a circle from priority group $1 \rightarrow 2 \rightarrow 3$.

- If tracing the circle goes in the clockwise direction-to the right from the noon position-the isomer is named R.
- If tracing the circle goes in the counterclockwise direction—to the left from the noon position—the isomer is named S.

• The letters R or S precede the IUPAC name of the molecule. For the enantiomers of 2-butanol:

- The physical properties of two enantiomers are identical except for how they interact with plane-polarized light.
- In ordinary light the electric vector oscillates in all planes perpendicular to the propagation direction.
- In plane polarized light the vector oscillates in a single plane. Polarized light is obtained with a polarizer.

- In a polarimeter polarized light travels through a sample tube containing an organic compound.
- With achiral compounds, the light that exits the sample tube remains unchanged. A compound that does not change the plane of polarized light is said to be optically inactive.

• Two enantiomers rotate plane-polarized light to an equal extent but in opposite directions.

• No relationship exists between *R* and *S* prefixes and the (+) and (-) designations that indicate optical rotation.

Specific rotation is a standardized physical constant for the amount that a chiral compound rotates plane-polarized light. Specific rotation [α] is defined using a specific sample tube length (*I*, in dm), concentration (*c* in g/mL for pure liquids [=d]; g/100mL for solutions), temperature (generally 25°C) and wavelength (generally 589 nm).

specific =
$$[\alpha] = \frac{\alpha}{l \times c}$$

- α = observed rotation (°)
- l = length of sample tube (dm)
- c = concentration (g/ml or g/100ml)

 $\begin{bmatrix} dm = decimeter \\ 1 dm = 10 cm \end{bmatrix}$

Racemic Mixtures

• An equal amount of two enantiomers is called a racemic mixture or a racemate. A racemic mixture is optically inactive. Because two enantiomers rotate plane-polarized light to an equal extent but in opposite directions, the rotations cancel, and no rotation is observed.

Property	(+) Enantiomer	(-) Enantiomer	Racemic mixture
melting point	identical		may be different
boiling point	identical		may be different
optical rotation	+α	-α	0

Optical Purity

• Enantiomeric excess (optical purity) is a measurement of how much one enantiomer is present in excess of the racemic mixture.

ee = % of one enantiomer - % of the other enantiomer.

 The enantiomeric excess can also be calculated if the specific rotation [α] of a mixture and the specific rotation [α] of a pure enantiomer are known.

ee = ([α] mixture/[α] pure enantiomer) x 100.

Enantiomeric excess

e.e. =
$$\frac{[S] - [R]}{[S] + [R]}$$
 x 100

[S] = centration of enantiomer S [R] = concentration of enantiomer R

(e.e.) with respect to relative % of the two enantiomers :

[S]	e.e.
50	00
60	20
70	40
80	60
90	80
95	90
98	94
90 99	98
33	

Chemical Properties of Enantiomers

- Two enantiomers have exactly the same chemical properties except for their reaction with chiral non-racemic reagents.
- Many drugs are chiral and often must react with a chiral receptor or chiral enzyme to be effective. One enantiomer of a drug may effectively treat a disease whereas its mirror image may be ineffective or toxic.

32

Thalidomide

Chemical Properties of Enantiomers

- Research suggests that the odor of a particular molecule is determined more by its shape than by the presence of a particular functional group.
- Because enantiomers interact with chiral smell receptors, some enantiomers have different odors.

Chiral Recognition

3 point theory:

Amines are Achiral

• When a compound has more than one stereogenic center, *R* and *S* configurations must be assigned to each of them.

(2S,3R)-2,3-dibromopentane

Meso Compounds

diastereomers

Meso Compounds

• Meso compounds contain a plane of symmetry, and are achiral.

• Consider 1,3-dibromocyclopentane. Since it has two stereogenic centers, it has a maximum of four stereoisomers.

1,3-dibromocyclopentane [* = stereogenic center]

 cis isomer (A) and trans isomer (B) are stereoisomers but not mirror images.

• The *cis* isomer is superimposable on its mirror image, making the images identical. Thus, A is an achiral meso compound.

• The trans isomer is not superimposable on its mirror image, labeled C, making B and C different compounds. B and C are enantiomers.

• Diastereomers have different physical properties, and therefore can be separated by common physical techniques.

- The physical properties of A and B differ from their diastereomer C.
- The physical properties of a racemic mixture of A and B (last column) can also differ from either enantiomer and diastereomer C.
- C is an achiral meso compound, so it is optically inactive; [α] = 0.

Separation of Enantiomers

- Enantiomers have identical physical properties and can not be separated by conventional physical techniques (distillation, crystallization, etc).
- The separation of enantiomers in a racemic mixture is called resolution.

Resolution of Enantiomers

Resolution of Enantiomers

Resolution of Enantiomers

