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A. INTRODUCTORY ELEMENTS 

1. Basic Concepts 

1.1. Mechanics and continuum 

Mechanics is about the law of motion, or equilibrium of momentum. This general field can be divided 

into three main subjects:  

1. statics, that deals about equilibrium of forces in absence of motion;  

2. kinematics, that deals about the description of motion irrespective of the applied forces that 

create such motion;  

3. dynamics, the most important and comprehensive part, that regards the relationship between 

forces and motion. 

The term “dynamics” derives from the ancient Greek (δυναμικός) and was renewed in the French 

word dynamique by Leibnitz (1646-1716) where it got the meaning of “pertaining with forces 

producing motion”. The concept of mechanics was addressed in mathematical terms by Newton who 

demonstrated that forces are the entities that change the motion, or that produce accelerations. Newton 

laws of classical mechanics were carefully developed for individual point particles of finite mass; 

they were then extended to rigid bodies and to deformable material. Here we will have to revise these 

classical laws of mechanics for their applications to fluid elements.  

The course is about classical mechanics, it will ignore modern developments like quantum mechanics 

and theory of relativity whose corrections are largely negligible for objects of size much larger than 

individual sub-atomic constituent of matters moving with velocities well below the speed of light. 

We will also deal with pure mechanics and avoid discussing thermic and chemical phenomena, with 

the exception of a few mentions that are reported where appropriate. 

The course is specifically about biological fluids; which are mainly air, water and blood. However, it 

is important to remark from the beginning that the concept of “fluid” is a “model” used to describe 

certain phenomena encountered in reality. Fluids and solids represent the main classes of the wider 

model of “continuum”. No material is really a continuum, it is made of individual molecules that are 

made of atoms, that are made of sub-atomic particle; however, the model of continuum is used to 

describe macroscopic phenomena whose modification occurs on scales that are much larger than 

those of individual constituents.  

Air and water have molecules whose size is of the order of nanometers (1 nm=10-9 m); for them, the 

scheme of continuum is appropriate when studying macroscopic phenomena whose size is much 

larger than that. In this sense, macroscopic scales range can be as small in absolute terms as little 

fractions of a millimeters. 

Blood is different; blood is a particulate fluid mixture composed by a percentage of about 50% by 

plasma (that is essentially water) and another percentage about 50% of red blood cells (this percentage 

is called hematocrit), plus minor percentages of white cells and other constituents. Red blood cells, 

transport oxygen in the whole body and are much larger than water molecules. They have a discoidal 

shape of radius about 8 micrometer (1 μm=10-6 m), thicker around the circumference, with thickness 

about 2 μm, and a thin membrane at the center. It can also be seen as a donut whose hole is covered 

by a membrane that extends from the surface of the outside ring to the center (see figure 1.1). Thus, 

the volume of a red blood cell is approximately 10-7 mm3 and, if blood cells covers 50% of blood 

volume, there are about 5×106 red blood cells in one mm3 of blood. 
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Based on these figures, blood motion should be described with a corpuscular or a continuous models 

depending on the size of the vessel under analysis. Large vessels have a diameter ranging from 

centimeter to millimeters, here the continuum model is appropriate; smaller vessels have a size that 

can contain some tens of red blood cells across. At the smaller end, the diameter of capillaries is less 

than 10 μm; here red blood cells flow one after the other in a row, even squeezing to be able to pass 

through, and the corpuscular nature of blood is fundamental (see figure 1.2). 

However, the physiological sites of greater clinical interest, and where the mechanical phenomena 

take a fundamental relevance, are the heart chambers and the large vessels, like Aorta and carotid for 

example. In the heart and large vessels blood dynamics can be confidently modelled as that of a 

continuous fluid. Nevertheless, some phenomena that may still be influenced by its corpuscular nature 

should be considered separately. This simplified representation of blood allows employing a rich 

theoretical background of continuous mechanics and differential mathematics that represents the 

basic tools of most achievements in fluid dynamics. 

 

The continuous model is appropriate for describing the large scale phenomena of motion, when 

changes in the fluid motion occurs over distances that are orders of magnitudes larger than individual 

constituents. A continuous mean can be characterized by either its global properties or its local 

properties. Examples of global, or integral, properties are the volume 𝑉 or the mass 𝑀 of the portion 

of material under analysis. The density ρ, mass per unit volume, given by the ratio 𝑀/𝑉 can also be 

a seen as global property of a volume of fluid. More correctly, however, the density of a volume of 

fluid represents the average value over that volume, because density is a local property that takes 

different values at different position inside the volume. The density can be defined locally at every 

point as 

 𝜌 = lim
𝑉→0

𝑀

𝑉
=

𝑑𝑀

𝑑𝑉
. (1.1) 

 

Figure 1.1. Red Blood Cells (Source: Anatomical Travelogue). 



Basic Concepts  Page 6 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

The second equality in (1.1) used the differential form of a ratio between infinitesimal quantities that 

implicitly assume the limit 𝑑𝑉 → 0; here it should be remarked once again that in the continuous 

model the infinitesimal volume is still much larger than the individual constituents of the material. 

Needless to remind that global properties can be evaluated by integration of local ones, like the mass 

of a volume 

 𝑀 = ∫ 𝜌𝑑𝑉
𝑉

.  

 

Local properties provide the most comprehensive description of the continuum, they are also called 

“fields” that are quantities that vary in time and space, like temperature 𝑇(𝒙, 𝑡) or pressure 𝑝(𝒙, 𝑡) 

where 𝑡 is the time coordinate and 𝒙 is the space coordinate; similarly, velocity 𝑣(𝒙, 𝑡) is a vector 

field. 

The physical laws that govern the mechanics of a continuum are the conservation of mass and the 

conservation of momentum and of angular momentum (both are expressions of the Newton law). 

Given the limited changes in temperature inside the circulatory system, we simplify the discussion 

by neglecting thermodynamics phenomena. We also assume that the material does not undergo 

transformations (state, chemical or else) and remains the same material everywhere in the space 

region of interest as time progresses. Under these simplified conditions, the only form of energy 

coming into play is the mechanical energy in its manifestations of kinetic and potential energy. Other 

forms of energy like those associated with heat transport or chemical reactions are neglected; this 

means that any non-mechanical propertie, like temperature or concentration of a solute, is transported 

passively with the fluid and does not influence the motion. In this purely mechanical scenario, the 

conservation of momentum can be recast to express the conservation of energy that is not an 

additional conservation law. 

The conservation laws must be combined with the equation of state that characterizes the specific 

continuous material under analysis. The equation of state is the law that relates volume, pressure and 

temperature. A well known example is the law 𝑝𝑉 = 𝑅𝑇 of ideal gas. In a continuum, it is preferable 

to express the equation of state with local variable, or fields, as a relation between density, pressure 

and temperature 

 𝜌 = 𝑓(𝑝, 𝑇). (1.2) 

The role of temperature in (1.2) is typically associated with the decrease of density in regions with an 

increase of temperature. This effect, not considering local sources of thermal energy, is important in 

large environments like the atmosphere or the oceans where it gives rise to stratification with the 

quote and is responsible for buoyancy effects. Differently, to our present purpose thermodynamics 

 

Figure 1.2. Red Blood Cells flowing in vessels of varying size. (Source: Anatomical Travelogue) 
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effects will be ignored, which means that temperature is considered constant or non-influent such that 

(1.2) reduces to 

 𝜌 = 𝑓(𝑝), (1.3) 

which expresses the intuitive phenomenon that density increases when pressure increases and vice 

versa. 

Let us quantify this point a little more carefully: consider a generic volume 𝑉 of material (for example, 

a cylinder), that is in equilibrium with the external pressure, and apply a pressure increment ∆𝑝 on 

the surrounding surface of such volume (for example pushing a piston in the cylinder). The volume 

will be compressed and experience a decrease  of volume, −∆𝑉, that increases with increasing 

pressure ∆𝑝. The compressibility of a material is thus measured by the ratio between increase of 

pressure and the corresponding change in volume, which must be expressed relative to its initial 

volume 𝑉 because the same pressure acts on every infinitesimal element. This is the modulus of cubic 

compressibility (or bulk modulus) defined as 

 휀 =
∆𝑝

−∆𝑉
𝑉⁄

= 𝜌
𝑑𝑝

𝑑𝜌
; (1.4) 

which is larger for stiffer materials, when a large increase of pressure is required to have a small 

decrease of volume. The second equality in (1.4) used the relation between volume and density, 𝑉 =

𝑀/𝜌 with the mass 𝑀 being constant, to transform the volume variations into density. Moreover, for 

mathematical generality differences, denoted by ∆, have been transformed to differentials, indicated 

with 𝑑. The previous equation can be rearranged to express the relative change of density   

 
𝑑𝜌

𝜌
=

𝑑𝑝
=

𝑑𝑝

𝜌𝑐2; (1.5) 

where the last equality used the definition of velocity of propagation of sound (Kundu et al., 2012), 

𝑐 = √𝑑𝑝 𝑑𝜌⁄ , in the material that gives 휀 = 𝜌𝑐2. 

In the case of liquid materials, the modulus 휀 is large because a small reduction of volume requires 

extremely large increase of pressure that are typically not physiological. To state it differently, 

pressure variations induced by flow are proportional to 𝜌𝑣2 (where 𝑣 is the fluid velocity, see chapter 

6), therefore relative changes in density 𝑑𝜌 𝜌⁄  in (1.5) turn out to be proportional to the ratio between 

the squares of fluid velocity and velocity of sound, (𝑣 𝑐⁄ )2. Physiological velocities are much lower 

than the velocity of sound (that in water is about 1500 m/s and in dry air about 345 m/s); the condition 

that 𝑣 ≪ 𝑐, which amplified for square velocities, implied from (1.5) that 𝑑𝜌 ≪ 𝜌. Thus variation of 

density becomes negligible and we can focus the attention to the limiting case “incompressible 

material” (or 휀 → ∞). Therefore, the equation of state to our purpose takes the simple form 

 𝜌 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (1.6) 

where the density takes values about 103  Kg/m3 in water, 1.05×103  Kg/m3 for blood and about 1.2  

Kg/m3 in air at 20°C and atmospheric pressure. 

1.2. Fluids and solids 

The discussion so far applies to a generic continuum, which can be a model for either a solid or a 

fluid material. It is time to clarify the difference between solids and fluid so that we can focus on the 

latter with no ambiguity. 
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A solid material, such as biological hard tissue like a bone or a soft tissue like a muscle, is presents 

its own shape due to a natural geometric organization of the constituting elements. When the relative 

position of these elements is altered by a small amount, internal stresses develop in an effort to restore 

the elements to their original, stress-free state. For example, with reference to figure 1.3, a rod of 

elastic material of length 𝐿 stretches under the action of a force 𝐹 and returns to its original length 

when the force ceases. This distinctive property of solids where internal stresses develop in response 

to a deformation is generally called “elasticity”. Elastic energy is a form of potential energy, it is 

stored in the deformed structure composing the material and it is returned when the deformation goes 

back to zero. Indeed, an elastic deformation is normally completely reversible. Elastic deformation, 

or strain, 𝑠 = ∆𝐿/𝐿, is related to the amount of stress, 𝜏 = 𝐹/𝐴, proportional to the force and inversely 

proportional to the area of the cross section. In general, solid materials are characterized by a stress-

strain relationship as shown in figure 1.4, which represents the “consititutive law” characterizing the 

elastic behavior of a solid material. For small enough deformation the stress-strain relationship can 

be considered as linear and, for one-dimensional deformation, is written 𝜏 = 𝐸𝑠, where the 

proportionality coefficients 𝐸 is the Young modulus. Most biological tissues, however, present a 

hyperelastic behavior as shown in figure 1.4. Hyperelasticity means an increase of stiffness when the 

material is subjected to increasingly large deformations; therefore, it represents a protective property 

that limits the entity of deformation in the event of extreme overloads. 

 

 

Figure 1.3. Elasticity in solids: material deforms under the action of a force. 

 

Figure 1.4. Elasticity in solids: stress-strain relationship. 
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Fluids are different and do not present an elastic behavior. The most distinctive property of fluids, 

which include liquids and gases, is that a fluid has not a preferred shape. A fluid offers no resistance 

to taking the shape of its container, irrespective of any geometry it had previously. The individual 

elements constituting a fluid have not preferred relative positions; thus, they may organized in 

infinitely many stress-free states. Fluids do not develop stresses for a relative displacement of its 

constituting elements; instead, fluids develop an internal resistance during their relative motion. 

Indeed the distinctive property of fluids is the development of internal stresses in response to a “rate 

of deformation”, to a differential velocity between nearby elements. This property of fluids takes the 

name of “viscosity”. A fluid thus experiences a viscous resistance during the motion caused by the 

sliding of the individual fluid elements one on the other. Viscous stresses represent a frictional 

phenomenon that appears during motion, when the motion ceases also stress cease and there is no 

mechanism taking the system to its original position as it happened in solids. The mechanical energy 

used to deform the fluid elements has not been stored anywhere, it is dissipates by internal viscous 

friction and irreversibly transformed into heat and dispersed away. 

In analogy to what previously shown for elasticity, fluids are characterized by a relationship between 

stress and rate-of-strain. Consider a simple experiment of a thin layer of fluid between two walls 

(infinitely extended to avoid introducing end-effects), the lower wall being fixed and the upper wall 

sliding with constant velocity 𝑈, as sketched in figure 1.5. The upper wall is maintained at constant 

velocity under the action of a shear action 𝜏, given by the force per unit area. Such shear increases 

when velocity 𝑈 increases and when the thickness 𝑑 decreases, it eventually depends on the ratio 

𝑈/𝑑. If the thickness is small enough such ratio is the velocity derivative and, with reference to figure 

1.5, one can write 

 𝜏 = 𝑓 (
𝑈

𝑑
) = 𝑓 (

𝑑𝑣𝑥

𝑑𝑦
) (1.7) 

 

 

This relationship between shear stress and shear rate is the “constitutive law” that characterizes the 

viscous fluid properties as shown in figure 1.6 for typical examples. Fluid that follow a simple linear 

relationship are called “Newtonian fluids” for which (1.7) becomes 

 𝜏 = 𝜇
𝑑𝑣𝑥

𝑑𝑦
 (1.8) 

and the proportionality coefficient 𝜇 is the “dynamic viscosity” or simply “viscosity”. Luckily, most 

common fluids like water and air behave as a Newtonian fluids with small viscosity (that takes value 

about 10-3 Kg/m·s for water and 1.8×10-5 Kg/m·s for air).  

 

Figure 1.5. Viscosity in fluids: shear frictions between fluid elements sliding with different velocity. 



Basic Concepts  Page 10 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

 

 

Blood is more a shear thinning fluid where the corpuscular nature influences the value of viscosity, 

which cannot be assumed to be circumstantially constant. In fact, the apparent blood viscosity is not 

an intrinsic material property and thus its value depends on the type of motion the blood is 

experiencing at the different sites. For example, blood behaves as a Newtonian fluid in regions with 

a high shear rate when the blood cells undergo an intense mixing and average friction is not directly 

influenced by the corpuscular structure. Conversely, at low shear rate the interaction between 

individual cells gives rise to higher friction and higher apparent viscosity; a behavior that is sometime 

modelled by a static yield stress. Viscosity is also function of the local hematocrit because a higher 

percentage of red blood cells reflects into a higher average friction. 

Such variability is further influenced by several concurring factors and still lacks a complete and 

general description. However, in large vessels, where shear rates are normally high, these variations 

are small and the mathematics would present a significant increase in complexity when accounting 

for a variable viscosity. Therefore, at least for flow in large vessels, blood is normally treated as a 

Newtonian fluid with constant viscosity 𝜇 = 3.3 × 103 Kg/m ∙ s, about three times greater than the 

viscosity of water.  

Dynamic viscosity is a proportionality coefficient in (1.8) between a dynamic quantity, the shear 

stress that involves the tree dimensional units (mass, length, time) and the shear rate that involves 

only kinematic units (length, time). When dealing with the description of motion, it is sometime 

useful to introduce the “kinematic viscosity” defined as 

 𝜈 =
𝜇

𝜌
 (1.9) 

that is the viscosity coefficient directly involved in the description of fluid motion, whereas the 

dynamic viscosity enters when such motion must be translated into dynamic actions like forces and 

stresses. Kinematic viscosity takes value about 𝜈 = 10−6 m2/s for water and 𝜈 = 1.5 × 10−5 m2/s 

for air showing that the motion of water is less viscous that air’s although the involved shear stresses 

are larger. The value of kinematic viscosity for blood when assumed as a Newtonian fluid is 𝜈 =

3.3 × 10−6 m2/s that is often expressed 𝜈 = 3.3 × 10−2 cm2/s.  

 

Figure 1.6. Viscosity in fluids: shear stress depends on shear rate. 
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It must be clear in mind that these are interpretative models and the distinction between fluids and 

solids is not always so immediate. Most materials present both elastic and viscous characteristics. 

Some material can be intrinsically viscoelastic (for example gels). Some materials should be even be 

described as fluids in some conditions and as solids in another. A glacier is a solid if one can walk on 

it, yet it flows like a fluid during its slow motion detectable over the years. It is thus important to 

remind that solids and fluids, elasticity and viscosity, are conceptual models used to describe the 

behavior of specific materials under the specific situation of interest. 

1.3. Overview of Bio-flow Domains 

The eventual objective of this book is that of a rigorous application of fluid dynamics principles to 

blood flow in the cardiovascular system. For completeness, we provide here a quick overview of the 

circulatory system for the inexperienced reader. This is intentionally an extremely superficial 

synthesis and the reader is directed to the numerous other texts for more comprehensive descriptions. 

Circulation is a systems aimed to distribute nutrients (mainly oxygen) transported by blood to every 

cell in the entire body. For reaching all regions in the body, circulation uses two main mechanisms: 

transport and diffusion. Transport allows covering relatively large distances, from the heart to other 

body regions up to limbs. Blood is transported with the local velocity 𝑈 along the cardiovascular 

network and allow travelling a distance ℓtransp~𝑈𝑡 in a time interval 𝑡. This mechanism is efficient 

until velocity is high enough and becomes progressively less efficient in small vessels where velocity 

is small. Indeed velocity necessarily decreases at smaller scales in order to avoid development of 

excessive shear stresses that are proportional to 𝑈/𝑑, with 𝑑 the vessel diameter (as shown by 

relationship 1.7). On the opposite end, diffusion is more efficient to cover small distances and permits 

the local distribution from capillary to interstitial space up to individual cells through a diffusive 

behavior that rapidly covers small distances covering in a time 𝑡 a length ℓdiff~√2𝜈𝑡. Comparative 

results, reported in the table below, show how transport is best suited to cover large distances traveling 

along large vessels where velocity can be of the order of cm/s, when the vessels become small and 

velocities are reduced to values of few mm/s or smaller diffusion becomes progressively more 

efficient to cover small distances.  

𝒕 
𝓵𝐭𝐫𝐚𝐧𝐬𝐩 

(𝑼=10 cm/s) 

𝓵𝐭𝐫𝐚𝐧𝐬𝐩 

(𝑼=1 mm/s) 

𝓵𝐝𝐢𝐟𝐟 

(𝝂=0.04 cm2/s) 

10-3 s 0.1 mm 1 μm 90 μm 

10-2 s 1 mm 10 μm 0.28 mm 

10-1 s 1 cm 0.1 mm 0.9 mm 

1 s 10 cm 1 mm 2.8 mm 

1 min 6 m 6 cm 2.2 cm 

1 hour 360 m 3.6 m 17 cm 

 

The entire circulatory system is composed of the systemic and the pulmonary circulation systems that 

are at the same time are in parallel and in series. Figure 1.7 presents a sketch of the main vessels. 

Systemic circulation starts from the left heart, that receives low pressure oxygenated blood from the 

pulmonary veins and pushes at higher pressure in the Aorta, the first systemic artery. Aorta branches 

into smaller arteries that redirect blood into different regions of the body, these in turn branch into 

smaller arteries then to arterioles and into capillaries that are close enough to any cell of the body to 

which oxygen is delivered and cells’ refuses collected. Capillaries then merge together into venules 

that merge into progressively larger veins up to inferior vena cava and superior vena cava (from the 

lower and upper part of the body, respectively) that eventually enter the right heart. From the right 



Basic Concepts  Page 12 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

heart blood is pushed into the pulmonary arteries and then across the lungs, where red blood cells 

leave the refuses and collect oxygen, and reaches the left heart to restart its cycle. The two circulations 

are also in parallel because the left and right sides of the heart are part of the same organ and work in 

synergy. 

Mechanical analysis is principally dedicated to the transport mechanism in the larger vessels that also 

represent the sites of greater clinical interest; thus across the heart, in the larger arteries and the larger 

veins. There are important differences between arterial and venous networks. Blood flows in arteries 

through an unsteady, pulsatile motion forced by the heartbeat rhythm and fills arteries at high pressure 

(75 to 120 mmHg, that can be expressed as 1.0 to 1.6×10-5 Pa or 1 to 1.6 mH2O, thus blood may jump 

this high when an artery is punched). Differently, blood reaches the venous system after having passed 

though the capillary bed; there blood experienced large frictional resistances, it loses its unsteadiness 

and loses pressure. Thus, the venous flow is essentially a steady one and pressure is low (as 

immediately verifiable by pushing the superficial veins). This is also a reason why arteries have 

thicker walls and are protected, deep in the body, while veins are closer to the surface. 

The diameter of arteries of higher pato-physiological interest range from few centimeters (Aorta) to 

one centimeter or several millimeters (carotid bifurcation, iliac arteries) where unsteady velocities 

reach peaks of about 1 m/s or more. Fluid dynamics phenomena that are relevant to blood flow in the 

heart chambers and in the main vessels represent the main topics covered in later chapters. 

This book will focus on blood flow in the large vessels of the cardiovascular system due to its 

paramount relevance with respect to other potential clinical application of fluid dynamics. 

Nevertheless, microcirculation as well as other aspects of biological fluid dynamics are gaining 

increasing attention for their potential relevance in clinical applications. Main examples include: 

‐ Pulmonary circulation deals with the forced oscillatory motion of air across the pulmonary 

airways to the pulmonary alveoli. The main issues are the presence of 

dysfunctional/insufficient alveoli, or the collapse of air vessels under extreme thrusts. In the 

same field, some attention is devoted to the fluid mechanics of main external airways (nasal 

sinuses, turbinate) for the numerous and common pathologies that affect these areas. 

‐ Biomechanics of the eye received particular attention during last years. The dynamics of the 

aqueous humour (a fluid similar to water) in the anterior chamber of the eye regulates the 

intraocular pressure and is involved in the development of glaucoma. The vitreous humour, a 

water-gel fluid that flows in the vitreous chamber during eye movements. It has important 

roles for eye function while a liquefied vitreous may be connected with retinal detachment. 

‐ Blood perfusion represents the small scale dynamics of blood into the organs. There range 

from the liver, to kidney, to muscles, up to the myocardial muscle. Perfusion analysis can be 

of interest to recognize and assess regions with insufficient blood supply (ischemic areas) 

following injury or a disease, or to assess potential absorption of drugs. Models of these are 

still at early stages for clinical application; more importantly dedicated clinical imaging 

modalities allow direct evaluation of perfusion levels in numerous organs. 

‐ Industrial fluid dynamics is a large part of clinical or biotechnological environments, in either 

laboratories or plants, in either large or microscopic domains. It is therefore important to 

known the fundamental aspects of fluid dynamics to understand their fundamental function. 

These topics are not covered here, and the reader is redirected to other books for a wider spectrum of 

fluid mechanics phenomena in biological environments (Fung, 1997; Rubenstein et al., 2015). 
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1.4. Dimensional Analysis 

It is worth dedicating some words to the topic of dimensional analysis. Dimensional analysis explores 

the implication of dimensional congruence for physical laws, and it is interesting to notice how this 

apparently trivial consideration can sometime allow simplifying or even uncovering relationships 

between physical variable. The topic of dimensional analysis is quickly introduced here for providing 

a tool that will be employed later in this book. However, this apparently trivial topic is more powerful 

than what described here (Barenblatt, 2003).  

Any physical property can be expressed in general as the product between a pure number and a 

dimensional measurement unit. To be explicit, a property X can be expresses as X=A×UNIT1  or  

X=B×UNIT2. Usage of different units brings to a different numerical coefficient; however, the physical 

property is evidently not affected by a change in the description. For example, a person height 

 

 

Figure 1.7. Overview of the circulatory anatomy. (Source: opentextbc.ca/biology/chapter/11-3-

circulatory-and-respiratory-systems/) 
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X=1.80m can be expressed as X=180cm or as X=70.87inch but the physical property itself, the height 

of that person, is evidently independent from the unit chosen to describe it. 

Similarly, a “physical law” reflects a physical phenomenon that is independent from the units used to 

describe it. As before, this is a trivial affirmation; however, this simple concept is a constraint that 

allows simplification of the physical laws itself. 

Let us use one example to show the power of dimensional analysis. Consider fluid flow in a 

cylindrical vessel, the fluid reduces its pressure (potential energy) while moving downstream due to 

the viscous friction experienced by fluid along its motion. We are willing to express how the loss of 

pressure per unit length depends on the parameters of the vessel and of the stream. Without any 

knowledge of the physical laws governing fluid dynamics, we can state that this phenomenon must 

be expressed by a physical law of the type  

 
𝑑𝑝

𝑑𝑥
= 𝑓(𝐷, 𝑈, 𝜌, 𝜇) (1.10) 

that relates the pressure gradient (pressure loss per unit length) 
𝑑𝑝

𝑑𝑥
, with all the properties that may 

influence it: the vessel diameter 𝐷, the flow velocity 𝑈, and the fluid characteristics, density 𝜌 and 

viscosity 𝜇. Assuming a simple configuration (cylindrical vessel with no bend, obstacles etc.), there 

are no other quantities coming into play. Thus a physical law (1.10) must exist although its specific 

form  may be unknown. This law depends on 4 parameters, if you had to find it by experiments, 

considering to test (as a minimum) 10 values for each parameters, you had to make 104 experiments 

to fill this 4-dimensional parameters space. Requiring multiple experimental apparatuses with 

different diameters 𝐷 and different fluids to vary 𝜌 and 𝜇.  

Here dimensional analysis can help. Equation (1.10) is a physical law, thus it does not depend on the 

specific unit of length, L, of time, T, and mass, M, chosen to express it. You can choose standard units 

(L = m, T = sec, M = Kg) or Anglo-Saxon units (L = ft, T = sec, M = lb) or any other one; the 

resulting law would be unaffected by this choice. Once the units are decided, the physical law would 

express a relationship between the numerical coefficients expressing the quantities in those units and 

the law is automatically consistent because a physical law is independent from the choice of units: 

units on the left and the right side of (1.10) must be the same in a physical law.  

However, it is not necessary to use units previously defined by some international standard in a 

separate context. It is actually smarter to use units that are natural to the specific application. In this 

case, one could use the diameter 𝐷 as unit of length, the ratio 𝐷/𝑈 as the unit of time and 𝜌𝐷3 as unit 

of mass 

 L = 𝐷 T =
𝐷

𝑈
M = 𝜌𝐷3. (1.11) 

Even with this special choice, the physical law will express a relationship between the numerical 

coefficients of every quantity in those units. Thus, express each quantity in (1.10) as the product 

between the numerical coefficients and its units (1.11), where the numerical coefficient is trivially 

obtained by dividing the dimensional quantity by its units. The dimensional quantities are thus 

expressed as  

 
𝑑𝑝

𝑑𝑥
=

𝐷

𝜌𝑈2

𝑑𝑝

𝑑𝑥
∙ [

M

L2T2] , 𝐷 = 1 ∙ [L], 𝑈 = 1 ∙ [
L

T
] , 𝜌 = 1 ∙ [

M

L3] , 𝜇 =
𝜇

𝜌𝑈𝐷
∙ [

M

LT
].  

Then insert these into (1.10) to obtain the relationship between the numerical coefficients because the 

units are automatically satisfied being it a physical law 
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𝐷

𝜌𝑈2

𝑑𝑝

𝑑𝑥
= 𝑓 (1,1,1,

𝜇

𝜌𝑈𝐷
) = 𝑓 (

𝜇

𝜌𝑈𝐷
). (1.12) 

Equation (1.12) represents the same physical law (1.10), but it is now expressed as a relationship 

between dimensionless quantities. Expressed this way it has reduced the number of independent 

variable from 4 to a single one. Thus, you can establish the physical law making just N experiments 

instead of N4 that could even be performed, for example, just with one fluid in one vessel and varying 

the fluid velocity only. 

This simplification allowed by dimensional congruence is a general rule: expressing a physical law 

in dimensionless terms allows reducing the number of variables by a number equal to the number of 

independent dimensional units involved in the law. In the previous case, a relationship between 5 

variables involving 3 units has been simplified in a relationship between 2 dimensionless variables. 

It is easy to demonstrate that the resulting law is independent from the specific units selected. In the 

previous example we could use, for example, a different unit time unit  

 L = 𝐷 T =
𝜌𝐷2

𝜇
M = 𝜌𝐷3 

These give 

 
𝑑𝑝

𝑑𝑥
=

𝜌𝐷3

𝜇2

𝑑𝑝

𝑑𝑥
∙ [

M

L2T2] , 𝐷 = 1 ∙ [L], 𝑈 =
𝜌𝐷𝑈

𝜇
∙ [

L

T
] , 𝜌 = 1 ∙ [

M

L3] , 𝜇 = 1 ∙ [
M

LT
];  

that inserted into (1.10) gives 

 
𝜌𝐷3

𝜇2

𝑑𝑝

𝑑𝑥
= 𝑓 (1,

𝜌𝐷𝑈

𝜇
, 1,1), 

that can be recast as  

 
𝐷

𝜌𝑈2

𝑑𝑝

𝑑𝑥
= (

𝜌𝑈𝐷

𝜇
)
−2

𝑓 (
𝜌𝐷𝑈

𝜇
) = 𝑓 (

𝜇

𝜌𝐷𝑈
),  

to give a result functionally identical to (1.12). 

It is actually a general result for fluid flowing in smooth cylindrical vessels that the pressure loss per 

unit of length is expressed in general as  

 
𝑑𝑝

𝑑𝑥
=

𝜌𝑈2

2𝐷
𝑓(𝑅𝑒), (1.13) 

Where 𝑓 is known as the (Darcy) friction factor and 𝑅𝑒 =
𝑈𝐷

𝜈
  is the Reynolds number, a classical 

dimensionless number indicating the relative importance of kinetic energy with respect to viscous 

frictions that we will encounter several times later. 

It should be underlined that it was possible to obtain the general resistance law (1.12) or (1.13) based 

on dimensional consideration only without using any knowledge of fluid dynamics. This example 

demonstrates the power of the simple concept of dimensional analysis. Fluid dynamics theory may 

be then advocated to better specify the function 𝑓(𝑅𝑒); however, we will see that this is not immediate 

in most of the cases and (1.12) may become the only theoretical result to be integrated by physical 

experiments.  

It is therefore of fundamental importance to formulate any physical law in dimensionless terms.  

If we extend the example (1.10) to consider a pulsatile flow with period 𝑇,   
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𝑑𝑝

𝑑𝑥
= 𝑓(𝐷, 𝑈, 𝜌, 𝜇, 𝑇) (1.14) 

Selection of the same units (1.11) gives the dimensionless relationship 

 
𝐷

𝜌𝑉2

𝑑𝑝

𝑑𝑥
= 𝑓(𝑅𝑒, 𝑆𝑡) (1.15) 

showing that pressure changes as before due to friction (dependence on the Reynolds number, 𝑅𝑒) 

and it also depends on the frequency of oscillation that is expressed by the Strouhal number 𝑆𝑡 =
𝐷

𝑈𝑇
 

in dimensionless form. 

Dimensional analysis permits to reduce the number of independent variable to their minimum and to 

recognize the dimensionless number that characterizes the phenomenon under analysis. It is a 

powerful tool in complex conditions, for example when mathematical equations do not lead to a 

closed solutions. It will be used in some occasions to progress across critical passages that cannot be 

solved otherwise. 
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2. Fluid Statics 

2.1. Pressure distribution 

Fluid statics deals with the forces exerted by fluids in absence of motion. These are of enormous 

importance in numerous applications, from industrial to biological, as they represent the basic stress 

state in every fluid domain. Motion, when it occurs, may induce modification on top of this 

fundamental state. 

Statics means that the velocity vector field is identically zero, 𝒗(𝒙, 𝑡) ≡ 0. As we have seen in the 

definition of fluids and of viscosity, shear stresses develop in consequence of differential velocities 

(shear rate, or rate of deformation). Therefore, in static conditions, shear stresses are also absent and 

the stress made by still fluid over any surface has only a normal component 

 𝝉 = 𝑝𝒏, (2.1) 

where 𝒏 is the normal to the surface (a vector perpendicular to the surface, directed toward the surface 

and of unit modulus) and 𝑝(𝒙) is the pressure field. Let me remark that pressure is a scalar quantity 

that has no direction; pressure gives rise to a stress vector (2.1) only after it acts on a surface in which 

case the direction is given by the normal 𝒏 directed toward the surface. 

Statics obey the law of equilibrium, which states that the sum of volumetric forces and of surface 

forces acting on a generic volume 𝑉 is zero 

 ∫ 𝒇𝑑𝑉
𝑉

+ ∫ 𝑝𝒏𝑑𝑆
𝑆

= 0 (2.2) 

where the surface 𝑆 is that surrounding the volume 𝑉. Equation (2.2) is the integral balance equation 

of fluid statics. 

Let’s derive the same equation in differential form. Balance equation (2.2) is valid for an arbitrary 

volume. Consider an infinitesimal cube of size 𝑑𝑥 × 𝑑𝑦 × 𝑑𝑧,  

 

the balance (2.2) along the x-direction  

 𝑓𝑥𝑑𝑥𝑑𝑦𝑑𝑧 + 𝑝𝑑𝑦𝑑𝑧 − (𝑝 +
𝜕𝑝

𝜕𝑥
𝑑𝑥)𝑑𝑦𝑑𝑧 = 0  

presents the 𝑥-component of the volume force, 𝑓𝑥, and the pressure force acts only on the two face, 

with normal 𝒏 = [1, 0, 0] and 𝒏 = [−1, 0, 0], respectively and becomes 

 
Figure 2.1. Balance applied on infinitesimal cube 

x

z

y
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 𝑓𝑥 =
𝜕𝑝

𝜕𝑥
.  

In general vector form, the differential equation of fluid statics reads  

 𝒇 = ∇𝑝; (2.3) 

that expresses the balance on every fluid particle between the volumetric forces and the pressure 

gradient. It is immediate to verify that the result (2.3) could also be obtained directly from equation 

(2.2) by transforming the second terms therein into a volumetric integral and then extending the 

equality to the terms inside the integral for the arbitrariness of the volume (or using an infinitesimal 

volume). This requires the application of the Gauss theorem that will be recalled later in section 3.1 

The volumetric force of greatest interest for normal applications is the gravitational force. It can be 

expresses as  

 𝒇 = −𝛾𝒌 = −∇𝛾𝑧;  

where 𝒌 is the unit vector directed upwards against gravity, and 𝑧 is the corresponding direction. In 

case of gravitational forces, equation (2.3) becomes 

 ∇(𝑝 + 𝛾𝑧) = 0. (2.4) 

Equation (2.4) states that, in a fluid subjected to gravitational field only, pressure, 𝑝(𝑧), is constant 

on 𝑥𝑦-planes at constant 𝑧 and it increases linearly as the quote 𝑧 decreases. An easier application of 

equation (2.4) comes with the introduction of a new quantity called the static head defined as 

 ℎ = 𝑧 +
𝑝

𝛾
. (2.5) 

Using this definition, equation (2.4) expresses the first fundamental concept of fluid statics: the static 

head remains constant inside a same fluid; in other words, the value of the static head characterizes 

the specific potential energy (per unit of weight) of a volume of fluid. The constancy of the static 

head (or equation 2.4) allows evaluating the pressure difference between two points at different quote 

z𝑧inside the same fluid. Consider two points then (2.4) tells 

 𝑝1 + 𝛾𝑧1 = 𝑝2 + 𝛾𝑧2  

thus 

 𝑝2 = 𝑝1 + 𝛾(𝑧1−𝑧2)  

pressure difference between two point is equal to the difference of quote multiplied by the specific 

weight; the pressure at the lower point is increased by the weight of the column of fluid above it. 

Take point “1” at the free surface subjected to atmospheric pressure and “2” at a generic level z    

 𝑝(𝑧) = 𝑝𝐴𝑡𝑚 + 𝛾(𝑧surface − 𝑧)  

if you define the depth 휁 = 𝑧surface − 𝑧, then the pressure grows linearly with the depth 휁  

 𝑝(휁) = 𝑝𝐴𝑡𝑚 + 𝛾휁. 

It is often useful to use pressure relative to the atmospheric pressure instead of its absolute value, 

because atmospheric pressure is almost everywhere the reference value and disappears when dealing 

with pressure differences as happens in most cases. Assuming atmospheric pressure as the zero value 

of pressure, then one can write simply 
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 𝑝(휁) = 𝛾휁. 

It is also immediately evident from (2.5) that the level of the free surface where pressure is zero 

represents the value of the static head for that fluid.  

The second fundamental concept of fluid statics is based on the equilibrium of the interface between 

two fluids. Assuming that surface tension is negligible (in absence of capillary phenomena that should 

be treated separately) an interface between two fluid is subjected only to pressure on the two faces 

and its equilibrium gives the result that pressure is the same on the two faces at the interface between 

two fluids.  

These two principles make possible the evaluation of pressure difference between all places in fluid 

filled containers. Figure 2.2 shows on the left a simple case where pressure increases linearly with 

depth from the zero value at the surface. Differently, the right side shows pressure profile with a two 

immiscible fluids with different specific weight, 𝛾1 and 𝛾2 > 𝛾1, and non-zero pressure value at the 

free surface. It is easy to show that, with reference to figure symbols, pressure takes the value 𝑝(휁1) =

𝑝0 + 𝛾1휁1 in the upper fluid and 𝑝(휁2) = 𝑝0 + 𝛾1𝐻 + 𝛾2휁2. 

 

An interesting and technologically important case is the differential manometer shown in figure 2.3.  

A tool that allows measuring the difference in static head between two reservoirs filled with a same 

fluid of specific weight 𝛾 connected by a small duct partially filled with a heavier fluid (typically 

mercury) of specific weight 𝛾m. The static head is constant inside each reservoir, thus we can use the 

points at the edge with the heavier fluid, and write by definition, with reference to figure 2.3 

 ℎ1 − ℎ2 = 𝑧1 +
𝑝1

𝛾
− 𝑧2 −

𝑝2

𝛾
=

𝑝1−𝑝2

𝛾
− ∆.  

Now apply the conservation of ℎ inside the heavier fluid to write 

 𝑧1 +
𝑝1

𝛾m
= 𝑧2 +

𝑝2

𝛾m
⇒ 𝑝1 − 𝑝2 = 𝛾m∆  

and substituting back 

                                 
Figure 2.2. Pressure distribution with depth. 
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 ℎ1 − ℎ2 = (
𝛾m−𝛾

𝛾
)∆. (2.6) 

The reading of the difference of height ∆ in the differential manometer permits to compute the 

difference of static head between the two chambers. Often one chamber has a known head (for 

example it is open to the atmosphere) and it is used as reference to measure directly the head in a 

second chamber. Once the head is known, pressure can be obtained at every point.  

 

 

 

2.2. Forces on Plane Surfaces 

Consider a planar surface with area 𝐴 and normal 𝒏 directed towards the surface The force vector 

acting on the surface is 

 𝑭 = ∫ 𝑝𝒏𝑑𝐴 = 𝐹𝒏
𝐴

  

it has modulus 𝐹 and direction given by 𝒏. Consider the surface wet by a single fluid whose pressure 

can be expressed in general as 𝑝 = 𝑝0 + 𝛾(𝑧0 − 𝑧) 

 𝐹 = ∫ 𝑝(𝑧)𝑑𝐴
𝐴

= 𝑝0𝐴 + 𝛾𝑧0𝐴 − 𝛾 ∫ 𝑧𝑑𝐴
𝐴

= 𝑝0𝐴 + 𝛾(𝑧0 − 𝑧𝐺)𝐴 = 𝑝𝐺𝐴  

where we have used the definition for the center G of a surface for any coordinate 𝑥𝐺 =
1

𝐴
∫ 𝑥𝑑𝐴
𝐴

. 

Thus the force on a plane surface has always modulus equal to pressure on the center of the surface 

multiplied by the area of the surface, and it is directed towards the surface. 

 𝑭 = 𝑝𝐺𝐴𝒏. (2.7) 

The distribution of pressure is equivalent to the force (2.7) applied to an application point C. However, 

let me remark with emphasis that such a point of application C is not the center G of the surface. The 

 

 

 Figure 2.3. Differential manometer 
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point of application is the center of the pressure distribution that is usually below the center of the 

surface because pressure is higher at higher depth.  

The point of application is needed to compute the torque 𝑇 of the force about an axis. Consider a 

horizontal axis at depth 휁1 and compute the torque for a vertical surface. By definition one can write  

 𝑇 = ∫ (휁 − 휁1)𝑝(휁)𝑑𝐴
𝐴

= (휁𝐶 − 휁1)𝐹 (2.8) 

where 휁𝐶  is the depth of the point of application. Choosing the reference 휁 = 0 at the position where 

𝑝 = 0, it is immediate to show that  

 휁𝐶 =
∫ 2𝑑𝐴𝐴

∫ 𝑑𝐴
𝐴

 (2.9) 

and it is also immediate to show that equation (2.8) is valid when the surface is not vertical as well. 

The integrals in equation (2.8) are easy to evaluate when the surface is rectangular contained between 

two depths 휁𝐴 and 휁𝐵 > 휁𝐴.  

 휁𝐶 =
2

3

𝐵
3− 𝐴

3

𝐵
2− 𝐴

2 (2.10) 

Moreover, when the surface’s upper edge is on the free surface the distribution of pressure is 

triangular and the center of pressure C is at a depth 2/3 the surface height; while, when the surface is 

horizontal, pressure is constant and application is on the surface center C=G. 

In rectangular surfaces, it is sometime convenient to divide the pressure distribution as the sum of a 

rectangular profile, applied in the surface center, and a triangular profiles applied at two-third the 

depth; then compute the torque as the sum of the two individual ones. In more complex surfaces the 

torque can be computed by dividing it in a composition of simpler surfaces.  

All these methods provide an immediate understanding of the expected results and are useful for 

design of for drawing approximate results in complex conditions when the calculation (2.8) is 

eventually computed by numerical integration. 

2.3. Forces on Curved Surfaces 

Consider now a generic surface 𝑆, with arbitrary curved shape. An infinitesimal force 𝑑𝑭 = 𝑝𝒏𝑑𝑆 

acts at every individual infinitesimal element of surface 𝑑𝑆 and local normal 𝒏. Therefore, the total 

force acting on the surface 𝑆 is the integral 

 𝑭 = ∫ 𝑝𝒏𝑑𝑆
𝑆

. (2.11) 

Differently from the case of plane surfaces, the normal 𝒏 is not a constant and the integral cannot be 

simplified like before. A method to compute (2.11) can be obtained by advocating the global balance 

(2.2). 

Consider first the case of a closed surface: a surface 𝑆 surrounding a volume 𝑉 that is in equilibrium 

immersed in a fluid. The force is given by the integral (2.11) evaluated on the external side of the 

surface 𝑆. It is important to remind that the value of the integral is independent whether the internal 

volume 𝑉 is occupied by a body (kept static by some mean) or it is a volume of fluid, because under 

static conditions the distribution of pressure depends on the depth of each point only. Consider first 

the case where 𝑉 is of a volume of fluid and 𝑆 is thus a mathematical surface with the same fluid on 
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both sides. We are under statics condition and the volume is in equilibrium; this means that the sum 

of all forces acting on the volume is zero. Following the integral equilibrium (2.2), these forces are 

the weight of the fluid volume 𝑆  and the integral of pressure on the surface 𝑆 

 −𝛾𝑉𝒌 + ∫ 𝑝𝒏𝑑𝑆
𝑆

= 0. (2.12) 

with 𝒌 the unit vector directed against gravity. Thus equilibrium tells that horizontal forces are zeros 

and vertical force is directed upward (buoyancy force) 

 𝑭 = 𝛾𝑉𝒌. (2.13) 

When a body, kept in equilibrium by some external force, occupies the volume 𝑉 the force made by 

the fluid on the surface of the body is given by the same integral that appears in the second term of  

(2.12), and the value of that integral is independent from the presence of the body and takes the same 

result (2.13). Equation (2.13) states Archimedes' principle (dated back to the 3rd century b. c.), which 

says that “a body immersed in a fluid is subjected to a force directed upward that is equal to the weight 

of the displaced fluid”. 

Consider a solid body with its own weight 𝛾𝑠𝑉, being 𝛾𝑠 the solid specific weight; when it is immerged 

in a fluid it is subjected to its weight and the buoyancy force (2.13). As a results, the apparent weight 

of a body immersed in a fluid is reduced and becomes (𝛾𝑠 − 𝛾)𝑉. The value (𝛾𝑠 − 𝛾) represent the 

apparent specific weight of an immersed body and it is often useful for immediate evaluations. 

Let us now move to generic surface 𝑆 that can be open and have fluid on one or the other side. The 

procedure to compute the force acting on the surface 𝑆, equation (2.11), is that of selecting a volume 

of fluid partly surrounded by 𝑆 and partly closed by planar surfaces. That volume is in equilibrium 

and obeys the law (2.2) that represents a balance of forces. These forces comprise volumetric forces 

that can be calculated, forces on plane surfaces that we have learnt above to evaluate, and force of the 

curved surface that remains the only unknown in the balance (2.2).  

This apparently complex procedure is relatively straightforward in practice. Consider for example a 

surface made of a quarter of a circumference like the one shown in figure 2.4. 

 

 

 

Figure 2.4. Calculation of the force on a curved surface 
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Select an arbitrary control volume to perform the balance of forces, for example the quarter of 

cylinder of radius 𝑅. The forces (per unit width) acting on that volume are:  

‐ the weight of the fluid volume 𝐹1 = 𝛾𝑉 directed downward;  

‐ the force on the horizontal plane boundary 𝐹2 where pressure is 𝛾ℎ and the normal is directed 

downward,  

‐ the force on the vertical boundary  𝐹3 where pressure ranges from 𝛾ℎ to 𝛾(ℎ + 𝑅), 

‐ the unknown force vector made by the curve surface to the fluid volume, that is equal in 

module and opposite in direction to the force 𝑭 = [𝐹𝑥, 𝐹𝑦] made by the fluid on the surface. 

The balance along the horizontal rightward direction, 𝑥, and vertical upward direction, 𝑧, gives 

  
𝐹𝑥 = −𝐹3 = −𝛾 (ℎ +

𝑅

2
)𝑅

𝐹𝑧 = −𝐹1 − 𝐹2 = −𝛾
𝜋

4
𝑅2 − 𝛾ℎ𝑅

.  

thus showing that the force on the surface is directed leftward and downward. 

The result is always independent from the chosen volume, although some choices permit easier 

calculations. For example, in this case, it is immediate to see that  the same result would have been 

achieved by selecting a volume extending up to the free surface; the force 𝐹2 would be equal to the 

volume of fluid above and the horizontal forces on the two sides would be identical and opposite. We 

could also use a smaller volume bounded by the chord connecting the two extremes of the surface; 

calculations are less immediate but result is identical. 

It is useful to always keep in mind that the force is the integral of pressure on the surface as defined 

by (2.11), and that such calculation must not necessarily be performed on a fluid volume that is 

effectively present in the current configuration. It is therefore advisable to idealize the problem under 

investigation: immerse the surface under analysis in an unbounded fluid and select a volume bounded 

by an ideal surface where the integral of pressure is identical to that looked for. For example, in figure 

2.4, if the fluid was on the other side of the surface we could idealize the problem and consider the 

volume on the other side (a square minus a circle). But we could also consider exactly the same 

volume (a quarter of a circle) noticing that the distribution of pressure on the external face is identical 

and opposite to that on the internal face, because pressure depends on depth only. Thus the module is 

the same, and the direction opposite; the calculation could be the same as before and simply changing 

sign to the resulting force. 

A balance like (2.2) can be rewritten in terms of the moment of forces, or torques, to evaluate the 

torque on a surface. Indeed, (2.8-2.9) permits to compute the moment of the force on planar surfaces 

and the moment of a weight is just a matter of computing center of mass.  

Let us apply this concept to the example in figure 2.4 to evaluate the moment of the force on the 

surface 𝑆 relative to the center O. The torque balance, assumed positive counterclockwise, can be 

written as 

 𝑇𝑂 = 𝐹1𝑟1 + 𝐹2𝑟2 − 𝐹3𝑟3 = 𝛾
𝜋

4
𝑅2 ∙

4𝑅

3𝜋
+ 𝛾ℎ𝑅 ∙

𝑅

2
− 𝛾 (ℎ +

𝑅

2
)𝑅 ∙ (

2

3

(ℎ+𝑅)3−ℎ3

(ℎ+𝑅)2−ℎ2 − ℎ) 

where the definition (2.10) was used to evaluate the center of the force 𝐹3. In the calculation of torque 

on rectangular surfaces it is sometime be easier to separate the trapezoidal force distribution as the 

sum, say 𝐹3 = 𝐹3𝑎 + 𝐹3𝑏, of a rectangular distribution that gives 𝐹3𝑎 = 𝛾ℎ𝑅 and whose arm is in this 
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case equal to 𝑅/2, plus the triangular distribution 𝐹3𝑏 = 𝛾𝑅2/2 whose arm is equal to 2𝑅/3, from 

which 

 𝑇𝑂 = 𝐹1𝑟1 + 𝐹2𝑟2 − 𝐹3𝑎𝑟3𝑎 − 𝐹3𝑏𝑟3𝑏 = 𝛾
𝜋

4
𝑅2 ∙

4𝑅

3𝜋
+ 𝛾ℎ𝑅 ∙

𝑅

2
− 𝛾ℎ𝑅 ∙

𝑅

2
− 𝛾

𝑅2

2
∙
2

3
𝑅 

Both formulas are equivalent, although the second was easier to formulate, and compute the torque 

in the surface 𝑆 about the point O. It is immediate to notice that in this specific case the torque is 

exactly zero. This result could be anticipated here because the curve is a portion of a cylinder and 

every individual (infinitesimal) force acting normally to its surface is directed along with the radius 

and present zero torque about the center O of the circumference. 

2.4. Example calculation of static forces 

We present some examples where the static force can be readily computed by simple application of 

the balance laws described above. When not expressly indicated, the subscripts H and V stands for 

horizontal and vertical, respectively 

 

Example 1.  Compute force and torque, per unit width, on the cylindrical body hinged in A. Consider 

𝐻=2m; ℎ=5m; 𝑅=1m; 𝛾=104N/m3. 

 

Solution:  

𝐹𝐻 = 0, 

𝐹𝑉 = 𝛾𝑉 + 𝛾(ℎ − 𝐻)2𝑅 = 𝛾𝑉 + 𝛾(ℎ − 𝐻)2𝑅 = 𝛾 (
𝜋

2
𝑅2 + 2𝑅(ℎ − 𝐻)) = 7.57 104

N

m
, 

𝑇𝐴 = 𝐹𝑉 ∙ 𝑅. 

 

Example 2. Compute force and torque, per unit width, for the entire surface, made of half a circle 

plus a straight part, hinged in A. Consider: ℎ=6m; 𝑅=2m;  𝛾=104 N/m3. 
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Solution:  

𝐹𝐻 = 𝛾
ℎ2

2
= 18 104N, 𝑟𝐻 =

ℎ

3
= 2m; 

𝐹𝑉 = 𝛾 (2ℎ𝑅 +
𝜋

2
𝑅2) = 30.3 104 N, 𝑟𝑉 = 𝑅 = 2m; 

𝑇𝐴 = −𝐹𝐻𝑟𝐻 + 𝐹𝑉𝑟𝑉 = 24.6 104 J. 

 

Example 3. Compute force and torque, per unit width, for the surface made of two semicircles, hinged 

in upper edge A.  

 

Solution:  

𝐹𝐻 = 𝛾8𝑟2, 𝑟𝐻 =
2

3
4𝑟, 𝐹𝑉 = 𝛾

𝜋

2
𝑟2 − 𝛾

𝜋

2
𝑟2 = 0; 

notice that 𝐹𝑉 is a force couple with arm 𝑟𝑉 =
4

3𝜋
𝑟. 

𝑇𝐴 = 𝛾8𝑟2 ∙
2

3
4𝑟 − 𝛾𝜋𝑟2 ∙

4

3𝜋
𝑟 = 20 𝛾𝑟3. 
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Example 4. Define the volume 𝑉 of the sphere, of negligible weight, such that its buoyancy is as 

strong as the downward force on the lower surface of area A.  

 

Solution:  

𝛾ℎ𝐴 = 𝛾𝑉, 𝑉 = ℎ𝐴. 

 

Example 5.  A plane surface, made of homogeneous material of negligible thickness, and hinged in 

point C, separates two reservoirs. Compute the weight 𝑊 of the surface (per unit of width) to ensure 

that it remains in equilibrium. Consider HA=1.0 m, HB=2.0 m. 

 

Solution:  

Fluid torque is 

𝐹 = 𝛾(HB − HA)HA√2, 𝑟 = HA
√2

2
, 𝑇𝑓 = 𝐹 ∙ 𝑟 = 𝛾(HB − HA)HA2; 

the same result could be found considering separately the left and right sides of the surface 

𝐹𝐿 = 𝛾HA2 √2

2
, 𝑟 =

2√2

3
HA, 𝑀𝐿 = 𝛾

2

3
HA2; 

H A

H B

H A

C  
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𝐹𝑅1 = 𝛾(HB − HA)HA√2, 𝑟 =
√2

2
HA, 𝑀𝑅1 = 𝛾(HB − HA)HA2; 

𝐹𝑅2 = 𝛾HA2 √2

2
, 𝑟 =

2√2

3
HA, 𝑀𝑅2 = 𝛾

2

3
HA2; 

noticing that FL and FR2 cancel each other.  

Solid weight torque is 

𝑇𝑠 = 𝑊
HA

2
 . 

Equilibrium 

𝑊 = 2𝛾(HB − HA)HA = 20 KN. 

 

Example 6.  Evaluate the weight of the cover such that it equilibrates the force exerted by the fluid 

from below. Consider 𝛾water=104 N/m3 e 𝛾oil=6800 N/m3; let heights be ℎ1=2m e ℎ3=36cm, and 

diameters 𝐷=5m, 𝑑=20cm. 

 

Solution:  

𝐹 = (𝛾oilℎ1 − 𝛾waterℎ3)𝜋
𝑑2

4
= 314N. 

 

Example 7.  Compute force and torque relative to the hinge in A, per unit width, on the surface of the 

object, made of half a cylinder or radius 𝑅=2m with a cylindrical cavity of radius 𝑟 = 𝑅/4. Consider 

the fluid of specific weight 𝛾=104 N/m3. 
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Solution:  

𝐹𝑥 = −𝛾2𝑅2, 𝐹𝑦 = 𝛾 (𝜋
𝑅2

2
− 𝜋𝑟2) . 

Pressure on the outer cylindrical surface acts radially and gives no momentum. Momentum about A 

is only due to the pressure on the inner cylinder surface:  

𝑇𝐴 = 𝛾𝜋𝑟2
𝑅

2
. 

 

Example 8. Compute the torque acting on the rectangular cover of length 𝑑=50cm, and unitary width. 

Consider the specific weigh of fluid 𝛾=104 N/m3 and that of mercury 𝛾m=130 N/dm3, in the 

differential manometer whose reading is ∆=40 mm. Consider the following dimensions ℎ1=1.12m, 

ℎ2=62cm, 𝑎=120cm, 𝑏=50dm. 

 

Solution:  

ℎ = ℎ1 − (
𝛾𝑚 − 𝛾

𝛾
)∆= 0.64m, 𝐹 = 𝛾ℎ𝑑 = 3.2KN, 𝑇 = 𝐹

𝑑

2
= 800J. 
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Example 9.  Compute the tilting moment on the structure. Consider 𝛾=104 N/m3 and measures ℎ=6m, 

𝑏=50 cm, 𝐵=2m. 

 

Solution:  

𝑀 = 𝛾
ℎ2

2

ℎ

3
= 𝛾

ℎ3

6
= 3.6 105J. 

 

Example 10.  Compute the torque, relative to the basis, made by the fluid on the oblique septum. 

Geometric measures are 𝑎=2m, 𝑏=4m, e ∆=20cm.  The fluid specific weight is 𝛾=9810N/m3, pressure 

in the gas chamber is 𝑃1=104Pa at height ℎ1=1m. 

 

Solution:  
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ℎ = ℎ1 +
𝑃1

𝛾
= 2.02m, 𝐹 = 𝛾 (ℎ +

𝑎

2
)𝑎√2 = 83.78KN,

휁𝐶 =
2

3

(ℎ + 𝑎)3 − ℎ3

(ℎ + 𝑎)2 − ℎ2
= 3.13m, 𝑟 = (ℎ + 𝑎 − 휁𝐶)√2 = 1.258m, 𝑇 = 𝐹 ∙ 𝑟 = 105KJ.

 

Torque could be evaluated by considering separately the contribution of the square and triangular 

distribution of pressure 

𝐹𝑠𝑞 = 𝛾ℎ𝑎√2 = 56KN, 𝑇𝑠𝑞 = 𝐹𝑠𝑞

𝑎

2
√2 = 79KJ,

𝐹𝑡𝑟 = 𝛾
𝑎

2
𝑎√2 = 28KN, 𝑇𝑡𝑟 = 𝐹𝑡𝑟

𝑎

3
√2 = 26KJ, 𝑇 = 𝑇𝑠𝑞 + 𝑇𝑡𝑟 = 105KJ.

 

 

Example 11. Define the width 𝑋 of the base such that the surface is in equilibrium to rotation with 

respect to the rightmost edge. 

 

Solution:  

𝛾
ℎ𝐿

2

𝐿

3
= 𝛾ℎ𝑋

𝑋

2
, 𝑋 =

𝐿

√3
. 

 

Example 12.  Compute the force on the semisphere at the base of bowl. Assume 𝛾=9810 N/m3 and 

pressure on the upper gas 𝑃0=9810Pa; fluid height is ℎ=2.2m and radius at the base 𝑅=1m. 
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Solution:  

𝐻 = ℎ +
𝑃0

𝛾
= 3.2m, 𝐹 = 𝛾𝐻𝜋𝑅2 + 𝛾

2

3
𝜋𝑅3 = 120KN. 

 

Example 13. Consider the rigid surface, made of a horizontal wall of width 𝐿 and a vertical wall of 

height ℎ. Compute the value of the former such that it is in equilibrium to ration around the hinge A. 

 

Solution:  

𝛾
ℎ3

6
= 𝛾ℎ

𝐿2

2
, 𝐿 =

ℎ

√3
 . 

 

Example 14.  Compute the torque about the hinge in A for the surface made of two rectangular walls 

and a central semicircle. Consider 𝐷=6m, and 𝛾=104 N/m3. 

 

Solution: 

The circular surface does not generate torque about A. The upper and lower straight walls give, 

respectively  
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𝑇𝑢 = 𝛾
𝐷2

2
(
𝐷

3
+

𝐷

2
) = 9 105J, 

𝑇𝑙 = 𝛾
𝐷2

2
(
2

3
𝐷 +

𝐷

2
) + 𝛾2𝐷2 (

𝐷

2
+

𝐷

2
) = 55.8 105J, 

𝑇 = 𝑇𝑙 − 𝑇𝑢 = 46.8 105J. 

 

Example 15. Compute the ratio between vertical and horizontal components of the force made by 

fluid on the wall made of a rectangular wall above a semi cylindrical surface. Consider 𝐻 = 𝐷/2. 

 

Solution:  

𝐹𝐻 = 𝛾 (𝐻 +
𝐷

2
)𝐷 + 𝛾

𝐻2

2
=

9

8
𝛾𝐷2, 𝐹𝑉 = 𝛾𝜋

𝐷2

8
,

𝐹𝑉

𝐹𝐻
=

𝜋

9
 . 

 

Example 16.  Compute the function 𝑀(ℎ), of the tilting moment about the hinge A, per unit width, 

of the oblique wall as a function of the height ℎ. Consider the quote 𝑎 = 2ℎ/3 and gas pressure in 

the chamber 𝑃0 = 𝛾ℎ. 

 

Solution: 
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The length of the wall is 𝐿 =
ℎ

sin(30°)
= 2ℎ, and pressure at the top of the wall is equal to that given 

by a depth 𝐻 below a free surface, where 

𝐻 = 𝑎 +
𝑃0

𝛾
=

5

3
ℎ, 

Considering the pressure distribution as the sum of square plus triangular profiles, respectively 

𝐹𝑠𝑞 = 𝛾𝐻𝐿, 𝑀𝑠𝑞 = 𝛾𝐻𝐿 ∙
𝐿

2
=

10

3
𝛾ℎ3,

𝐹𝑡𝑟 = 𝛾ℎ
𝐿

2
, 𝑀𝑡𝑟 = 𝛾ℎ

𝐿

2
∙
𝐿

3
=

2

3
𝛾ℎ3;

 

from which the result follows 

𝑀(ℎ) =
10

3
𝛾ℎ3 +

2

3
𝛾ℎ3 = 4𝛾ℎ3. 

The same result could be found considering the momentum of the entire force acting con the center 

C of pressure distribution  

𝐹 = 𝛾 (𝐻 +
ℎ

2
) 𝐿 =

13

3
𝛾ℎ2, 휁𝐶 =

2

3

(ℎ + 𝐻)3 − 𝐻3

(ℎ + 𝐻)2 − 𝐻2
=

86

39
ℎ, 𝑟 = 2(𝐻 + ℎ − 휁𝐶) =

12

13
ℎ; 

from which the same result follows 

𝑀(ℎ) = 𝐹 ∙ 𝑟 =
13

3
𝛾ℎ2 ∙

12

13
ℎ = 4𝛾ℎ3. 

 

Example 17. Compute force and torque, about the hinge in A, on the vertical surface (per unit width). 

Consider 𝑃0=150mmHg, ℎ=5m, 𝑎=2m; and the specific weight 𝛾=10KN/m3.  

 

Solution:  

𝑃0 = 150mmHg = 20KPa = 𝛾 ∙ 2m, 
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Considering the pressure distribution as the sum of square plus triangular pressure profiles, 

respectively 

𝐹 = 𝐹𝑠𝑞 + 𝐹𝑡𝑟 = (𝑃0 + 𝛾𝑎)ℎ + 𝛾
ℎ2

2
= 200KN + 125KN = 325KN, 

𝑇 = 𝐹𝑠𝑞 ∙
ℎ

2
+ 𝐹𝑡𝑟 ∙

ℎ

3
= 500KJ + 208KJ = 708KJ. 

In alternative, considering the entire force at once 

ℎ1 =
𝑃0

𝛾
+ 𝑎 = 4m, ℎ2 = ℎ1 + ℎ = 9m, ℎ𝐶 =

2

3

ℎ2
3 − ℎ1

3

ℎ2
2 − ℎ1

2 = 6.82m, = 2.18m; 

𝐹 = (𝑃0 + 𝛾 (𝑎 +
ℎ

2
)) ℎ = 325KN, 𝑇 = 𝐹 ∙ (ℎ2 − ℎ𝐶) = 708KJ. 

 

Example 18. Compute the static force acting on the semispherical surface. Consider H=3.6m, 

R=1.6m, 𝛾=9810 N/m3. 

 

Solution:  

𝐹 = 𝛾𝑉 = 𝛾 (𝜋R2H −
2

3
𝜋R3) = 200KN. 

 

Example 19. Compute the horizontal and vertical components of the force made by the fluid on the 

semispherical surface. Assume 𝐻=50cm  𝐻=1m and the fluid specific weight  𝛾=9810 N/m3. 

 

 

Solution:  

R 
H  
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𝐹𝐻 = 𝛾 (𝐻 +
𝐷

2
)𝜋

𝐷2

4
= 7705N, 𝐹𝑉 = 𝛾

2

3
𝜋

𝐷3

8
= 2568N. 

 

Example 20. Compute the force acting on the semispherical surface at the bottom of the bowl. 

Consider the following relationships 𝛾𝑜𝑖𝑙 = 2/3𝛾, ℎ1 = 1.8𝑅, ℎ2 = 0.2𝑅, ℎ3 = 1.5𝑅, where 𝑅=3m 

and 𝛾=9810N/m3. 

 

Solution:  

ℎ = ℎ1 + ℎ2 +
𝛾𝑜𝑖𝑙

𝛾
ℎ3 = 3𝑅, 𝐹𝐻 = 0, 𝐹𝑉 = 𝛾ℎ𝜋𝑅2 + 𝛾

2

3
𝜋𝑅3 = 𝛾

11

3
𝜋𝑅3 = 3.06MN . 
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3. Fluid Kinematics 

3.1. Recalls of differential vector calculus 

Let us recall some basic notions of differential vector calculus that are extensively used afterwards.  

The differential vector operator nabla is useful to perform derivatives in three-dimensional (3D) 

fields. In Cartesian coordinates the operator nabla is defined as 

 ∇=

[
 
 
 
 

𝜕

𝜕𝑥
𝜕

𝜕𝑦

𝜕

𝜕𝑧]
 
 
 
 

.  

The gradient of a scalar field 𝑓(𝒙) is a vector field, ∇𝑓, obtained by applying the operator Nabla to 

the field. In Cartesian coordinates the gradient is a vector 

 ∇𝑓 =

[
 
 
 
 
𝜕𝑓

𝜕𝑥
𝜕𝑓

𝜕𝑦

𝜕𝑓

𝜕𝑧]
 
 
 
 

 (3.1) 

and describes how the field 𝑓 changes in space. For example, if ∇𝑓 has one component it means that 

the field 𝑓 changes along that component. In other words, the gradient vector is always perpendicular 

to the lines or surfaces where 𝑓 is constant. Knowledge of the gradient vector permits the evaluation 

of partial derivatives along an arbitrary direction, say 𝒏, by projection 

 
𝜕𝑓

𝜕𝑛
= ∇𝑓 ∙ 𝒏 . (3.2) 

Gradient vector fields are important in physics. Some vector field, 𝑭, can be expressed as the gradient 

of a scalar field, 𝑭 = ∇𝑓; in this case, the field 𝑭 is a conservative field and the scalar field 𝑓 is called 

the potential of 𝑭. It is immediate to verify that when 𝑭 = ∇𝑓, its integral along a curve is trivially 

the difference of the potential 𝑓 at the two ends and does not depend from the path itself, which is the 

definition of conservative field. 

We have seen that the gradient of a scalar field is a vector field; indeed the gradient operation 

increases the dimensionality. Similarly, the gradient of a vector field, 𝒗(𝒙), is a tensor field, ∇𝒗, 

whose component i,j in Cartesian coordinates is 

 (∇𝒗)𝑖𝑗 =
𝜕𝑣𝑖

𝜕𝑥𝑗
 . (3.3) 

The divergence of a vector field, 𝒗(𝒙), is a scalar field, ∇ ∙ 𝒗, obtained by performing formally the 

scalar product of 𝒗 with nabla. In Cartesian coordinates the divergence is 

 ∇ ∙ 𝒗 =
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
= ∑

𝜕𝑣𝑖

𝜕𝑥𝑖

3
𝑖=1 =

𝜕𝑣𝑖

𝜕𝑥𝑖
 (3.4) 

where in the last expression the summation on repeated indices it is implicitly assumed (Einstein 

notation). The name divergence comes because a positive divergence at a point means that the vector  

(relative to the point) is directed radially away from that point, thus it diverges. For example consider 
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the 2D case, 
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
> 0, means that 𝑣𝑥 is negative before and positive after and that 𝑣𝑦 is negative 

below and positive above.  

Vector fields with zero divergence are called solenoidal (name coming from electromagnetism) and 

take particular relevance in fluid dynamics as will be shown shortly.  

The divergence reduces the dimensionality; thus, the divergence of a tensor field 𝕋 is a vector field. 

 (∇ ∙ 𝕋)𝑖 =
𝜕𝕋𝑖𝑗

𝜕𝑥𝑗
. (3.5) 

Last vector operator is the curl that is applied to a vector field and produces another vector field; it 

does not change the dimensionality. The curl or a vector field is ∇ × 𝒗, obtained by performing 

formally the internal product with nabla. In Cartesian coordinates the curl is 

 ∇ × 𝒗 =

[
 
 
 
 
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦 ]
 
 
 
 

 . (3.6) 

When the vector 𝒗(𝒙) is the velocity, the curl represents twice the angular velocity at a point.  

The curl of velocity takes a special relevance in fluid dynamics and deserved its own name; the 

vorticity vector field 𝝎(𝒙)   

 𝝎(𝒙) = ∇ × 𝒗 ; (3.7) 

which will be treated with attention in Chapter 10 to analyze the most advanced phenomena in 

cardiovascular flows. In particular, vector fields whose curl is zero are called irrotational; such 

especially simple fields can be expressed as a gradient field. It is immediate to verify that the 

divergence of a curl field is identically zero (vorticity is a solenoidal field) and that the curl of a 

gradient is zero (conservative fields are irrotational fields) 

 ∇ ∙ (∇ × 𝒗) = 0, ∇ × (∇𝑓) = 0. 

Let us briefly recall two fundamental theorems involving the integral applications of these operators.  

3.2. The Gauss theorem in integral calculus 

The Gauss theorem (or divergence theorem) states that the divergence of a vector field 𝒗(𝒙) inside a 

volume 𝑉 is equal to the flux of that vector across the boundary surface 𝑆 of that volume 

 ∫ ∇ ∙ 𝒗 𝑑𝑉
𝑉

= ∫ 𝒗 ∙ 𝒏 𝑑𝑆
𝑆

 . (3.8) 

where 𝒏 is unit normal, directed outward. Despite the apparent mathematical complexity, the physical 

interpretation of the Gauss theorem is intuitive: if a vector field has some divergence inside a volume, 

necessarily it has to point outside that volume. It can be seen immediately when the volume is a small 

cube (or a square, in 2D): if the vector field points outward that cube then the field diverges, it has 

positive divergence inside the cube. The Gauss theorem permits to transform the calculation of a 

volume integral into a calculation on its boundary that is usually simpler to perform; therefore, 

represents a powerful mathematical tool in many contexts.  
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A simple application the Gauss theorem permits to compute the volume of an arbitrary shape by the 

integral on its surface. For this, consider a field with unit divergence, ∇ ∙ 𝒗 = 1, for example taking 

𝒗 = 𝒙 3⁄ , then we find that the volume can be computed by a surface integral 

 𝑉 = ∫ 𝑑𝑉
𝑉

=
𝟏

3
∫ 𝒙 ∙ 𝒏 𝑑𝑆
𝑆

. (3.9) 

Similarly, the center 𝒙 of a volume can be computed as 

 �̅� =
𝟏

4𝑉
∫ 𝒙(𝒙 ∙ 𝒏)𝑑𝑆
𝑆

. (3.10) 

The same method can be used in 2D for computing the area of a generic figure; the surface integral 

becomes a line integral that reads 

 𝐴 = ∫ 𝑑𝐴
𝐴

=
𝟏

2
∮ 𝒙 ∙ 𝒏 𝑑𝑠
𝐶

=
𝟏

2
∮ (𝑥𝑑𝑦 − 𝑦𝑑𝑥)
𝐶

,  (3.11) 

where we used that 𝒏𝑑𝑠 = [𝑑𝑦,−𝑑𝑥]. 

The Gauss theorem can be rearranged to provide a number of different relationships between volume 

and surface integral. A typical examples is the integral of a curl  

 ∫ ∇ × 𝒗
𝑉

𝑑𝑉 = −∫ 𝒗 × 𝒏𝑑𝑆
𝑆

. (3.12) 

that is obtained by applying (3.8) to a vector 𝑢𝑗 = 휀𝑖𝑗𝑘𝑣𝑘, a , for an arbitrary value of 𝑖 = 1,2,3 and 

repeating it for the three coordinates 𝑖 = 1,2,3, (where 휀𝑖𝑗𝑘 is the fully antisymmetric tensor, or Levi-

Civita tensor, equal to +1 when the three indices are a cyclic permutation of 1,2,3, equal to −1 if an 

anticylcic permutation and zero is two indices are equal). 

Another example is the integral of a gradient field 

 ∫ ∇𝑓
𝑉

𝑑𝑉 = ∫ 𝑓𝒏𝑑𝑆
𝑆

. (3.13) 

obtained as before by applying (3.8) to a vector 𝑣𝑗 = 𝛿𝑖𝑗𝑓, (where 𝛿𝑖𝑗 is the identity tensor, equal to 

+1 when the two indices are equal and zero otherwise). 

The Gauss theorem can also be used to compute the volume integral of a divergence-free vector field 

𝒗 that becomes  

 ∫ 𝒗
𝑉

𝑑𝑉 = ∫ (𝒗 ∙ 𝒏)𝒙𝑑𝑆
𝑆

. (3.14) 

This is obtained by applying (3.8) to the vector  𝑢𝑗 = 𝑣𝑗𝑥𝑖 

 ∫ ∇ ∙ (𝒗𝑥𝑖)𝑉
𝑑𝑉′ = ∫ 𝑥𝑖∇ ∙ 𝒗 + 𝒗 ∙ ∇𝑥𝑖𝑉

𝑑𝑉′ = ∫ 𝑣𝑖𝑉
𝑑𝑉′ = ∫ 𝑥𝑖𝒗 ∙ 𝒏𝑑𝑆

𝑆
;  

which gives (3.14) once repeated for the three coordinates 𝑖 = 1,2,3,  

The Stokes theorem (or circulation theorem) states that the circulation of a vector along a closed curve 

C is equal to the integral of its curl on any surface S bounded by that curve 

 ∮ 𝒗 ∙ 𝑑𝒔
𝐶

= ∫ (∇ × 𝒗) ∙ 𝒏 𝑑𝑆
𝑆

 . (3.15) 

where the curve direction of integration and its normal are related by the right-hand rule. The Stokes 

theorem can also be derived from the Gauss theorem, in particular it is a 2D version of the result 
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(3.12). The physical interpretations is similarly straightforward: the total rotation (circulation) is 

given by the summation of the individual rotations (curl of the vector) contained within. As a trivial 

example, take the rigid rotation of a circular plate with angular velocity Ω, the rotation velocity at a 

distance r from the center is v=Ωr, the Stokes equality states that 2πrv=πr2ω. From which it follows 

that the vorticity, previously introduced in (3.7), has only the component normal to the plane and its 

value is twice the angular velocity ω=2Ω. 

3.3. Breaking down elementary motion 

Consider the velocity 𝒗(𝒙) a point 𝒙 and let’s describe the nearby velocity, at infinitesimal distance 

dx, to define the elementary types of motion that can be encountered in general. Using Taylor 

expansion 

 𝒗(𝒙 + 𝑑𝒙) = 𝒗(𝒙) + ∇𝒗 ∙ 𝑑𝒙 + 𝑂(𝑑𝑥2); (3.16) 

the velocity is equal to the velocity at the original point, plus its gradient in the direction of the new 

point, plus second order terms that will be neglected from now on as we implicitly work in the limit 

𝑑𝑥 → 0. In index notation (3.16) can be rewritten equivalently 

 𝑣𝑖(𝒙 + 𝑑𝒙) = 𝑣𝑖(𝒙) +
𝜕𝑣𝑖

𝜕𝑥𝑗
𝑑𝑥𝑗 ; (3.17) 

where summation on repeated indices (here index j) is implicitly assumed. 

The velocity gradient tensor can be divided as the sum of a symmetric 𝔻 and an asymmetric tensor 

𝛀 

 
𝜕𝑣𝑖

𝜕𝑥𝑗
=

1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
) +

1

2
(

𝜕𝑣𝑖

𝜕𝑥𝑗
−

𝜕𝑣𝑗

𝜕𝑥𝑖
) , ∇𝒗 = 𝔻 + 𝛀 ; (3.18) 

equation (3.16) can thus be rewritten 

 𝒗(𝒙 + 𝑑𝒙) = 𝒗(𝒙) + 𝔻 ∙ 𝑑𝒙 + 𝛀 ∙ 𝑑𝒙; (3.19) 

or in an equivalently from (3.17) in an indexed form. 

Let us look at the three terms in (3.19) that sum up to describe the velocity about a point. The first 

term describes the rigid translation of the small region where all points share the same velocity. The 

last term is driven by 𝛀 that is a 3x3 asymmetric tensor, which in Cartesian coordinates reads 

 𝛀 =

[
 
 
 
 0 +

1

2
(
𝜕𝑣𝑥

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑥
) +

1

2
(
𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
)

−
1

2
(
𝜕𝑣𝑥

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑥
) 0 +

1

2
(
𝜕𝑣𝑦

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑦
)

−
1

2
(
𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
) −

1

2
(
𝜕𝑣𝑦

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑦
) 0 ]

 
 
 
 

=
1

2
[

0 −𝜔𝑧 +𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 +𝜔𝑥 0
].  

Being asymmetric, this tensor is described by 3 independent terms only, and these 3 terms are equal 

to the components of the vorticity (3.6-3.7), module a ½ factor. It can be immediately verified that 

the scalar product 𝛀 ∙ 𝑑𝒙 =
1

2
𝝎 × 𝑑𝒙. Rewriting (3.19) this way 

 𝒗(𝒙 + 𝑑𝒙) = 𝒗(𝒙) + 𝔻 ∙ 𝑑𝒙 +
1

2
𝝎 × 𝑑𝒙;  
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it is immediate to notice that the last terms is the expression corresponds to a rigid rotation with 

angular velocity 
1

2
𝝎. Rigid translation and rigid rotation do not produce local deformations; it follows 

that the deformation of the fluid element is only due to the second term. In fact, the symmetric tensor 

𝔻 is the rate of deformation tensor, which in Cartesian coordinates reads  

 𝔻 =

[
 
 
 
 

𝜕𝑣𝑥

𝜕𝑥

1

2
(
𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
)

1

2
(
𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
)

1

2
(
𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
)

𝜕𝑣𝑦

𝜕𝑦

1

2
(
𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
)

1

2
(
𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
)

1

2
(
𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
)

𝜕𝑣𝑧

𝜕𝑧 ]
 
 
 
 

. (3.20) 

The scalar product 𝔻 ∙ 𝑑𝒙 represents the (rate of) deformation of the fluid element. The diagonal 

terms of the tensor are associated with elongation/shortening in the corresponding direction and the 

off-diagonal are shear motion. The change of volume of the fluid element is due to the combination 

of elongations/shortening, that is given by the trace of the rate of deformation tensor (the sum of the 

elements on the diagonal), while a tensor with zero trace does not give change of volume. The trace 

of the deformation tensor is the divergence of the velocity field, therefore it is useful to rewrite (3.19) 

in its final form as  

 𝒗(𝒙 + 𝑑𝒙) = 𝒗(𝒙) +
∇∙𝒗

3
𝕀 ∙ 𝑑𝒙 + (𝔻 −

∇∙𝒗

3
𝕀) ∙ 𝑑𝒙 +

1

2
𝝎 × 𝑑𝒙. (3.21) 

Expression (3.21) allows recognizing the different elementary motions of an infinitesimal fluid 

element. We have seen that the first terms describes rigid translation and the last term is the rigid 

rotation. The second term is pure expansion/compression that is responsible for the local change of 

volume; it will be shown shortly that this terms is zero in an incompressible fluid. The third term is 

the pure deformation, with no change of volume; this terms is the only responsible for internal viscous 

stresses that are due to the relative sliding motion of fluid particles. 

Before concluding this section about the description of fluid motion, let us define and specify 

differences between trajectories and streamlines. Trajectories, as by the normal language, are the 

curves in space occupied by a same particle during its motion; therefore, trajectories are curves 

traveled by particles during time from a specified initial particle position. Differently, streamlines are 

curves drawn at one instant of time that are everywhere tangent to the local velocity; therefore, 

streamlines change during time. In steady flow trajectories and streamlines coincides and can be used 

interchangeably. In general, trajectories follow the time-course of individual material particle (what 

is called Lagrangian description) while streamlines the instantaneous flow paths at fixed points in 

space (Eulerian description); these descriptions are different and provide different information. 

3.4. Lagrangian and Eulerian description 

The laws of physics are commonly expressed in terms of the conservation of quantities associated 

with material elements. Following this line, elementary mechanics typically refers to individual 

particles with given mass that are followed in time while they change their velocity and other 

properties like, for example in thermodynamics, their temperature. Mechanics of rigid bodies also 

considered the translation and rotation of a given volume mad of material elements. This approach is 

used in general for the analysis of solid deformable bodies where the changes in the position, and 

relative position, of individual material elements are followed during their motion.  

The natural description of dynamics is thus expressed by following the individual elements composing 

the body under analysis. In such a perspective, that is called Lagrangian description, each individual 



Fluid Kinematics  Page 41 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

material element is identified by its position 𝑿0 at a certain reference time, say t=0, and is then 

described at subsequent times by its position  𝑿(𝑡, 𝑿0) and by the value of properties associated to 

that element 𝐺(𝑡, 𝑿0) identified by the initial position 𝑿0. The Lagrangian approach is well suited for 

solid mechanics, where the material has an internal structure characterized by the relative 

arrangement of individual elements. 

In fluid mechanics, the individual fluid elements do not have a preferable relative arrangement; they 

undergo to large relative motion and cannot be followed during time. Individual blood cells follow 

independent paths; they separate in arterial bifurcations, some enter in an organ others in another and 

so forth. Therefore, a Lagrangian description based on following individual elements is generally not 

feasible with fluids. The natural description of fluid dynamics is made in terms of properties measured 

at points fixed in space, which is called Eulerian description. The wind velocity is measured at the 

anemometer position, water temperature is measured at the thermometer position, blood velocity is 

measured across a valve; all these are Eulerian measurements made at fixed spatial locations that do 

not refer to the original position of individual particles that pass through. 

Indicate with lowercase letters the Eulerian properties measures at time 𝑡 at spatial location 𝒙, the 

property 𝑔(𝑡, 𝒙) represents the Eulerian counterpart of the Lagrangian property 𝐺(𝑡, 𝑿0). However, 

both correspond to different descriptions of the same physical property. The Eulerian is more 

appropriate for measuring and describing fluid properties, whereas conservation laws are more 

naturally expressed in Lagrangian terms. 

The relationship between Lagrangian and Eulerian description is 

 𝐺(𝑡, 𝑿0) = 𝑔(𝑡, 𝑿(𝑡, 𝑿0)). (3.22) 

Relation (3.22) simply states that the properties of the particle 𝑿0 at time t is the same found at the 

spatial position 𝑿(𝑡, 𝑿0) occupied by the particle at time 𝑡. Equation (3.22) is important because it 

provides a bridge between Lagrangian to Eulerian descriptions. Conservation laws are commonly 

expressed in terms of the time variation of particle properties; for example, acceleration of a fluid 

particle is the time derivative of velocity of a particle. Relation (3.22) permits to evaluate the time 

derivative associated with fluid particles in terms of Eulerian quantities. Take the time derivative of 

(3.22), using the chain rule, 

 
𝑑𝐺

𝑑𝑡
=

𝜕𝑔

𝜕𝑡
+

𝜕𝑔

𝜕𝑥

𝑑𝑋

𝑑𝑡
+

𝜕𝑔

𝜕𝑦

𝑑𝑌

𝑑𝑡
+

𝜕𝑔

𝜕𝑧

𝑑𝑍

𝑑𝑡
=

𝜕𝑔

𝜕𝑡
+ 𝑣𝑥

𝜕𝑔

𝜕𝑥
+ 𝑣𝑦

𝜕𝑔

𝜕𝑦
+ 𝑣𝑧

𝜕𝑔

𝜕𝑧
,  

or  

 
𝑑𝐺

𝑑𝑡
=

𝜕𝑔

𝜕𝑡
+ 𝒗 ∙ ∇𝑔. (3.23) 

The right hand side of (3.23) is the Lagrangian time derivative written in Eulerian terms, which is 

sometime called material or substantial time derivative. Equation (3.23) states that the material 

property of a particle passing through a fixed location 𝒙 can increase either because the property is 

increasing at the location or because the particle is moving in the direction along which the property 

increases in space, i.e. when its gradient is aligned with the velocity vector. 

As a fundamental application, let us apply the (3.23) to the fluid velocity to compute the acceleration 

of a fluid particle at position x 

 𝒂(𝑡, 𝒙) =
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗. (3.24) 
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This shows that a particle can accelerate either when velocity increases in time at the position 𝒙 or, 

even in steady flow, when the particle is moving toward a region with higher velocity. This point is 

sketched in figure 3.1, the first term of (3.24) is the inertial acceleration, because it is associated with 

the increase of fluid inertia, the second term is the convective acceleration, because due to the 

convection of fluid. 

 

This concept can be extended from individual particles to the integral expressions applied to finite 

volume. Integral conservation laws typically apply to a (Lagrangian) material volume of fluid that 

deforms during its motion, whereas fluid balances are necessarily applied to (Eulerian) spatially 

defined regions, like a portion of a duct between two cross-sections. 

The Reynolds’ Transport theorem permits to express the time variation of a property associated to a 

material fluid volume in terms of variations in a spatially fixed volume. Consider a volume of fluid 

𝑉𝐹(𝑡) and a fixed volume 𝑉 that described the location of the volume of fluid at time 𝑡, 𝑉 = 𝑉𝐹(𝑡), 

bounded by a fixed surface 𝑆. We can prove that  

 
𝑑

𝑑𝑡
∫ 𝐺(𝑡)
𝑉𝐹(𝑡)

= ∫
𝜕𝑔

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝑔 𝒗 ∙ 𝒏𝑑𝑆

𝑆
 (3.25) 

where 𝒏 is the outward normal to the surface 𝑆. 

The intuitive demonstration of (3.25) is as follow. Express the time derivative at the incremental ratio 

(𝑑𝑡 is infinitesimal and implicitly includes the limit to 𝑑𝑡 → 0) 

 
𝑑

𝑑𝑡
∫ 𝐺(𝑡)
𝑉𝐹(𝑡)

=
1

𝑑𝑡
(∫ 𝑔(𝑡 + 𝑑𝑡)𝑑𝑉

𝑉𝐹(𝑡+𝑑𝑡)
− ∫ 𝑔(𝑡)𝑑𝑉

𝑉
) =  

divide the first integral on the right-hand-side in two parts 

 =
1

𝑑𝑡
(∫ 𝑔(𝑡 + 𝑑𝑡)𝑑𝑉

𝑉
+ ∫ 𝑔(𝑡 + 𝑑𝑡)𝑑𝑉

𝑉𝐹(𝑡+𝑑𝑡)−𝑉
− ∫ 𝑔(𝑡)𝑑𝑉

𝑉
) =  

the second integral is over the thin space between the volume at time 𝑡 and 𝑡 + 𝑑𝑡, whose infinitesimal 

volume portion 𝑑𝑉 is spanned by the infinitesimal surface 𝑑𝑆 on the boundary of volume 𝑉, 

multiplied by the length travelled normally to that surface in the period 𝑑𝑡. In formulas 𝑑𝑉 =

𝑑𝑆(𝒗 ∙ 𝒏)𝑑𝑡; thus the previous formula becomes 

 

Figure 3.1. Inertial and convective acceleration 
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 = ∫
𝜕𝑔

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝑔(𝒗 ∙ 𝒏)𝑑𝑆

𝑆
  

where the first integral combined the formerly first and last terms, and the higher order infinitesimal 

terms disappeared in the limit of 𝑑𝑡 approaching 0. This completed the proof of (3.25). 

The transport theorem (3.25) can be rewritten with volume integrals with the aid of the Gauss theorem 

(3.8),   

 
𝑑

𝑑𝑡
∫ 𝐺(𝑡)
𝑉𝐹(𝑡)

= ∫ {
𝜕𝑔

𝜕𝑡
+ ∇ ∙ (𝑔 𝒗)} 𝑑𝑉

𝑉
. (3.26) 

Equation (3.25) and (3.26) will be fundamental to express the (Lagrangian) conservation laws in 

terms of (Eulerian) fluid volumes fixed in space.  
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B. FLUID DYNAMICS: CONSERVATION LAWS 

4. Conservation of Mass 

4.1. Mass balance in integral form 

The first law of conservation to consider is the conservation of mass. Given a generic volume 𝑉𝐹 of 

a continuum, the mass of that volume is by definition 

 ∫ 𝜌𝑑𝑉
𝑉𝐹(𝑡)

  

where ρ is the density. Conservation of mass states that the mass of a volume of material does not 

change during time, which reads 

 
𝑑

𝑑𝑡
∫ 𝜌𝑑𝑉 = 0
𝑉𝐹(𝑡)

 (4.1) 

The law (4.1) applies to a material volume of fluid (or any continuum) deforming during its motion. 

Application of the transport theorem (3.25) to (4.1) gives the integral law of conservation of mass 

 ∫
𝜕𝜌

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝜌 𝒗 ∙ 𝒏𝑑𝑆

𝑆
= 0 (4.2) 

where 𝑉 is a spatial volume fixed in space and 𝑆 is the surface surrounding that volume. Equations 

expressing mass conservation are also called continuity equation, because mass conservation ensures 

the continuity to the material that cannot disappear from one region. 

As mentioned before, we will only deal with fluids whose density is constant in time and uniform in 

space. These fluids are generically referred here as incompressible fluids (although more rigorously, 

fluids can be incompressible even with spatially variable density). For them, conservation of mass 

(4.2) simplifies in  

 ∫ 𝒗 ∙ 𝒏𝑑𝑆
𝑆

= 0. (4.3) 

The integral equation of mass conservation for incompressible fluids, equation (4.3), states that given 

a spatially fixed volume, the amount of fluid that enters through a part the boundary of such volume 

is equal to the amount that leaves through the remaining boundary.  

This concept can be expressed in different integral terms. If we have a container of volume 𝑉(𝑡) 

bounded by surface 𝑆(𝑡) composed of a solid surface 𝑆0, moving with boundary velocity 𝒗𝑏, and 

open sections of area 𝑆open allowing the fluid to flow with fluid velocity 𝒗, we can rewrite the 

instantaneous balance (4.3) as 

 ∫ 𝒗𝑏 ∙ 𝒏𝑑𝑆
𝑆0

+ ∫ 𝒗 ∙ 𝒏𝑑𝑆
𝑆open

= 0; 

being 𝑆 = 𝑆0 + 𝑆open. Consider now that the open boundary of the varying volume 𝑉(𝑡) also moves 

with a velocity 𝒗𝑏 that represents its geometric displacement then we can divide the fluid velocity 

therein as the sum of the boundary velocity plus the relative velocity 𝒗 = 𝒗𝑏 + (𝒗 − 𝒗𝑏) the previous 

balance can be recast as    

 ∫ 𝒗𝑏 ∙ 𝒏𝑑𝑆
𝑆

+ ∫ (𝒗 − 𝒗𝑏) ∙ 𝒏𝑑𝑆
𝑆open

=
𝑑𝑉

𝑑𝑡
+ ∫ (𝒗 − 𝒗𝑏) ∙ 𝒏𝑑𝑆

𝑆open
= 0; 

where the first integral is over the entire bounding surface 𝑆. This can be written more simply as 
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𝑑𝑉

𝑑𝑡
= 𝑄in − 𝑄out; (4.4) 

where 𝑄in is the total entering discharge, rate of fluid flow relative to the moving boundary, across 

the open section 𝑆in through which flow enters and 𝑄out is the total exiting discharge across 𝑆out, 

(𝑆open = 𝑆in + 𝑆out) 

 𝑄in = −∫ (𝒗 − 𝒗𝑏) ∙ 𝒏𝑑𝑆
𝑆in

, 𝑄out = +∫ (𝒗 − 𝒗𝑏) ∙ 𝒏𝑑𝑆
𝑆out

; (4.5) 

and we remind that we considered the normal 𝒏 pointing outward. It is important to remark that when 

writing (4.4) and (4.5) the fluid velocities v are Eulerian quantities: absolute values measured relative 

to a spatially fixed reference. Thus the discharges (4.5) are written using the relative velocity of fluid 

with respect to possibly moving boundaries. 

As an instructive example, consider a left ventricle (LV), whose total volume is 𝑉LV(𝑡) increases 

during filling (diastole) while blood enters through the mitral valve of area 𝐴MV. Application of (4.4) 

reads 

 
𝑑𝑉LV

𝑑𝑡
= 𝐴MV (𝑣MV − 𝑣𝑏MV

); (4.6) 

where 𝑣MV is the fluid velocity across the mitral valve (here assumed positive downward, entering 

the chamber); this is the velocity measured by imaging methods, like Doppler echocardiography or 

Phase-Contrast CMR (Cardiac Magnetic Resonance). The value 𝑣𝑏MV
 is the velocity of the mitral 

valve boundary that moves upward (thus with negative sign in front) during ventricular expansion. In 

common applications this terms is neglected because it is assumed to be much smaller that the fluid 

velocity. This is commonly realistic, although introduces an approximation that may not be always 

valid. A balance like (4.6) can be applied to ventricular contraction during flow ejection through the 

aortic valve, as well as to other chambers or portions of a vessel. It is particularly useful to properly 

relate measurements of fluid velocity, tissue velocity and chamber dimension.  

4.2. Mass balance for a vessel 

Consider the flow in a vessel, this type of motion is predominantly one-dimensional (1D), with the  

velocity component along the vessel axis much larger than the transversal components. In such cases, 

it is often useful to consider properties characterizing the whole cross section (area, average velocity, 

discharge, average pressure etc,) expresses as a function of the single spatial coordinate, say 𝑥,  that 

defines the position along the vessel. 

Consider an infinitesimal length 𝑑𝑥 of such a 1D stream of cross section area 𝐴(𝑡, 𝑥) and discharge 

𝑄(𝑡, 𝑥) = 𝐴(𝑡, 𝑥)𝑈(𝑥, 𝑡) being 𝑈(𝑥, 𝑡) the velocity averaged over the cross-section. And apply the 

conservation of mass (4.4) to quasi-cylindrical short element with volume 𝑉 = 𝐴(𝑡, 𝑥)𝑑𝑥. The flow 

entering from the first section is 𝑄in = 𝑄(𝑡, 𝑥) and that existing is 𝑄out = 𝑄(𝑡, 𝑥) +
𝜕𝑄

𝜕𝑥
𝑑𝑥, equation 

(4.4) reads 

 
𝑑𝐴

𝑑𝑡
𝑑𝑥 = 𝑄(𝑡, 𝑥) − (𝑄(𝑡, 𝑥) +

𝜕𝑄

𝜕𝑥
𝑑𝑥);  

that becomes  

 
𝑑𝐴

𝑑𝑡
+

𝜕𝑄

𝜕𝑥
= 0. (4.7) 

Equation (4.7) expresses the law of conservation of mass for 1D streams. It can also be rewritten 
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𝑑𝐴

𝑑𝑡
+ 𝑈

𝜕𝐴

𝜕𝑥
+ 𝐴

𝜕𝑈

𝜕𝑥
= 0. (4.7b) 

Equation (4.7) expresses the conservation of mass along a 1D vessel in absence of lateral 

inflow/outflow; it states that discharge decreases downstream when the vessel enlarges, or vice versa, 

as sketched in figure 4.1. 

  

In perfectly rigid ducts conservation of mass says the discharge is constant along the vessel, Therefore 

conservation of mass between two arbitrary sections, say 1 and 2, of a rigid duct with varying cross 

sections permits to evaluate the corresponding changes in mean velocity 

 𝑄1 = 𝑄2 ⇒ 𝑈1𝐴1 = 𝑈2𝐴2 ⟹ 𝑈2 = 𝑈1
𝐴1

𝐴2
 ; 

stating that velocity increases when the area decreases and vice versa. 

In elastic vessels, the increase of area is a consequence of an increase of pressure. Therefore, equation 

(4.7) says that the fluid rate of blood reduces downstream when accompanied by a pressure increase. 

This is what happens, for example, along the Aorta. Blood enters as a pulse of discharge during 

ventricular systole accompanied by a pressure pulse (systolic pressure), with no flow during diastole 

when aortic valve is closed and pressure decreases (diastolic pressure). During systole the vessel 

enlarges and accommodates part of the incoming fluid; at the end of the flow pulse, when pressure 

decreases, the stored blood is releases and flow increases downstream. The result of this phenomenon 

is the transformation of the sharp flow pulsation into a smoother time profile downstream that is non-

zero even during diastole. 

4.3. Mass balance in differential form 

Equation (4.3) states a balance of the flow exiting and entering across the surface bounding a volume 

𝑉. The same balance can be rewritten, with the aid of the Gauss theorem (3.8), in terms of a volume 

integral  

 ∫ ∇ ∙ 𝒗 𝑑𝑉
𝑉

= 0.   

Mass conservation applies to any arbitrary volume either large or infinitesimal; for the previous 

integral being zero for any volume 𝑉 means that the integrand must be identically zero. This leads to 

the law of conservation of mass in differential form 

 ∇ ∙ 𝒗 = 0 ; (4.8) 

that is more commonly called the continuity equation. Equation (4.8) implies that the velocity field 

of an incompressible flow has zero divergence at every point (velocity field is solenoidal). 

 

Figure 4.1. Reduction of discharge along a vessel for mass conservation 
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The same result could be obtained by applying (4.3) to an infinitesimal cube. Figure 4.2 shows the 

balance of flow across the two faces with normal x, performing the same operation on the 6 faces 

−𝑣𝑥𝑑𝑦𝑑𝑧 + (𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 − 𝑣𝑦𝑑𝑥𝑑𝑧 + (𝑣𝑦 +

𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧 − 𝑣𝑧𝑑𝑥𝑑𝑦 + (𝑣𝑧 +

𝜕𝑣𝑧

𝜕𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦 =

= (
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
)𝑑𝑥𝑑𝑦𝑑𝑧 = 0

 

it ends up with the same result (4.8) in Cartesian coordinates 

 
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
= 0 . (4.9) 

 

The condition (4.8), or (4.9), is an important constraint to the possible realization of the velocity 

vector field. Looking at the description of flow kinematics in equation (3.15), the velocity field locally 

can only translate and rotate rigidly and deform without change of volume because the flow has zero 

divergence. If velocity field converges from one direction to a point it must similarly diverge on 

another direction.  

As a simple example, if a jet is directed toward a wall, velocity present a convergence in that direction 

because it is positive upstream and zero at the wall for impermeability. As a consequence of mass 

conservation, the flow must diverge on the opposite direction, i.e. parallel to the wall velocity must 

be directed away from the impact region to create a splash effect on the wall.  

  

 

Figure 4.2. Balance of mass in an infinitesimal cube 

x

z

y
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5. Conservation of Momentum 

5.1. Momentum balance in integral form 

The second law of conservation to consider is the conservation of momentum. This corresponds to 

the second Newton law (expressed by 𝑭 = 𝑚𝒂 for a single particle) that has to be rewritten for a fluid 

continuum. Given a generic volume of fluid 𝑉𝐹, the momentum of that volume is defined 

 ∫ 𝜌𝒗𝑑𝑉
𝑉𝐹(𝑡)

.  

Conservation of momentum states that the momentum of a volume of material can only change in 

time in consequence of the application of forces 

 
𝑑

𝑑𝑡
∫ 𝜌𝒗𝑑𝑉
𝑉𝐹(𝑡)

= ∫ 𝒇𝑑𝑉
𝑉

+ ∫ 𝝉𝑑𝑆
𝑆

. (5.1) 

The term on the left hand side is the variation of momentum (the equivalent of the product between 

mass and acceleration for a particle). The first term on the right side are volumetric forces that act at 

time 𝑡 on the volume of fluid, 𝑉 = 𝑉𝐹(𝑡), and the field 𝒇(𝒙, 𝑡) is the force per unit volume; the second 

term are the surface forces applied on the boundary 𝑆 of the same volume. 

Application of the transport theorem (3.25) to (5.1) gives 

 ∫
𝜕𝜌𝒗

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝜌 𝒗(𝒗 ∙ 𝒏)𝑑𝑆

𝑆
= ∫ 𝒇𝑑𝑉

𝑉
+ ∫ 𝝉𝑑𝑆;

𝑆
 (5.2) 

which is the integral law of conservation of momentum 

Before moving forward with applications, it can be useful to show that this law it can be rewritten in 

an alternate expression where the first term is a surface integral. This is feasible in the case of 

incompressible flows, when velocity has zero divergence and density is a constant. In this case, 

application of the Gauss theorem, in particular of its expression (3.14), permits to transform one 

component of the first integrand in (5.2) into a surface integral 

 ∫
𝜕𝑣𝑖

𝜕𝑡
𝑑𝑉

𝑉
= ∫ ∇ ∙ (𝑥𝑖

𝜕𝒗

𝜕𝑡
)𝑑𝑉

𝑉
= ∫ 𝑥𝑖 (

𝜕𝒗

𝜕𝑡
∙ 𝒏) 𝑑𝑆

𝑆
.  

Then, insertion of this into (5.2) leads to an expression for the integral law of conservation of 

momentum (5.2) for incompressible flows 

 ∫ 𝜌 𝒙 (
𝜕𝒗

𝜕𝑡
∙ 𝒏) 𝑑𝑆

𝑆
+ ∫ 𝜌 𝒗(𝒗 ∙ 𝒏)𝑑𝑆

𝑆
= ∫ 𝒇𝑑𝑉

𝑉
+ ∫ 𝝉𝑑𝑆.

𝑆
 (5.3) 

that expresses the entire change of momentum in terms of velocity values evaluated on boundaries 

without the need of knowing velocities in the interior of the volume. Formulation (5.3) can be useful 

in several situations involving unsteady flows, as it is often the case in the cardiovascular circulation.  

Symbolically, equation (5.2) or (5.3) is often expresses as 

 𝐈 + 𝐌 = 𝐆 + 𝚷;  

with 
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𝐈 = ∫
𝜕𝜌𝒗

𝜕𝑡
𝑑𝑉

𝑉
= ∫ 𝜌 𝒙 (

𝜕𝒗

𝜕𝑡
∙ 𝒏) 𝑑𝑆

𝑆
,

𝐌 = ∫ 𝜌 𝒗(𝒗 ∙ 𝒏)𝑑𝑆
𝑆

,

𝐆 = ∫ 𝒇𝑑𝑉
𝑉

,

𝚷 = ∫ 𝝉𝑑𝑆.
𝑆

 (5.4) 

The first term is called the local inertia and it can be expressed in terms of volume integral or surface 

integral, accordingly to equations (5.2) or (5.3), respectively. The second term is the flux of 

momentum across the boundary, third term is the volume force and last term is the surface force. The 

balance (5.2), or (5.3), is useful to compute the dynamic forces acting on rigid elements. This 

represents an extension of the calculation of static forces. The static analysis (seen in Chapter 2) 

analyzed in detail the last two terms of volumetric and surface forces; the dynamics analysis includes 

the addition of the first two terms associated to the change of momentum due to the fluid velocity. 

Let’s see now a few instructive example to show application of the balance (5.3) for the calculation 

of dynamic forces, to better explore the meaning of the terms in (5.4) and the ways of computing 

them. 

Consider a circular duct with constant cross section 𝐴, presenting a 90° bent on the horizontal plane 

as sketched in figure 5.1. A steady flow, with velocity 𝑈, provokes a thrust on the lateral surface of 

the duct; that is then transferred to the boundaries where the curve is attached to the rest of the system. 

Application of the dynamic balance (5.3) permits to compute the force exerted by flow on the curved 

duct. First, 𝐈 = 0, because flow is steady, velocity is constant in time and its time derivative is zero. 

The flux of momentum at the entrance is given by 

 M𝑥 = −∫ 𝜌 𝑣𝑥
2𝑑𝐴

𝐴
= −𝜌𝛽𝑈2𝐴; (5.5) 

where the minus sign in front is due to 𝒗 ∙ 𝒏 = −𝑣𝑥, because velocity 𝑣𝑥 enters the volume while the 

normal is directed outward. When the flow is a mostly unidirectional stream, like in this case, the flux 

of momentum is often in a compact form in terms of global quantities introducing a velocity-

correction coefficient β embodying the effect of velocity variation over the cross-section. 

 M𝑥 = −𝜌𝛽𝑈2𝐴; 𝛽 =
1

𝐴
∫ 𝑣2𝑑𝐴
𝐴

(
1

𝐴
∫ 𝑣𝑑𝐴𝐴 )

2 =
∫ 𝑣2𝑑𝐴
𝐴

𝑈2𝐴
. (5.6) 

Such a momentum velocity-correction factor β reflects the difference between the average of velocity 

square and the square of the average velocity. The calculation of the integral of square velocity would 

require the knowledge of the spatial distribution of velocity that may not be available. In such cases, 

the introduction of this coefficient allows a simpler formulation based on global properties and leaves 

the problem of not knowing the transversal profile to means of estimating β. This coefficient 

approaches the unit value when the velocity approaches a uniform profile. This is increasingly valid 

in steady turbulent flow or near the entrance of a duct; whereas it can be very different from that in 

unsteady flows. Details of the velocity profiles will be studies later; nevertheless, in many situations 

(and when we have no information to suggest a different number) it can be assumed approximately 

equal to 1.  

Using the same approach, the flux of momentum at the exit is written 

 M𝑦 = ∫ 𝜌 𝑣𝑦
2𝑑𝐴

𝐴
= 𝜌𝛽𝑈2𝐴.  
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The volume force, 𝐆, assumed due to gravity only, has only the vertical component given by the static 

weight of the volume. The surface force term is composed of three terms: pressure 𝑝1 acting on the 

inflow cross-section having the normal to the surface directed in the positive 𝑥-direction; pressure 𝑝2 

acting on the outflow cross-section with normal directed in the negative 𝑦-direction; and the force 

made by the lateral duct surface that is equal and opposite to the force vector 𝑭 = [𝐹𝑥, 𝐹𝑦 , 𝐹𝑧] made 

by flow on that surface. In formulas  

 Π𝑥 = 𝑝1𝐴 − 𝐹𝑥, Π𝑦 = −𝑝2𝐴 − 𝐹𝑦 Π𝑧 = −𝐹𝑧.  

The overall balance (5.3) in the three directions is as follows  

 −𝜌𝛽𝑈2𝐴 = 𝑝1𝐴 − 𝐹𝑥, 𝜌𝛽𝑈2𝐴 = −𝑝2𝐴 − 𝐹𝑦 0 = −𝛾𝑉 − 𝐹𝑧.  

Therefore, the force made by flow on the curved vessel is  

 𝐹𝑥 = 𝑝1𝐴 + 𝜌𝛽𝑈2𝐴, 𝐹𝑦 = −𝜌𝛽𝑈2𝐴−𝑝2𝐴, 𝐹𝑧 = −𝛾𝑉. (5.8) 

The force along 𝑥 is made by the static force 𝑝1𝐴 plus the dynamic force caused by the deviation of 

the entire income momentum, i.e. the impact of the incoming flow to the bent. The force along 𝑦 is 

made by the static force 𝑝1𝐴 that pushes in the negative direction plus the recoil due to the generation 

of momentum. The vertical force is simply the weight of the fluid volume. 

A second instructive example is the case of a rectilinear rigid vessel presenting a reduction of the 

cross section along its axis, as shown in figure 5.2, from an initial area 𝐴1 to a final 𝐴2 < 𝐴1. Let us 

calculate the terms in the balance (5.3) for this case.  

Let us start from the inertial term, that is non-zero because the flow is unsteady. To this aim, consider 

the time-varying discharge 𝑄(𝑡) that for mass conservation does not vary along the vessel axis, 

indicated with 𝑥, and can be evaluated at any generic section with area 𝐴(𝑥) including inlet or outlet 

sections 

 𝑄(𝑡) = ∫ 𝑣𝑥𝑑𝐴
𝐴(𝑥)

= 𝑈1(𝑡)𝐴1 = 𝑈2(𝑡)𝐴2.  

The component of the inertial term along the vessel axis becomes  

 I𝑥 = ∫
𝜕𝜌𝑣𝑥

𝜕𝑡
𝑑𝑉

𝑉
= 𝜌 ∫ ∫

𝜕𝑣𝑥

𝜕𝑡
𝑑𝐴

𝐴(𝑥)

2

1
𝑑𝑥 = 𝜌 ∫

𝑑

𝑑𝑡
{∫ 𝑣𝑥𝑑𝐴

𝐴(𝑥)
}

2

1
𝑑𝑥.  

Noticing that term in curl brackets is the discharge 𝑄(𝑡), this eventually gives 

 

Figure 5.1. Force on a curved vessel 
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 I𝑥 = 𝜌
𝑑𝑄

𝑑𝑡
𝐿; (5.9) 

where 𝐿 = 𝑥2 − 𝑥1 is the length of the vessel portion.  

The same result could be obtained by the second expression in (5.4) based on surface integral.  

 I𝑥 = ∫ 𝜌 𝑥 (
𝜕𝒗

𝜕𝑡
∙ 𝒏) 𝑑𝑆

𝑆
= ∫ 𝜌𝑥2

𝜕𝑣𝑥

𝜕𝑡
𝑑𝐴

𝐴2
− ∫ 𝜌𝑥1

𝜕𝑣𝑥

𝜕𝑡
𝑑𝐴

𝐴1
= 𝜌(𝑥2 − 𝑥1)

𝑑𝑄

𝑑𝑡
.  

The flux of momentum is written using (5.5), assuming β=1 for simplicity, for the two sections as 

 M𝑥 = 𝜌𝑄2 (
1

𝐴2
−

1

𝐴1
).  

The pressure terms is due to pressure values at the two sections plus the force made by the lateral 

wall to the fluid, that is equal and opposite to the force 𝐹𝑥 made by the fluid on the lateral wall 

 Π𝑥 = 𝑝1𝐴1 − 𝑝2𝐴2 − 𝐹𝑥.  

Inserting these terms in the balance (5.3) along 𝑥, the force made by flow on the vessel is  

 𝐹𝑥 = 𝑝1𝐴1 − 𝑝2𝐴2 − 𝜌𝑄2 (
1

𝐴1
−

1

𝐴2
) − 𝜌

𝑑𝑄

𝑑𝑡
𝐿. (5.10) 

The first two terms are the difference of the static force acting on the two sections; the flux of 

momentum is negative and represent the reaction of the higher flux of momentum at the exit; last 

inertial term reflects the force associated to the acceleration/deceleration of the whole fluid. 

  

 

This example can also be used to evaluate the force when the contraction is very sharp as it can be 

the case of an orifice placed transversally in the vessel, which can represent a model for a valve. In 

that case, formula (5.10) provides an estimation for the force pushing on the upstream surface of 

orifice wall. 

For a final simple example compute the force produced by a fluid jet toward a planar surface as in 

figure 5.3. Consider a steady jet with mean velocity 𝑈 and area 𝐴, directed perpendicular to a flat 

plate. With reference to figure 5.3, take the volume bounded by the inlet section, the boundary of the 

flow adjacent to the air at atmospheric pressure, the plate and the exit sections that are directed 

transversally to the inflow; and write the balance for this volume in the direction of the jet. Inertia is 

zero because the flow is steady. The flux of momentum is M = −𝜌𝛽𝑈2𝐴, given by the inlet, while 

the outlet does not contribute to this direction (and is zero for symmetry in the transversal direction). 

 

Figure 5.2. Force on a rectilinear vessel with varying section 
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Body force (gravity) is also zero in this direction. Surface force are not present on the lateral 

boundaries because pressure is zero (or equal to the atmospheric value that would be present as a 

constant value everywhere and gives zero after integration). Similarly pressure is zero all around the 

jet and remains zero inside the inlet section (this can be demonstrated rigorously later) and the same 

at the outlet sections. Therefore surface pressure is only the force given by the obstacle Π = −𝐹.  

 

Insertion of these findings in the balance (5.3) shows that the force on the plate is only given by the 

deviation of the incoming momentum  

 𝐹 = 𝜌𝑈2𝐴 = 𝜌𝑄𝑈. (5.11) 

These simple cases were presented to show appropriate simple means of evaluating the terms (5.4) 

under typical conditions. In more general situations, the integrals (5.4) must be evaluated. 

The balance (5.2) can be extended to provide the balance of angular momentum. In which case every 

term must be multiplied with the corresponding arm of the force. The details of this extension are not 

reported here as they are not of primary interest for the topic of this book and do not bring conceptual 

challenges. However, such extension is immediate to draw in most situations using the same approach 

described above. 

5.2. Momentum balance for a vessel 

Following the same approach that we used above for conservation of mass, let us rearrange the 

balance of momentum (5.2) for the special important case of flow in a vessel. Indicating, as before, 

𝑥  as the longitudinal direction, this is a predominantly 1D stream of cross section area 𝐴(𝑡, 𝑥). The 

transversal velocities are thus negligible with respect to the longitudinal ones and we remind that the 

average velocity is defined 

 𝑈(𝑥, 𝑡) =
1

𝐴
∫ 𝑣𝑥𝑑𝐴
𝐴

. (5.12) 

Consider an infinitesimal length 𝑑𝑥 of such a vessel and let us evaluate the component along the 

vessel of each individual term in (5.4). Remind that the balance is made on a spatial volume 

(instantaneously fixed). This volume is bounded upstream by the cross-surface 𝐴(𝑡, 𝑥), where 

velocity is 𝑈(𝑥, 𝑡) and average pressure is 𝑝(𝑥, 𝑡). It is bounded downstream by the cross-surface 

𝐴(𝑡, 𝑥 + 𝑑𝑥) = 𝐴(𝑡, 𝑥) +
𝜕𝐴

𝜕𝑥
𝑑𝑥, where velocity is 𝑈(𝑡, 𝑥 + 𝑑𝑥) = 𝑈(𝑡, 𝑥) +

𝜕𝑈

𝜕𝑥
𝑑𝑥, and pressure is 

𝑝(𝑡, 𝑥 + 𝑑𝑥) = 𝑝(𝑡, 𝑥) +
𝜕𝑝

𝜕𝑥
𝑑𝑥 and it is also bounded laterally by the perimeter curve 𝐶(𝑡, 𝑥) that 

extends over the length 𝑑𝑥. 

 

Figure 5.3. Force of a jet impacting on a flat plate 
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The inertial term is integrated over the volume 𝑑𝑉 = 𝑑𝐴𝑑𝑥 and reads 

 I = ∫
𝜕𝜌𝑣𝑥

𝜕𝑡
𝑑𝑉

𝑉
= 𝜌 ∫

𝜕𝑣𝑥

𝜕𝑡
𝑑𝐴

𝐴
𝑑𝑥 = 𝜌

𝜕

𝜕𝑡
∫ 𝑣𝑥𝑑𝐴
𝐴

𝑑𝑥 = 𝜌𝐴
𝑑𝑈

𝑑𝑡
𝑑𝑥. (5.13) 

The flux of momentum across the two cross-sections and the lateral contour 

 M = −∫ 𝜌𝑣𝑥
2𝑑𝐴

𝐴(𝑥)
+ ∫ 𝜌 (𝑣𝑥 +

𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥)

2

𝑑𝐴
𝐴(𝑥)+

𝜕𝐴

𝜕𝑥
𝑑𝑥

+ ∫ 𝜌𝑣𝑥𝑣𝑛𝑑𝐶𝑑𝑥
𝐶(𝑥)

=  

is simplified assuming that the velocity is uniform over the cross section, which means  β=1, and 

ignoring all terms of order dx2 

= −𝜌𝑈2𝐴 + 𝜌 ∫ (𝑣𝑥
2 + 2𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝐴

𝐴
+ ∫ 𝜌 (𝑣𝑥

2 + 2𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥)𝑑𝐴𝜕𝐴

𝜕𝑥
𝑑𝑥

+ ∫ 𝜌𝑣𝑥𝑣𝑛𝑑𝐶𝑑𝑥
𝐶

= 

= −𝜌𝑈2𝐴 + 𝜌𝑈2𝐴 + 𝜌2𝑈
𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 + 𝜌𝑈2 𝜕𝐴

𝜕𝑥
𝑑𝑥 + ∫ 𝜌𝑣𝑥𝑣𝑛𝑑𝐶𝑑𝑥

𝐶
=  

last integral above can be rewritten considering that the integral of 𝑣𝑛𝑑𝐶 is the rate of increase of the 

cross-area, 
𝜕𝐴

𝜕𝑡
. Rearranging all terms 

= 𝜌𝑈
𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 + 𝜌𝑈

𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 + 𝜌𝑈2 𝜕𝐴

𝜕𝑥
𝑑𝑥 + 𝜌𝑈

𝜕𝐴

𝜕𝑡
𝑑𝑥 = 𝜌𝑈

𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 + 𝜌𝑈 (𝐴

𝜕𝑈

𝜕𝑥
+ 𝑈

𝜕𝐴

𝜕𝑥
+

𝜕𝐴

𝜕𝑡
)𝑑𝑥  

It is immediate to verify that the terms in bracket in last term are equal to zero because of mass 

conservation (4.7) and the whole flux of momentum becomes simply 

 M = 𝜌𝑈
𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 (5.14) 

Surface forces are composed of pressure acting on the two cross-sections, of the wall shear stress 

acting on the lateral surface and of the pressure acting on the lateral surface; the latter may presents 

a longitudinal component only when the cross-section is not constant. Surface forces are 

 Π = 𝑝𝐴 − (𝑝 +
𝜕𝑝

𝜕𝑥
𝑑𝑥) (𝐴 +

𝜕𝐴

𝜕𝑥
𝑑𝑥) − 𝜏𝑤𝐶𝑑𝑥 + (𝑝 +

1

2

𝜕𝑝

𝜕𝑥
𝑑𝑥) 𝑛𝑥𝑑𝑆𝐿𝐴𝑇 =  

Last but one term has is the average wall shear stress exerted by the lateral solid boundary to the fluid; 

it has a negative sign as we conventionally indicate with 𝜏𝑤 the stress made by fluid to the wall. Last 

term is the pressure on the lateral surface (taken as the mean between 𝑥 and 𝑥 + 𝑑𝑥) and 𝑛𝑥 is the 𝑥 

component of the normal unit vector on the lateral surface 𝑑𝑆𝐿𝐴𝑇 (notice that here we did not use the 

simplification 𝑑𝑆𝐿𝐴𝑇 = 𝐶𝑑𝑥 to remark the relevance of the change of cross section along 𝑑𝑥, the 

tilting of the later surface, whereas 𝐶 is the average value along the length 𝑑𝑥). It can be noticed that 

the terms 𝑛𝑥𝑑𝑆𝐿𝐴𝑇 is the component of the lateral surface facing 𝑥, thus it corresponds to the increase 

of cross-surface 𝑛𝑥𝑑𝑆𝐿𝐴𝑇 =
𝜕𝐴

𝜕𝑥
𝑑𝑥.  

Ignoring the higher order terms in dx and simplifying  

 Π = 𝑝𝐴 − 𝑝𝐴 −
𝜕𝑝

𝜕𝑥
𝐴𝑑𝑥 − 𝑝

𝜕𝐴

𝜕𝑥
𝑑𝑥 − 𝜏𝑤𝐶𝑑𝑥 + 𝑝

𝜕𝐴

𝜕𝑥
𝑑𝑥 = −𝐴

𝜕𝑝

𝜕𝑥
𝑑𝑥 − 𝜏𝑤𝐶𝑑𝑥 . (5.15) 

Finally, the volume force, assumed imputable to gravity only 𝒇 = −𝛾∇𝑧, gives the component along 

the vessel  

 G = −𝛾𝐴
𝜕𝑧

𝜕𝑥
𝑑𝑥; (5.16) 
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where 𝑧 stands for the vertical aligned with gravity. Combine all terms (5.13-5.16) of the momentum 

balance (5.4)   

 𝜌𝐴
𝑑𝑈

𝑑𝑡
𝑑𝑥 + 𝜌𝑈

𝜕𝑈

𝜕𝑥
𝐴𝑑𝑥 = −𝐴

𝜕𝑝

𝜕𝑥
𝑑𝑥 − 𝜏𝑤𝐶𝑑𝑥 − 𝛾𝐴

𝜕𝑧

𝜕𝑥
𝑑𝑥;  

divide by 𝜌𝐴𝑑𝑥 to obtain 

 
𝑑𝑈

𝑑𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
= −

𝜕

𝜕𝑥
(

𝑝

𝜌
+ 𝑔𝑧) −

𝜏𝑤

𝜌

𝐶

𝐴
 . (5.17) 

Equation (5.17) is the law of conservation of momentum for 1D streams, under the assumption of 

uniform velocity over the cross-section and in presence of gravity only. The left-hand terms represent 

the (Lagrangian) acceleration of a 1D fluid element moving with velocity 𝑈 expressed in terms of 

(Eulerian) derivatives in a fixed frame of reference.  

The first term on the right hand side is the driving force that can be due either to a pressure gradient 

(negative, higher upstream and lower downstream) or to a difference of quote. This expression 

underlines again that pressure gradient and gravity play the same role in fluid motion. It is common 

habit using a generalized pressure that includes gravity, 𝑝 + 𝛾𝑧 = 𝛾ℎ, where ℎ is the static head 

previously introduced with equation (2.5) in fluid statics. Then (5.17) is usually rewritten without 

explicit mention to gravity (or another conservative force) as 

 
𝑑𝑈

𝑑𝑡
+ 𝑈

𝜕𝑈

𝜕𝑥
= −

1

𝜌

𝜕𝑝

𝜕𝑥
−

𝜏𝑤

𝜌

𝐶

𝐴
 ; (5.18) 

where 𝑝 stands for the generalized pressure. Then, if needed, the actual pressure can be recovered 

simply removing the gravity contribution 𝑝 − 𝛾𝑧.  

Last term is the friction on the lateral walls. This term depends on the velocity profile near the wall, 

as shown for example by equation (1.8) for a Newtonian fluid. The 1D model however deals with the 

mean velocity only, that is conventionally assumed as uniform over the cross section, and does not 

provide information about transversal velocity gradient. Therefore, the friction terms is often 

neglected (in which case the flow is without viscous resistance) or it must be provided explicitly as a 

function of velocity field U. 

5.3. Momentum balance in differential form for a continuum: Cauchy equation 

The balances of momentum presented above do not allows investigating the spatiotemporal details of 

fluid motion. These require the formulation of the balance at a punctual level or, more precisely, in 

differential form. To this purpose, we follow here the same procedure previously adopted for the 

conservation of mass and apply it to the conservation of momentum. 

Start from the balance of momentum in global terms (5.2), divided by the constant density   

 ∫
𝜕𝒗

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝒗(𝒗 ∙ 𝒏)𝑑𝑆

𝑆
=

1

𝜌
∫ 𝒇𝑑𝑉
𝑉

+
1

𝜌
∫ 𝝉𝑑𝑆;
𝑆

 (5.19) 

at this point we want to transform the surface integrals, 2nd and 4th terms, as integrals over the volume. 

Such that, when all integrals refer to the same volume, we can eventually transfer the equality to the 

integrand terms. To this aim, take the generic ith component of the second term, which can be 

transformed as follows 

 ∫ 𝑣𝑖𝒗 ∙ 𝒏𝑑𝑆
𝑆

= ∫ ∇ ∙ (𝑣𝑖𝒗)𝑑𝑉
𝑉

= ∫ 𝑣𝑖∇ ∙ 𝒗 + 𝒗 ∙ ∇𝑣𝑖𝑑𝑉
𝑉

= ∫ 𝒗 ∙ ∇𝑣𝑖𝑑𝑉
𝑉

. (5.20) 
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The first equality used the Gauss theorem (3.8) applied to the vector field 𝑣𝑖𝒗; the second equality is 

immediate to verify using the derivative of a product for vector terms, and last equality follows after 

cancelling the terms ∇ ∙ 𝒗 that is identically zero for mass conservation (4.8). 

Last term in (5.19) contains the stress vector 𝝉 acting on the surface 𝑑𝑆. Apparently, at a point there 

are infinite stress vectors that can act on surfaces with different orientations, and the identification of 

the vector 𝝉 that acts on the specific surface 𝑑𝑆 may look like a complex task. However, such an 

infiniteness is only apparent because there is a single stress “state” about a point and the value of all 

these individual vectors come from a combination of such stress state and the orientation of the 

surface. Indeed, it can be demonstrated that the stress vector acting on a surface with normal 𝒏 can 

be expressed in general as 

 𝝉 = 𝕋 ∙ 𝒏 (5.21) 

where 𝕋 is the stress the tensor. It characterizes the stress state at a point, such that the stress vector 

at that point acting on a surface with normal 𝒏 is obtained by projecting the stress tensor over the 

direction 𝒏, as by (5.21).  

Result (5.21) is immediate to demonstrate using the Cauchy tetrahedron, which is build by the original 

surface 𝑑𝑆 and its projection on the Cartesian planes as shown in figure 5.4.  

 

Indicate with 𝝉(𝑥) the stress vector acting on the surface 𝑑𝑆(𝑥), which is projection of 𝑑𝑆 on the 𝑦-𝑧 

plane perpendicular to the 𝑥-axis; same for the other coordinate axes. First, we want to see whether 

the stress τ on the original surface can be expressed as a combination of the stresses 𝝉(𝑥), 𝝉(𝑦), 𝝉(𝑧) 

acting on the surfaces normal to the Cartesian axes. Balance of the forces acting on the tetrahedron 

gives the equivalence of the surface forces 

 𝝉𝑑𝑆 = 𝝉(𝑥)𝑑𝑆(𝑥) + 𝝉(𝑦)𝑑𝑆(𝑦) + 𝝉(𝑧)𝑑𝑆(𝑧). (5.22) 

It is then easy to verify by simple geometry that 𝑑𝑆(𝑖) = 𝑑𝑆 𝑛𝑖, where the 𝑛𝑖 is the ith component of 

the normal 𝒏 to the surface 𝑑𝑆. Introducing this into (5.22) gives 

 

Figure 5.4. Cauchy tetrahedron 
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 𝝉 = 𝝉(𝑥)𝑛𝑥 + 𝝉(𝑦)𝑛𝑦 + 𝝉(𝑧)𝑛𝑧 (5.23) 

If you define the stress tensor as a tensor made by three stress vectors placed in column 𝜏𝒊
(𝒋)

= 𝕋𝒊𝒋  

then equation (5.23) corresponds to (5.21) that is thus proven.Using expression (5.21) the forth term 

in (5.19) can be rewritten as a volume integral through the Gauss theorem 

 
1

𝜌
∫ 𝝉𝑑𝑆
𝑆

=
1

𝜌
∫ 𝕋 ∙ 𝒏 𝑑𝑆
𝑆

= −
1

𝜌
∫ ∇ ∙ 𝕋𝑑𝑉
𝑉

. (5.24) 

where the minus comes out because the normal in Gauss theorem is outward directed. Introduction 

of (5.20) and (5.24) in the momentum balance (5.19) allows rewriting in terms of volume integrals 

 ∫
𝜕𝒗

𝜕𝑡
𝑑𝑉

𝑉
+ ∫ 𝒗 ∙ ∇𝒗𝑑𝑉

𝑉
=

1

𝜌
∫ 𝒇𝑑𝑉
𝑉

−
1

𝜌
∫ ∇ ∙ 𝕋𝑑𝑉
𝑉

.  

This must be valid for any volume, including an infinitesimal volume, therefore the balance must 

apply to the integrands as well 

 
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 =

1

𝜌
𝒇 −

1

𝜌
∇ ∙ 𝕋. (5.25) 

Equation (5.25) is the Cauchy equation that expresses the law of conservation of momentum for a 

continuum. 

The same result could be obtained in Cartesian coordinates by applying the balance of momentum 

(5.19) to an infinitesimal cube of volume as shown in figure 5.5. 

 

Consider, for example, the x-component (then results can be immediately extended to the other 

components). The first term in (5.19) applied to the infinitesimal cube, V=dxdydz, becomes 

 ∫
𝜕𝑣𝑥

𝜕𝑡
𝑑𝑉

𝑉
=

𝜕𝑣𝑥

𝜕𝑡
𝑑𝑥𝑑𝑦𝑑𝑧. (5.26) 

The second term includes the fluxes of momentum on the 6 faces 

 

Figure 5.5. Balance of momentum in an infinitesimal cube  

(values on the faces perpendicular to y are not shown to for clarity)  
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∫ 𝑣𝑥(𝒗 ∙ 𝒏)𝑑𝑆
𝑆

=

  = −𝑣𝑥𝑣𝑥𝑑𝑦𝑑𝑧 − 𝑣𝑥𝑣𝑦𝑑𝑥𝑑𝑧 − 𝑣𝑥𝑣𝑧𝑑𝑥𝑑𝑦 + (𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) (𝑣𝑥 +

𝜕𝑣𝑥

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 +

             + (𝑣𝑥 +
𝜕𝑣𝑥

𝜕𝑦
𝑑𝑦) (𝑣𝑦 +

𝜕𝑣𝑦

𝜕𝑦
𝑑𝑦) 𝑑𝑥𝑑𝑧 + (𝑣𝑥 +

𝜕𝑣𝑥

𝜕𝑧
𝑑𝑧) (𝑣𝑧 +

𝜕𝑣𝑧

𝜕𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦 =

  = (𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑥

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑥

𝜕𝑣𝑧

𝜕𝑧
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 =

  = (𝒗 ∙ ∇𝑣𝑥 + 𝑣𝑥∇ ∙ 𝒗)𝑑𝑥𝑑𝑦𝑑𝑧 =
  = 𝒗 ∙ ∇𝑣𝑥 𝑑𝑥𝑑𝑦𝑑𝑧

 (5.27) 

The third term 

 ∫ 𝑓𝑥𝑑𝑉
𝑉

= 𝑓𝑥𝑑𝑥𝑑𝑦𝑑𝑧. (5.28) 

Last term combines the stress forces on the six surfaces of the cube 

 

∫ 𝜏𝑥𝑑𝑆
𝑆

=

  = 𝜏𝑥
(𝑥)

𝑑𝑦𝑑𝑧 + 𝜏𝑥
(𝑦)

𝑑𝑥𝑑𝑧 + 𝜏𝑥
(𝑧)

𝑑𝑥𝑑𝑦 − (𝜏𝑥
(𝑥)

+
𝜕𝜏𝑥

(𝑥)

𝜕𝑥
𝑑𝑥) 𝑑𝑦𝑑𝑧 +

            − (𝜏𝑥
(𝑦)

+
𝜕𝜏𝑥

(𝑦)

𝜕𝑦
𝑑𝑦)𝑑𝑥𝑑𝑧 − (𝜏𝑥

(𝑧)
+

𝜕𝜏𝑥
(𝑧)

𝜕𝑧
𝑑𝑧) 𝑑𝑥𝑑𝑦 =

  = −(
𝜕𝜏𝑥

(𝑥)

𝜕𝑥
+

𝜕𝜏𝑥
(𝑦)

𝜕𝑦
+

𝜕𝜏𝑥
(𝑧)

𝜕𝑧
) 𝑑𝑥𝑑𝑦𝑑𝑧 =

  = −(∇ ∙ 𝕋)𝑥𝑑𝑥𝑑𝑦𝑑𝑧 =

 (5.29) 

Where here we defined, as we did before in the Cauchy tetrahedron, the stress tensor 𝕋 as made by 

the three stress vectors relative to the three coordinates. 

Insertion of expressions (5.26)-(5.29) into the balance (5.19) gives again the Cauchy equation (5.25). 

The two terms on the left hand side of the Cauchy equation (5.25) represent the acceleration of fluid 

particles that we previously introduced in equation (3.24). The two terms on the right hand side are 

the forces acting on such particles, caused by intrinsic volumetric forces and by the stresses made by 

the neighboring fluid elements. 

The same procedure must now be performed for the conservation of angular momentum by writing 

the same expressions including the arms of the individual terms. The derivation is somehow lengthy 

and is not reported in details here. Nevertheless, the result is remarkably simple and important: the 

conservation of angular momentum implies that the stress tensor 𝕋 is a symmetric tensor. It does not 

produce further differential equations and simply reduces the complexity of the 3×3 stress tensor from 

9 components to 6 independent components.  

5.4. Momentum balance for Newtonian fluids: Navier-Stokes equations 

Let us recapitulate the set of equations describing the mechanics of a continuum (still we have not 

used any argument that this continuum is a fluid, only that it is incompressible). This is given by the 

conservation of mass (continuity equation) and the conservation of momentum (Cauchy equation) 

 {
∇ ∙ 𝒗 = 0,
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 =

1

𝜌
𝒇 −

1

𝜌
∇ ∙ 𝕋; (5.30) 
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which is a set of 4 scalar equations. The unknowns are the 3 components of the velocity vector and 

the 6 components of the stress tensor, resulting in a number of 9 total unknowns. Thus this set is not 

complete, it cannot be solved, until some additional information is provided.  

The set of equations (5.30) is valid for a generic continuum; it applies to both solids and fluids. In 

order to be refined for a specific material we must introduce information about such a material. In 

other terms, we must introduce the constitutive law that specifies how internal stresses develop from 

the behavior of the material. Below we’ll specify the constitutive law for fluids, following the general 

properties described in section 1.2. 

The first information for specifying the constitutive law comes from the statics of fluids. In chapter 2 

we have seen that under static conditions the stresses on a surface is made by pressure and acts 

normally toward the surface, it is expressed as 𝝉 = −𝑝𝒏 (the minus comes here for the convention of 

the outward normal). Comparison with (5.21) immediately shows that in the limit case of static 

conditions, the stress tensor is required to take the form  

 𝕋 = 𝑝𝕀 = 𝑝 [
1 0 0
0 1 0
0 0 1

]  

where 𝕀 is the identity matrix.  

The second information comes from the kinematics of fluid. In chapter 3 we have shown that motion 

is composed by rigid translation and rotation plus a pure deformation. The latter is the only elementary 

action which involves the relative motion of fluid elements, thus the only that can be responsible for 

friction and stresses. Therefore, we can express in general the constitutive law for a fluid as 

 𝕋 = 𝑝𝕀 + 𝑓(𝔻); (5.31) 

where 𝔻 is the symmetric deformation tensor (3.20). Relationship (5.31) states that the 6 unknown 

present in the tensor 𝕋 can be expressed in terms of the velocity field plus a single unknown, the 

pressure 𝑝. Thus providing a closure (balance between equations and unknowns) to the system (5.30). 

Fluids following the law (5.31), where stress forces are due to rate of deformation, are called Stokes 

fluids. 

The third information comes from the definition of viscosity for a Newtonian fluid. In section 1.2, we 

showed that the stress due to shear flow along 𝑥 on a surface with normal 𝑦 is given by formula (1.8); 

which that can be restated with the current formalism as 

 𝕋𝑥𝑦 = −𝜇
𝜕𝑣𝑥

𝜕𝑦
;  

This expression is not symmetric and violates conservation of angular momentum; however, it can 

easily be made symmetric as 

 𝕋𝑥𝑦 = −𝜇 (
𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
);  

without contradicting the experimental result (1.8) because the transversal velocity 𝑣𝑦 was zero. This 

is an off-diagonal term of a form compatible with (5.31), suggesting that the function 𝑓(𝔻) appearing 

in (5.31) is a linear one for Newtonian fluids.  

Combining this set of information, the constitutive law for Newtonian fluids is written in general as 

 𝕋 = 𝑝𝕀 − 2𝜇𝔻; (5.32) 
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or in individual Cartesian components  

 𝕋 =

[
 
 
 
 𝑝 − 2𝜇

𝜕𝑣𝑥

𝜕𝑥
−𝜇 (

𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
) −𝜇 (

𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
)

−𝜇 (
𝜕𝑣𝑥

𝜕𝑦
+

𝜕𝑣𝑦

𝜕𝑥
) 𝑝 − 2𝜇

𝜕𝑣𝑦

𝜕𝑦
−𝜇 (

𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
)

−𝜇 (
𝜕𝑣𝑥

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑥
) −𝜇 (

𝜕𝑣𝑦

𝜕𝑧
+

𝜕𝑣𝑧

𝜕𝑦
) 𝑝 − 2𝜇

𝜕𝑣𝑧

𝜕𝑧 ]
 
 
 
 

.  

Let us now look how to the surface force term in the Cauchy equation (5.25) can be written when the 

stress tensor is expressed by the constitutive law (5.32)  

   

−∇ ∙ 𝕋|𝑥 = −(
𝜕𝕋𝑥𝑥

𝜕𝑥
+

𝜕𝕋𝑥𝑦

𝜕𝑦
+

𝜕𝕋𝑥𝑧

𝜕𝑧
) =

= −
𝜕𝑝

𝜕𝑥
+ 2𝜇

𝜕2𝑣𝑥

𝜕𝑥2
+ 𝜇

𝜕2𝑣𝑥

𝜕𝑦2
+ 𝜇

𝜕2𝑣𝑦

𝜕𝑥𝑦
+ 𝜇

𝜕2𝑣𝑥

𝜕𝑧2
+ 𝜇

𝜕2𝑣𝑧

𝜕𝑧𝑥
=

= −
𝜕𝑝

𝜕𝑥
+ 𝜇 (

𝜕2𝑣𝑥

𝜕𝑥2
+

𝜕2𝑣𝑥

𝜕𝑦2
+

𝜕2𝑣𝑥

𝜕𝑧2
) + 𝜇

𝜕

𝜕𝑥
(
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
) =

= −
𝜕𝑝

𝜕𝑥
+ 𝜇∇2𝑣𝑥

. (5.33) 

Insertion of (5.33) into the Cauchy equation (5.25) gives the equations for conservation of momentum 

for Newtonian fluids: the Navier-Stokes equation 

 
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 =

1

𝜌
𝒇 −

1

𝜌
∇𝑝 + 𝜈∇2𝒗. (5.34) 

where 𝜈 =
𝜇

𝜌
 is the kinematic viscosity previously defined in (1.9). This equation is also called the 

law of motion for an incompressible Newtonian fluid, and represents the rearrangement of the 2nd 

Newton law for this special material. The left hand side is the acceleration of a fluid particle, the 

terms on the right hand side are the force, per unit mass. Respectively they are the volumetric force, 

the thrust due to pressure difference and the resistance force due to internal viscous friction.  

As discussed in chapter 1, blood is a complex material for which the assumption of a Newtonian 

constitutive relations is approximate. The reliability of this approximation was discussed therein and 

it is not recalled here. In what follows we will limit our treatise to Newtonian fluids that represent the 

foundation for understanding the majority of flow phenomena in the heart and large blood vessels.  

When dealing with gravitational volume forces only, we have seen that the force can be rewritten in 

gradient form 𝒇 = 𝛾∇𝑧. Therefore they can be formally included in the pressure term  

 
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 = −

1

𝜌
∇𝑝 + 𝜈∇2𝒗. (5.35) 

where 𝑝 is includes gravity and stands for the static head 𝛾ℎ = 𝑝 + 𝛾𝑧.  

The set of equations given by continuity equation (4.8) and Navier-Stokes equation (5.35) is now a 

complete set with the same number of equations (4 scalar equations) and unknowns (the 3 components 

of the velocity vector and pressure) 

 {
∇ ∙ 𝒗 = 0,
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 = −

1

𝜌
∇𝑝 + 𝜈∇2𝒗; (5.36) 

This system of equations, continuity and motion, must be completed with the appropriate boundary 

conditions. The Navier-Stokes equation is a partial differential equation containing second order 

derivatives for velocity; therefore, roughly speaking, it requires two boundary conditions for velocity. 
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The first condition is the impermeability at the boundary between fluid and solid; this means that the 

normal component of the velocity must be zero (or equal to that of the boundary when it is moving). 

The second condition is the adherence to the wall; this means that the tangential velocity must go to 

zero at the wall. Adherence is a purely viscous phenomenon; this is congruent with the fact that the 

second condition follows from the presence of the viscous terms that is the only one containing 2nd 

order derivatives. 

The viscous, frictional term in the Navier-Stokes equation produces energy dissipation. In a wider 

perspective, total energy is conserved and friction is a mechanism of transformation of kinetic energy 

into heat. Therefore, from the mechanical perspective, friction provokes a dissipation, a reduction of 

the mechanical energy. 

The kinematic viscosity is a small coefficient 𝜈=10-6m2/s=10-2cm2/s for water. Therefore, especially 

far from the boundaries, the viscous terms can be sometime neglected and fluid behave mostly like 

an inviscid one. 

Consider now the limiting case when viscosity is zero, 𝜈 = 0, that can be useful as a model in 

numerous applications. In this asymptotic limit, we talk of ideal fluids (also called inviscid or 

frictionless). The equation of motion for ideal fluids is the Euler equation  

 
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 = −

1

𝜌
∇𝑝; (5.37) 

that differs from the Navier-Stokes equation (5.35) for the absence of the viscous term only. The 

Euler equation does not present friction and therefore conserves mechanical energy. Thus, it describes 

reversible phenomena. Indeed, if the velocity pressure pair (𝒗, 𝑝) is solution of the Euler equation 

forward in time, then the reversed pair  (−𝒗,−𝑝) is also a solution backward in time. This was not 

true for the Navier-Stokes equation due to the friction term that does not reverse (reverse flow also 

has friction, it certainly does not transform heat back into kinetic energy). 

Another important difference between Euler and Navier-Stokes is that the former is a 1st order partial 

differential equation because it contains 1st order derivatives only. This difference reflects into the 

fact that only one boundary condition can be imposed for the velocity. Namely, the adherence 

condition does not apply to the Euler equation; this is perfectly physically consistent because the 

adherence is a viscous phenomenon; ideal flows have no viscosity and cannot have viscous adherence. 

Euler equation is important because it allows some simple solution to specific applications; however, 

care must be taken for applying the approximation of ideal flow. It can be usable over short regions, 

where the small viscosity may be effectively negligible, and far from boundaries outside the regions 

influenced by viscous adherence. 

A last consideration about Navier-Stokes (and Euler) equation regards the frequent case of flows 

where velocity is predominantly along one direction. Consider a motion that is predominantly along 

the 𝑥-direction, thus 𝑣𝑦 ≅ 0 and 𝑣𝑧 ≅ 0, and write the Navier-Stokes equation over the direction 

transversal to the directions of motion, for example the 𝑦 direction 

   
𝜕𝑣𝑦

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧
= −

1

𝜌

𝜕𝑝

𝜕𝑦
+ 𝜈 (

𝜕2𝑣𝑦

𝜕𝑥2 +
𝜕2𝑣𝑦

𝜕𝑦2 +
𝜕2𝑣𝑦

𝜕𝑧2 ). (5.38) 

If we can neglect the velocity 𝑣𝑦 and its derivatives; in other words, if streamlines are straight and 

parallel, then equation (5.38) reduces to  
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𝜕𝑝

𝜕𝑦
= 0; (5.39) 

that, in presence of gravity, has the meaning 

   
𝜕

𝜕𝑦
(𝑝 + 𝛾𝑧) = 0.  

This is a general and important result. In regions where fluid motion is straight and parallel, the static 

head (2.5), given by pressure plus gravity if the latter is present, remains constant transversal to the 

direction of motion. 

Put simpler, along the directions without motion (transversal to flow), the law of fluid statics (2.4) 

holds. This simple fact was sometime used in section 5.1 when computing dynamic forces, it tells 

about the average pressure value in the equation for a vessel in 5.2, and will be used several times 

later in the book. 
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6. Conservation of Energy (Bernoulli Balance) 

6.1. Equation for conservation of mechanical energy 

In a system where the only form of energy is mechanical energy, there are no other physical 

mechanisms, or physical laws, other than conservation of mass and of momentum that can be included 

to describe the behavior of the system. The unique transformation is about kinetic energy 
1

2
𝜌𝑣2 (per 

unit volume) and the potential energy  𝑝 + 𝛾𝑧 (per unit volume). The latter again underlining that 

pressure plays the same role of gravity which is commonly assumed to be implicitly included for 

easier writing. The law of conservation of momentum already described the dynamic relationship 

between velocity (for kinetic energy) and pressure (for potential energy); therefore, in absence of 

other forms of energy, the conservation of energy must be in accordance with that. 

In this special case, the law of conservation of energy can be obtained directly from the Cauchy 

equation (5.25), for a generic continuum, or from the Navier-Stokes equation (5.35), for a Newtonian 

fluid. Consider the ith component of equation (5.25) 

 
𝜕𝑣𝑖

𝜕𝑡
+ 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
=

1

𝜌
𝑓𝑖 +

1

𝜌

𝜕𝕋𝑖𝑗

𝜕𝑥𝑗
.  

and make the scalar multiplication with the velocity (in index formalism, multiply the ith component 

of the equation by the same component of velocity and perform summation for i=1,2,3) 

 𝜌𝑣𝑖
𝜕𝑣𝑖

𝜕𝑡
+ 𝜌𝑣𝑖𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
= 𝑣𝑖𝑓𝑖 + 𝑣𝑖

𝜕𝕋𝑖𝑗

𝜕𝑥𝑗
.  

that can be rewritten 

 𝜌
1

2

𝜕𝑣𝑖𝑣𝑖

𝜕𝑡
+ 𝜌𝑣𝑗

1

2

𝜕𝑣𝑖𝑣𝑖

𝜕𝑣𝑗
= 𝑣𝑖𝑓𝑖 + 𝑣𝑖

𝜕𝕋𝑖𝑗

𝜕𝑥𝑗
.  

 
𝜕

𝜕𝑡
(
1

2
𝜌𝑣𝑖𝑣𝑖) + 𝑣𝑗

𝜕

𝜕𝑣𝑗
(
1

2
𝜌𝑣𝑖𝑣𝑖) = 𝑣𝑖𝑓𝑖 +

𝜕

𝜕𝑥𝑗
(𝑣𝑖𝕋𝑖𝑗) − 𝕋𝑖𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
.  

 
𝜕

𝜕𝑡
(
1

2
𝜌𝑣𝑖𝑣𝑖) + 𝑣𝑗

𝜕

𝜕𝑣𝑗
(
1

2
𝜌𝑣𝑖𝑣𝑖) = 𝑣𝑖𝑓𝑖 +

𝜕

𝜕𝑥𝑗
(𝑣𝑖𝕋𝑖𝑗) − 𝕋𝑖𝑗𝔻𝑖𝑗.  

where we used the rule of product derivative and, for the last term, the fact that the product between 

a symmetric and antisymmetric tensor is zero, thus only the symmetric part of the velocity gradient 

contributes. In final form the general equation for the conservation of mechanical energy is 

 
𝜕

𝜕𝑡
(
1

2
𝜌𝑣2) + 𝒗 ∙ ∇ (

1

2
𝜌𝑣2) = 𝒗 ∙ 𝒇 + ∇ ∙ (𝒗 ∙ 𝕋) − 𝕋:𝔻. (6.1) 

where the double scalar products is 𝕋:𝔻 = 𝕋𝑖𝑗𝔻𝑖𝑗. The two terms on the left hand side are the 

(Lagrangian) time derivative of the kinetic energy on the moving fluid element. This can change for 

the work done by the volume force (first terms on the right hand side) by the surface forces (second 

terms), and for work spent to deform the fluid elements (last term). The last term represents the 

dissipation of mechanical energy.  

In the case of Newtonian incompressible fluid, using (5.2), the rate of dissipation of kinetic energy 

can be expressed 

 𝕋:𝔻 = 2𝜇𝔻:𝔻 = 2𝜇𝔻𝑖𝑗𝔻𝑖𝑗. (6.2) 
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This expression evidences that viscous energy dissipation is strictly a positive value because given 

by the sum of squares. 

6.2. Bernoulli energy balance 

An expression for the conservation of energy that is of immediate interpretation in simpler 

circumstances can be obtained directly from the Navier-Stokes equation under some specific 

hypotheses. 

Consider the case of volume forces that are absent or limited to the gravitational forces and included 

into the pressure term without loss of generality. Now make the strong hypothesis of considering the 

motion of an ideal fluid with zero viscosity. The equation governing fluid motion is the Euler equation 

(5.37) 

 
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗 = −

1

𝜌
∇𝑝.  

The second term on the left hand side is nonlinear and can be rewritten in an alternate form as follows. 

Consider the 𝑥-component of that term in Cartesian coordinates 

 𝒗 ∙ ∇𝒗|𝒙 = 𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
=  

add and remove the same quantity 

 = 𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑥

𝜕𝑧
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑥
− 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑥
− 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑥
=  

the 1st, 4th and 6th terms can be grouped as the derivative of squares, then evidence 𝑣𝑦 from 2nd and 

5th and 𝑣𝑧 from 3rd and 7th  

 =
1

2

𝜕

𝜕𝑥
(𝑣𝑥

2 + 𝑣𝑦
2 + 𝑣𝑧

2) + 𝑣𝑦 (
𝜕𝑣𝑥

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑥
)+𝑣𝑧 (

𝜕𝑣𝑥

𝜕𝑧
−

𝜕𝑣𝑧

𝜕𝑥
) =  

the first term is the derivative of the square of the modulus of velocity 𝑣2 = 𝑣𝑖𝑣𝑖 = 𝑣𝑥
2 + 𝑣𝑦

2 + 𝑣𝑧
2. 

Then notice that the other terms in parenthesis are components of vorticity, thus we get 

 =
𝜕

𝜕𝑥

𝑣2

2
− 𝑣𝑦𝜔𝑧+𝑣𝑧𝜔𝑦 = [∇

𝑣2

2
− 𝒗 × 𝝎]

𝑥
.  

Insertion of this result into the Euler equation permit to rewrite it in the following alternate form 

 
𝜕𝒗

𝜕𝑡
+ ∇(

𝑣2

2
+

𝑝

𝜌
) = 𝒗 × 𝝎. (6.3) 

Equation (6.3) is a vector equation, where the term on the right hand side is perpendicular to the 

velocity (and to vorticity) for the property of the cross product. Thus, if we project equation (6.3) in 

the direction of a streamline, i.e. if we take the scalar product of every term with the versor 𝒔 = 𝑣−1𝒗, 

last term is zero and we are left with 

 
𝜕𝑣𝑠

𝜕𝑡
+

∂

𝜕𝑠
(
𝑣2

2
+ 𝑝) = 0. (6.4) 

Integration of equation (6.4) between two points, point 1 and point 2, along one streamline gives 

 
𝑝1

𝜌
+

𝑣1
2

2
=

𝑝2

𝜌
+

𝑣2
2

2
+ ∫

𝜕𝑣𝑠

𝜕𝑡

2

1
𝑑𝑠 . (6.5) 
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which expresses the conservation of the mechanical energy. Equation (6.5) represents the Bernoulli 

theorem or Bernoulli balance and states that, in a gravitational field, under the hypothesis that viscous 

energy dissipations are negligible, the total mechanical energy is conserved along a streamline net of 

the last term (inertia) that is the energy spent to accelerate the fluid or acquired during its deceleration. 

For an immediate interpretation, it is common to define the total head 

 𝐻 =
𝑣2

2𝑔
+

𝑝

𝛾
=

𝑣2

2𝑔
+ ℎ; (6.6) 

which is a height that expresses the total mechanical energy per unit weight as the sum of kinetic 

energy 
𝑣2

2𝑔
 plus the potential energy ℎ, which is the static head previously defined in section 2.1. Using 

the definition (6.6), the Bernoulli balance (6.5) can be written as 

 𝐻1 = 𝐻2 +
1

𝑔
∫

𝜕𝑣𝑠

𝜕𝑡

2

1
𝑑𝑠 , (6.7) 

stating that the total head can vary along a streamline only when there is inertia stored by fluid along 

that path. 

The case of stationary fluid, 
𝜕𝒗

𝜕𝑡
= 0, when inertia is zero, takes particular relevance for numerous 

applications. In this case, last term in (6.6) is zero and the total head (6.6) is conserved along a 

streamline. This case presents only the transformation of kinetic energy into potential energy 

(pressure) and vice versa. 

Consider the case of a large reservoir with a hole at its bottom as shown in figure 6.1. 

 

Consider a streamline starting from the free surface and going to the outflow. Pressure is equal to the 

atmospheric pressure at the point 1 on the free surface and at the point 2 that is a unidirectional jet 

surrounded by atmospheric pressure. If the reservoir is large enough, we can also neglect the velocity 

(square) in point 1 with respect to that in 2, and consider the flow as approximately stationary. 

Application of Bernoulli balance (6.7) to this case gives 

 𝑧1 = 𝑧2 +
𝑣2

2

2
 .  

Indicating with ℎ = 𝑧1 − 𝑧2, the total head weighting on the exit the outflow velocity 𝑣 = 𝑣2 can be 

immediately evaluated as  

  𝑣 = √2𝑔ℎ . (6.8) 

 

Figure 6.1. Flow existing from the bottom of a reservoir 
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Velocity (6.8) is called the Torricelli velocity; it is the free-fall velocity of a particle subjected to 

gravity only. Based on (6.8) it is possible to estimate the discharge exiting from the orifice as 

  𝑄 = 𝐶𝑐𝐴√2𝑔ℎ .  

where 𝐴 is the orifice area and 𝐶𝑐 is the coefficient of contraction that accounts for the contraction of 

the cross-section of the existing jet, which for a sharp edge is about 𝐶𝑐 ≅ 0.6.  

In a stationary flow, in general, the change of fluid kinetic energy is balanced by change in pressure. 

Therefore, for example, the fluid velocity increases in a horizontal converging vessel and pressure 

decreases accordingly to the conservation of the total head; vice versa, in an expanding vessel, 

velocity decreases downstream and pressure increases. Similarly, when you have a steady jet, with 

velocity 𝑣, that impacts on a solid surface, the stagnation point on the solid surface experiences an 

overpressure  

 ∆𝑝 =
1

2
𝜌𝑣2;  

because all the kinetic energy transformed into an increase of pressure.  

The Bernoulli balance is at the base of an important velocity measurement instrument called Pitot 

tube that is shown in figure 6.2. The Pitot tube is a small tube with a bullet-like leading edge facing 

the incoming stream. It is made of two concentric chambers: the inner chamber communicates to the 

outside from an opening at the front tip; the outer chamber communicates to the outside through 

openings on the lateral side. Then, the two chambers end internally with a differential manometer that 

reports their pressure difference.  

With reference to the sketch in figure 6.2 we can apply the Bernoulli balance under steady conditions 

separately for the two chambers along two streamlines both starting from two points upstream that 

are very close each other, thus have the same velocity 𝑣 and pressure 𝑝 (point 0). One ending to the 

stagnation point (point 1) in front of the tube and the other passing to the side near the lateral holes 

(point 3). 

Consider first the path starting from the upstream point 0, passing through point 1, and ending to 

point 2 on one side of the differential manometer. Apply the Bernoulli balance between 0 and 1, 

 
𝑝

𝜌
+

𝑣2

2
=

𝑝1

𝜌
+

𝑣1
2

2
.  

Velocity is zero at the stagnation point 1 and we obtain that pressure measured in 1 is equal to the 

upstream pressure augmented by the kinetic energy that is transformed into pressure at the stagnation 

point 

 𝑝1 = 𝑝 + 𝜌
𝑣2

2
.  

Then, inside the tube the fluid is at rest and the laws of fluid statics hold. Ignoring gravity (without 

loss of generality, because it can be included into pressure) we have that  

 𝑝2 = 𝑝1 = 𝑝 + 𝜌
𝑣2

2
.  
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Now consider the path starting from the upstream point 0, passing through points 3 and 4, and ending 

to point 5 on the other side of the differential manometer. The Pitot tube is small enough that it does 

not disturbs appreciably the fluid flow and we can assume that next to the tube 𝑣3 = 𝑣 and 𝑝3 = 𝑝. 

The Bernoulli balance cannot be applied between points 3 and 4 because there is no streamline 

connecting the two. However, the path from point 3 to point 4 moves transversally to the streamlines 

and we can apply the law of statics (5.39) transversal to the direction of flow. Then, once entered into 

the tube the same law of statics apply in the fluid at rest. This gives a constancy of pressure from the 

outside up the manometer  

 𝑝5 = 𝑝4 = 𝑝3 = 𝑝.  

From these formulas, the pressure values measured at the two sides of the manometer are 

 𝑝2 = 𝑝 + 𝜌
𝑣2

2
 , 𝑝5 = 𝑝;  

the former is often called the dynamic pressure, because it is the ambient pressure increased by the 

kinetic head; the latter is the static ambient pressure. The pressure difference reading from the 

manometer is 

 ∆𝑝 = 𝑝2−𝑝5 = 𝜌
𝑣2

2
  

that is immediate to transform into a velocity measurement 

 

 

 

Figure 6.2. Pitot tube: Picture (above, https://www.unitedsensorcorp.com/images/Pitot-Stataic-

probe.jpg); sketch for calculations (below). 
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  𝑣 = √2
∆𝑝

𝜌
 . (6.9) 

The Pitot tube has an important applied relevance because it provides a measurement of velocity 

based on mechanical principles. It works without the need of an external source of energy like 

electricity or digital post processing of data. It thus equips most aircrafts and boats providing an 

independent velocity measurement to rely on under any circumstances up to the case of failure of 

electric support. 

The Pitot tube represents the archetype of velocity and pressure measurements used in clinical 

practice through catheterization. Typically, clinical hemodynamic catheters are used inside the heart 

chambers or in large vessels and present side opening to measure pressure and possibly front opening 

to measure velocities. 

The simplified form of the Bernoulli balance, where the time derivative term is absent, is used in 

stationary flows. However, it can also be used in unsteady flow at those time instants when the time 

derivative is zero. In cardiovascular pulsatile flows, it is commonly applied at the peak of the pulsation 

to compute the pressure drop across cardiac valves, for example. 

In cardiovascular pulsatile flows, the simplified, stationary form of the Bernoulli balance is used for 

application during those time instants when the time derivative of velocity is zero. For example, it is 

commonly applied at the peak of the pulsation to compute the pressure drop across cardiac valves.   

 

With reference to figure 6.3 (left), select a streamline crossing the aortic valve during the maximum 

velocity of systolic contraction with the first point inside the ventricle and the other point at the exit 

of the valve. The same approach can be used for flow across the mitral valve (figure 6.3, right), The 

velocity is at its maximum and the time derivative is approximately zero, thus Bernoulli balance (6.5) 

reads 

 
𝑝1

𝜌
+

𝑣1
2

2
=

𝑝2

𝜌
+

𝑣2
2

2
.  

                    

Figure 6.3. Flow across the aortic valve (left) or mitral valve (right) 
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Neglecting the upstream velocity (square) inside the chamber with respect to the velocity at the exit 

of the valvular tips the pressure drop ∆𝑝 = 𝑝1−𝑝2 across the valve can be expressed as a function of 

the valvular velocity  𝑣 = 𝑣2 as   

 ∆𝑝 = 𝜌
𝑣2

2
. (6.10) 

The velocity at the exit of the valve can be measured with relative ease, for example with Doppler 

ultrasound, and allows having an estimate of the transvalvular pressure drop. Formula (6.10) is 

dimensionally consistent; for example, when the valve velocity is measured in m/s and density in 

Kg/m3 then pressure is given in Pascal. In clinical practice, it is very common to express this balance 

in dimensional form, with pressure drop measured in mmHg and velocity in m/s. Transformation from 

Pascal to mmHg requires a factor 133Pa/mmHg, and using density 𝜌=1050Kg/m3 then  

 ∆𝑝[𝑚𝑚𝐻𝑔] =
1050

133 × 2
𝑣

[
𝑚

𝑠
]

2 ≅ 4 𝑣
[
𝑚

𝑠
]

2 .  

The simple formula ∆𝑝 = 4𝑣2 often called the simplified Bernoulli formula (which we remark is 

valid only when pressure is measured in mmHg and velocity in m/s) is widely used in clinical 

cardiology to estimate transvalvular pressure gradients. Given its frequent use, it must be kept in mind 

that it was obtained under the hypotheses of the Bernoulli balance (ideal flow), with the additional 

assumptions that the upstream velocity is negligible and it is valid under static conditions, namely at 

the maximum of velocity. 

The pressure drop evaluated at the instant of maximum velocity (6.10) is not necessarily the 

maximum pressure drop during the period of systolic outflow across the aortic valve, or diastolic 

inflow through the mitral valve. At a generic instant the time derivative cannot be neglected and the 

complete Bernoulli balance (6.5) applies 

 ∆𝑝 = 𝑝1 − 𝑝2 =
1

2
𝜌(𝑣2

2 − 𝑣1
2) + 𝜌 ∫

𝜕𝑣𝑠

𝜕𝑡

2

1
𝑑𝑠   

which can be rewritten  

 ∆𝑝 =
1

2
𝜌(𝑣2

2 − 𝑣1
2) + 𝜌

𝜕𝑣12

𝜕𝑡
𝐿12   

where 𝐿12 is the distance traveled between the two points and 𝑣12 is the velocity averaged along that 

path. Under the assumption that the upstream velocity is negligible, 𝑣1
2 ≪ 𝑣2

2 = 𝑣2, and that the 

velocity increases linearly 𝑣12 ≅
1

2
𝑣2 =

1

2
𝑣, then we can approximate the unsteady pressure drop by 

 ∆𝑝 =
𝜌

2
𝑣2 + 𝜌

𝜕𝑣12

𝜕𝑡
𝐿12 ≅

𝜌

2
𝑣2 +

𝜌

2

𝜕𝑣

𝜕𝑡
𝐿12 . (6.11) 

The first term is the pressure drop due to transformation of pressure into kinetic energy, the second 

is the energy stored into inertia. Typically, the two terms are comparable in magnitude and present 

different time phase. The former is in phase with velocity and dominates about the instants of 

maximum velocity; the latter is in quadrature of velocity and dominates during the 

acceleration/deceleration periods (Firstenberg et al., 2000; Tonti et al., 2001). 

6.3. Bernoulli balance with dissipation: localized energy losses. 

Among the hypotheses of the Bernoulli balance, the one that can be unrealistic under several 

conditions is main the assumption of ideal fluid. Fluids are never ideal and some form of viscous 

dissipation is always present.  
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For example, when the flow in a vessel passes across a reduction of area (like a valve or a pathologic 

narrowing or stenosis) the flow accelerates at the smaller area and decelerates afterwards where the 

vessel returns to its original size. Thus, potential energy (pressure) transforms into kinetic energy at 

the constriction where pressure reaches smaller values. The kinetic energy transforms back into 

pressure during the enlargement; however, while velocity (and kinetic energy) go back to their initial 

value, pressure does not get back to its initial value and display a net reduction. This reduction is due 

to the energy lost for friction along the short tracts presenting narrowing and expansion. We consider 

these as localized energy losses, because they occur in consequence of a local disturbance to the flow.  

In general, dealing with friction requires the use of Navier-Stokes equation that introduces several 

complexities in the analysis. However, it is sometimes feasible simply adding an energy dissipation 

term in the Bernoulli balance (6.5) that can be rewritten as 

 𝑝1 + 𝜌
𝑣1

2

2
= 𝑝2 + 𝜌

𝑣2
2

2
+ 𝜌 ∫

𝜕𝑣𝑠

𝜕𝑡

2

1
𝑑𝑠 + ∆𝐸𝑑𝑖𝑠𝑠 , (6.12) 

including an explicit term ∆𝐸𝑑𝑖𝑠𝑠 accounting for energy dissipation, or pressure loss. Equation (6.12) 

maintains the same form of the Bernoulli balance although it contains an additional term that is in 

principle unknown. However, under some circumstances the pressure loss can be expressed in simple 

form as a percentage of the available kinetic energy. In that case, the generalized balance (6.12) can 

be used in the same way as the normal Bernoulli balance. 

An exemplary case where the energy losses can be evaluated with relative ease is the case of a sudden 

expansion and rigid walls as sketched in figure 6.4. 

 

To this aim, the balance of momentum  

 I𝑥 + M𝑥 = Π𝑥  

should be written for the cylindrical volume of cross-area 𝐴2 and length 𝐿, indicated with dashed line 

in figure 6.4, starting adjacent to the expansion and ending in a downstream section where the flow 

is back to unidirectional.  

The inertial term is 

 I𝑥 = ∫
𝜕𝜌𝑣𝑥

𝜕𝑡
𝑑𝑉

𝑉
= 𝜌 ∫ ∫

𝜕𝑣𝑥

𝜕𝑡
𝑑𝐴

𝐴2𝐿
𝑑𝑥 = 𝜌

𝑑𝑈2

𝑑𝑡
𝐴2𝐿. 

 

Figure 6.4. Sketch for evaluating energy loss in a sudden expansion 
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The flux of momentum occurs across the open part, of area  𝐴1, of the upstream end and across the 

entire downstream section of area 𝐴2  

 M𝑥 = −𝜌𝑈1
2𝐴1 + 𝜌𝑈2

2𝐴2  

assuming that the velocity is approximately uniform over the cross section (β=1). 

The pressure term pushes upwards on the downstream surface of area  𝐴2 where pressure is 𝑝2; it also 

pushes, downward, on the entire upstream surface of area again equal to 𝐴2, here pressure is equal to 

𝑝1 on the open part and it remains approximately constant on the closed part where flow is about 

stagnating, thus static 

 Π𝑥 = 𝑝1𝐴2 − 𝑝2𝐴2. 

Summing up these three terms and dividing by A2 we obtain 

 𝑝1 − 𝑝2 = 𝜌
𝑑𝑈2

𝑑𝑡
𝐿 − 𝜌𝑈1

2 𝐴1

𝐴2
+ 𝜌𝑈2

2. (6.13) 

The balance (6.12) can be rewritten making the dissipation term explicit 

 ∆𝐸𝑑𝑖𝑠𝑠 = 𝑝1 − 𝑝2 + 𝜌
𝑣1

2

2
− 𝜌

𝑣2
2

2
− 𝜌 ∫

𝜕𝑣𝑠

𝜕𝑡

2

1
𝑑𝑠 , (6.14) 

then, assuming the flow sufficiently uniform we can exchange velocity and cross-section average 

velocity and rewrite (6.14) 

 ∆𝐸𝑑𝑖𝑠𝑠 = 𝑝1 − 𝑝2 + 𝜌
𝑈1

2

2
− 𝜌

𝑈2
2

2
− 𝜌

𝜕𝑈2

𝜕𝑡
𝐿 . (6.15) 

Now substitute the pressure difference (6.13) into (6.15) to get 

 ∆𝐸𝑑𝑖𝑠𝑠 = 𝜌
𝑈2

2

2
+ 𝜌

𝑈1
2

2
(1 − 2

𝐴1

𝐴2
) .  

that can be rewritten in terms of one velocity only 

 ∆𝐸𝑑𝑖𝑠𝑠 = 𝜌
𝑈1

2

2
(1 −

𝐴1

𝐴2
)
2

= 𝜌휂
𝑈1

2

2
, 휂 = (1 −

𝐴1

𝐴2
)
2
. (6.16) 

Equation (6.16) describes the loss of energy (per unit volume) in a sharp enlargement. It tells that 

energy losses are given by a fraction η of the incoming kinetic energy, while the remainder is 

transformed into potential energy (i.e. pressure). The entity of such fraction depends on the degree of 

the expansion; in the limit case of very large expansion, 𝐴2 ≫ 𝐴1, then 휂 ≅ 1 , the incoming kinetic 

energy is unable to significantly affect the wide downstream reservoir and the entire incoming kinetic 

energy is lost. 

The result (6.16) is very instructive because it teaches that localized energy losses can be in general 

expresses as a fraction of the available kinetic energy 

 ∆𝐸𝑑𝑖𝑠𝑠 = 𝜌휂
𝑈1

2

2
 . (6.17) 

where the dimensionless dissipation coefficient η depends from the degree of disturbance created on 

the streaming flow. The dissipation coefficient cannot be easily expressed by mean of explicit 

formulas like (6.16). However, its value was determined experimentally in most situations of practical 

interests and can be often found in literature.  
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C. FUNDAMENTALS FOR MOSTLY UNIDIRECTIONAL FLOW  

7. Unidirectional Flow in Rectilinear Vessels 

7.1. Boundary layer 

Viscosity is the only, unique mechanism for energy dissipation in fluids governed by the Navier-

Stokes equation. In order to understand the role of viscosity in more depth, let us analyze in more 

depth at the flow near the boundary, in the simple case of flat, rigid wall. Consider the flow along the 

𝑥-direction of a Cartesian set of coordinates, with the wall set at 𝑦 = 0, and neglect the velocity and 

variations along the transversal 𝑧-component (two-dimensional flow). The stream-wise component 

of the Navier-Stokes equation is  

   
𝜕𝑣𝑥

𝜕𝑡
+ 𝑣𝑥

𝜕𝑣𝑥

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑥

𝜕𝑦
= −

1

𝜌

𝜕𝑝

𝜕𝑥
+ 𝜈 (

𝜕2𝑣𝑥

𝜕𝑥2
+

𝜕2𝑣𝑥

𝜕𝑦2
). (7.1) 

We have seen that the kinematic viscosity in front of the last term is a small number. Therefore, the 

viscous terms is often negligible locally. However, viscosity has a fundamental influence in the 

proximity of solid boundaries because it is associated to the boundary condition of adherence, which 

applies irrespective of the value of viscosity. As a result, viscosity has a fundamental role near the 

boundaries (because of adherence) while its role is expected to becomes progressively negligible 

away from them (because it is small). In other terms, there is always a region next to the wall 

boundary, which is called boundary layer, where the role of viscosity cannot be neglected. More 

quantitatively, the boundary layer is the region next to the boundaries where the viscous term is 

comparable with the other terms of the Navier-Stokes equation.  

Consider a uniform unidirectional flow, of velocity 𝑈, that encounters a plane surface of negligible 

thickness. As shown in figure 7.1, when the incoming uniform profile gets in contact with the surface 

the velocity at the surface goes to zero because of adherence. As the fluid travels downstream, the 

slower fluid elements close to the boundary decelerate those immediately above thus extending the 

influence of adherence for a thickness over the surface. This process continues and the thickness of 

fluid influenced by the viscous adherence increases downstream. Roughly, the flow field can be 

divided in an external flow, not reached by the influenced of adherence, and a boundary layer that is 

directly affected by viscosity. 

 

The boundary layer thickness is indicated by 𝛿(𝑥) and it increases downstream. The order of 

magnitude of 𝛿(𝑥) can be obtained using the Navier-Stokes equation (7.1) and estimating the order 

 

Figure 7.1. Boundary layer development on a flat plate. 
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of magnitude of the different terms therein. By definition of boundary layer, the thickness is the region 

where the viscous term is comparable with the others. 

The time derivative can be ignored because the flow is steady. For the first transport term you can 

consider that velocity upstream is 𝑈 and downstream, say at a distance 2x inside the boundary layer, 

it is a fraction of 𝑈, say 𝜅𝑈. Here 𝜅 is a number smaller than 1, but still a finite fraction of 1 and not 

infinitesimal (in order of magnitude arguments, 𝜅 is said to of the order of magnitude of 1). Thus, the 

derivative at 𝑥 can be roughly estimated by the difference of velocity at 2𝑥 and at 0 divided by the 

distance and the velocity by the mean value  

   𝑣𝑥
𝜕𝑣𝑥

𝜕𝑥
~

𝜅𝑈+𝑈

2
∙
𝜅𝑈−𝑈

2𝑥
~

𝑈2

𝑥
. (7.2) 

where the symbol ~ stands for “of the order of magnitude of” and coefficients that are about the order 

of unity are eventually left out.  

The order of magnitude of the transversal velocity, 𝑣𝑥, can be obtained by the continuity equation 

that in 2D reads 

  
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
= 0. (7.3) 

The x-derivative can be estimated as above; the 𝑦-derivative from the unknown value 𝑣𝑦, minus the 

zero value at the wall, divided by the boundary layer thickness. Thus (7.3) suggests 

  
𝑈

𝑥
~

𝑣𝑦

𝛿
; (7.4) 

inserting these estimates in the second transport term 

   𝑣𝑦
𝜕𝑣𝑥

𝜕𝑦
~𝑣𝑦

𝑈

𝛿
~

𝑈𝛿

𝑥

𝑈

𝛿
~

𝑈2

𝑥
 (7.5) 

shows that this is of the same order of the other (7.2). Let us ignore for the moment the pressure term 

in (7.1), as the boundary layer develop even in absence of pressure gradient thus it should not play a 

key role. 

Following the same lines, the viscous terms is 

   𝜈 (
𝜕2𝑣𝑥

𝜕𝑥2 +
𝜕2𝑣𝑥

𝜕𝑦2 )~𝜈 (
𝑈

𝑥2 +
𝑈

𝛿2)~𝜈
𝑈

𝛿2; (7.6) 

where we ignored the first term in parenthesis with respect to the second because we expect 𝛿 to be 

small.  

In the boundary layer, the viscous term is of the same order of magnitude of the other terms. Equating 

(7.6) with (7.2) or (7.5) we obtain 

   𝜈
𝑈

𝛿2 ~
𝑈2

𝑥
  

and therefore 

   𝛿~√𝜈
𝑥

𝑈
 (7.7) 

The estimate (7.7) shows that the thickness of the boundary layer grows like the square root of the 

downstream distance. The boundary layer is thin when viscosity is small and gets thinner when 
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velocity is higher. The exact coefficient that is in front of the square root of (7.7) depends on the 

specific definition of boundary layer thickness. Some texts suggest setting the edge of the boundary 

layer where velocity differs of a small percentage to the external velocity, others use the velocity 

square. In any case, equation (7.7) demonstrated a general validity with the coefficient varying from 

about 3 to 5, depending on the definition of δ and on the specific situation under analysis. 

Let us try to understand further the origin of the boundary layer thickness. The viscous term of the 

Navier Stokes equation represent a diffusion phenomenon. In this case it represents the diffusion of 

a disturbance to velocity (set to zero by adherence) away from the wall. Pure diffusion, in absence of 

velocity, of a whatsoever field 𝑓(𝑡, 𝑦) along the direction 𝑦, is described by the diffusion equation 

   
𝜕𝑓

𝜕𝑡
= 𝐷

𝜕2𝑓

𝜕𝑦2. (7.8) 

where 𝐷 is the diffusion coefficient (in Navier-Stokes corresponding to the kinematic viscosity). 

The connection between diffusion and boundary layer development is immediate considering the dual 

problem of a fluid over an infinite plate that is set abruptly in motion with velocity 𝑈. The boundary 

layer is now uniform and grows in time. The Navier-Stokes equation reads 

   
𝜕𝑣𝑥

𝜕𝑡
= 𝜈

𝜕2𝑣𝑥

𝜕𝑦2 ; (7.9) 

that is a diffusion equation like (7.8). This is a linear partial differential equation of parabolic type 

that was largely investigated in the past. The solution to (7.9) with boundary condition 𝑣𝑥(0, 𝑡) = 𝑈 

is the error function 

   𝑣𝑥(𝑦, 𝑡) = 𝑈 −
𝑈

𝜎(𝑡)
∫ 𝑒

−
1

2
(

𝑠

𝜎(𝑡)
)
2

𝑑𝑠
𝑦

0
, (7.10) 

with width 

 𝜎 = √2𝜈𝑡. (7.11) 

The velocity profile (7.10) is shown in figure 7.2, it starts from 𝑈 at the wall and decreases away from 

the wall reaching 𝑣𝑥 ≈ 0.005𝑈 at 𝑦 = 2𝜎. 

 

Thus, we can consider the thickness of the boundary layer given by 

 

Figure 7.2. Velocity and shear stress above a moving wall. 
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 𝛿(𝑡) = 2𝜎 = 2√2𝜈𝑡. (7.12) 

The same solution (7.10)-(7.11) can be reached by a different perspective. Consider that the wall 

motion creates a jump in velocity equal to 𝑈, from 𝑈 at the wall to zero infinitely above,  

 𝑈 = ∫
𝜕𝑣𝑥

𝜕𝑦

∞

0
𝑑𝑦. (7.13) 

that is produced by a wall shear stress 𝜏 = 𝜇
𝜕𝑣𝑥

𝜕𝑦
 due to adherence. Shear stress is ideally infinite at 

𝑡 = 0, although with finite integral  (7.13), when the wall sets in motion and progressively decreases 

to ensure the same velocity jump while it diffuses away from the wall. The propagation of shear stress 

is again a diffusion process ruled by the diffusion equation (7.8) for 𝑓 = 𝜏. The solution to (7.8) with 

the constraint (7.13) is the well known Gauss function  

   
𝜕𝑣𝑥

𝜕𝑦
=

𝑈

𝜎(𝑡)
𝑒

−
1

2
(

𝑦

𝜎(𝑡)
)
2

, (7.14) 

in association with the width 𝜎(𝑡) given by (7.11). Then the solution (7.10) can be recovered by 

integrating (7.14). 

We have shown that the development of the viscous boundary layer is simply a phenomenon of 

diffusion of shear from the wall with thickness given by (7.12). The same concept can be applied to 

the previous case of a steady flow over a plane wall leading to the expression (7.7). In that case, the 

spatial variation under steady conditions can be transformed into the same diffusion problem by 

considering an observed moving with velocity 𝑈. This observer start at 𝑡 = 0 from the edge of the 

plate where 𝛿 = 0 and at time 𝑡 reaches the position 𝑥 = 𝑈𝑡 where the thickness is given by (7.7) 

that, by comparison with (7.12) can be expressed by 

    𝛿 = 2√2𝜈
𝑥

𝑉
. (7.15) 

In a closed conduit, the boundary layer cannot grow indefinitely, because it saturates the available 

space. Therefore in a vessel of diameter say 𝐷, the boundary layer terminates its growth when 𝛿 ≈

𝐷/2. Using formula (7.15) it is possible to estimate the length of the entry region as 

    𝑥𝐸 ≈
1

32

𝑈𝐷2

𝜈
=

𝑅𝑒

32
𝐷. (7.16) 

where 𝑅𝑒 =
𝑈𝐷

𝜈
 is the Reynolds number. The boundary layer grows as by (7.15) from the start of the 

duct, at 𝑥 = 0, to reach a steady thickness about 𝑥𝐸; afterwards, for 𝑥 > 𝑥𝐸, the flow can be assumed 

as fully developed and not influenced by the distance from the start of the vessel. 

These estimates are obtained under the assumption of steady flow and the unsteady case will be 

considered later. For providing estimates in real arteries, let us consider these estimates as acceptable, 

for the moment, when applied to the time-averaged flow. In the Aorta, mean velocity is about 50 cm/s 

and diameter about 3 cm; the entry flow length is nearly 200 diameters (about 1 meter), therefore the 

flow is never fully developed. Vice versa, in small arteries the boundary layer fills the entire vessel 

after less that one diameter downstream the entrance. 
 

U D xE  

Aorta 50 cm/s 3 cm 142 D Never fully developed 

mid-vessel 10 cm/s 1 cm 10 D  

small-vessel 5 cm/s 2.5 mm 1 D Immediately fully developed 
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7.2. Steady Uniform Planar Flows 

Navier-Stokes equation cannot be solved in general; however, a solution can be found under special 

simple conditions that may present applied relevance. We present here the analytical solution of the 

Navier-Stokes equation for some few simple flows. 

(i)  Flow induced by a moving surface above a fixed wall (Couette flow) 

With reference to figure 7.3, consider two plane surfaces, at a distance 𝑑, with the upper surface 

moving with constant velocity 𝑈.   

Make the hypothesis that the flow is unidirectional, 𝑣𝑦 = 𝑣𝑧 = 0; that flow is two-dimensional, thus 

derivatives along 𝑧 are neglected; that flow is stationary, thus time derivatives are neglected, and that 

flow is due to the wall motion only without pressure gradient 
𝜕𝑝

𝜕𝑥
= 0. The assumption of 

unidirectional flow implies, by the continuity equation, that the flow is also uniform 

   
𝜕𝑣𝑥

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
= 0 ⇒

𝜕𝑣𝑥

𝜕𝑥
= 0.  

The Navier Stokes equation in the direction perpendicular to the direction of motion simply states 

that pressure does not vary along 𝑦 and 𝑧; thus pressure is constant everywhere. The only left 

unknown is the longitudinal component of velocity as a function of the transversal position 𝑣𝑥(𝑦).  

The Navier-Stokes equation in the direction of the flow (taken as the 𝑥-direction) simplifies in 

   
𝜕2𝑣𝑥

𝜕𝑦2 = 0. (7.17) 

that must be solved with boundary conditions due to adherence 𝑣𝑥(0) = 0 and 𝑣𝑥(𝑑) = 𝑈.  

The solution is immediate to find 

   𝑣𝑥(𝑦) = 𝑈
𝑦

𝑑
; (7.18) 

the velocity increases linearly from zero at the fixed wall to the value of the moving wall as shown 

in figure 7.3. The shear stress is constant  

 𝜏 = 𝜇
𝑑𝑣𝑥

𝑑𝑦
= 𝜇

𝑈

𝑑
; (7.19) 

as briefly shown in the section 1.2. 

 

(ii)  Flow between parallel walls. 

Consider the flow induced by a pressure gradient between two plane walls, at a distance 𝑑.   

 

Figure 7.3. Flow induced by a moving wall. 

U

d

x

y
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Make the hypothesis that the flow is unidirectional, two-dimensional, and stationary. Following the 

same argument used in the previous example, the continuity equation implies that the flow is also 

uniform. When the flow is uniform and unidirectional, the Navier Stokes equation in the transversal 

tells that pressure does not vary transversal to the direction of motion and that the transport term is 

identically zero in the direction of motion. Thus, Navier-Stokes becomes in the direction of motion 

(taken as the 𝑥-direction) is 

   
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝜈

𝜕2𝑣𝑥

𝜕𝑦2
. (7.20) 

that must be solved with boundary conditions due to adherence 𝑣𝑥 (±
𝑑

2
) = 0, where we have placed 

the 𝑥-axis as located in the mid-line between the two walls.  

In this case the pressure gradient can be considered as the known quantity that forces the flow. For 

simplicity, call it 𝜅 = −
1

𝜌

𝜕𝑝

𝜕𝑥
 , with the minus sign because pressure is higher upstream than 

downstream to induce a positive velocity. The solution to (7.20), being 𝜅 a constant, is immediate to 

find and it gives the parabolic profile 

   𝑣𝑥(𝑦) =
𝜅

2𝜈
(
𝑑2

4
− 𝑦2), (7.21) 

with maximum value at the mid-line between the walls. The shear stress corresponding to the 

parabolic profile (7.21) is linear 

 𝜏 = 𝜇
𝑑𝑣𝑥

𝑑𝑦
= −𝜌𝜅𝑦 =

𝜕𝑝

𝜕𝑥
𝑦 (7.22) 

taking its maximum value 𝜏 = ±𝜌𝜅
𝑑

2
 with opposite sign on the opposite walls. 

7.3. Steady Uniform Flow in a Circular Vessel (Poiseuille Flow) 

The previous flow field was presented just to introduce the case of higher applied relevance of steady 

uniform flow in a circular rectilinear vessel. This case represents the effective flow that establishes 

under steady conditions in many actual vessels of the circulation. It thus applies to veins, where flow 

is approximately steady, as well as to the mean flow in some arteries or in slowly varying unsteady 

flows (as explained later in this section). 

With reference to figure 7.4, make the hypothesis that the flow is unidirectional, axially symmetric 

(circular symmetry), and stationary. Thus, as we have seen above, the continuity states that the 

velocity field is also uniform along the direction of the vessel, say the 𝑥 direction. Pressure is constant 

transversally to the direction of motion and the transport term is identically zero in the direction of 

motion. The unknown is the stream-wise velocity that varies on the cross-section 𝑣𝑥(𝑦, 𝑧). 

Under these hypotheses, the Navier-Stokes equations simplifies to 

 
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝜈 (

𝜕2𝑣𝑥

𝜕𝑦2 +
𝜕2𝑣𝑥

𝜕𝑧2 ). (7.23) 

The additional assumption of axial symmetry means that the velocity does not vary along the 

circumference and we may write 𝑣𝑥(𝑦, 𝑧) = 𝑣𝑥(𝑟) where 𝑟 = √𝑦2 + 𝑧2. The viscous term in (7.3) 

can thus be further simplified passing from Cartesian coordinates (𝑥, 𝑦, 𝑧) to cylindrical coordinates 

(𝑥, 𝑟, 휃) and ignoring the dependence from the angular position θ because of the axial symmetry 
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hypothesis. For this simplification, the derivatives in Cartesian coordinates y and z are transformed 

into derivative with respect to the radial coordinate r by 

   

𝜕

𝜕𝑦
=

𝜕𝑟

𝜕𝑦

𝜕

𝜕𝑟

𝜕2

𝜕𝑦2 =
𝜕

𝜕𝑦
(

𝜕𝑟

𝜕𝑦

𝜕

𝜕𝑟
) =

𝜕2𝑟

𝜕𝑦2

𝜕

𝜕𝑟
+ (

𝜕𝑟

𝜕𝑦
)
2 𝜕2

𝜕𝑟2

  

where 

 
𝜕𝑟

𝜕𝑦
=

𝑦

𝑟
,

𝜕2𝑟

𝜕𝑦2 =
1

𝑟
−

𝑦2

𝑟3 .  

The same can be written by analogy for the 𝑧-coordinate to give 

   
𝜕2

𝜕𝑦2
+

𝜕2

𝜕𝑧2
= (

𝜕2𝑟

𝜕𝑦2
+

𝜕2𝑟

𝜕𝑧2
)

𝜕

𝜕𝑟
+ [(

𝜕𝑟

𝜕𝑦
)
2

+ (
𝜕𝑟

𝜕𝑧
)
2

]
𝜕2

𝜕𝑟2
=

1

𝑟

𝜕

𝜕𝑟
+

𝜕2

𝜕𝑟2
=

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
).  

In cylindrical axially symmetric coordinates, equation (7.23) can thus be rewritten as 

   
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝜈

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑥

𝜕𝑟
). (7.24) 

The version of the Navier-Stokes equation simplified for this case (7.24) can be solved for the 

unknown velocity profile 𝑣𝑥(𝑟), in correspondence to a given pressure gradient that represent the 

driving force to the flow, 𝜅 = −
1

𝜌

𝜕𝑝

𝜕𝑥
.  

 

The adherence boundary condition in this case is 𝑣𝑥(𝑅) = 0, and we notice that, differently from the 

case between two walls discussed above, there is only one boundary condition for the second order 

differential equation (7.24). This is a common consequence of the transformation from Cartesian to 

cylindrical coordinates because the other boundary at 𝑟 = 0 is not a physical boundary, it is rather a 

singular point for the presence of the factor 
1

𝑟
 arising in the coordinate transformation. Here a 

regularity condition |𝑣𝑥(0)| < ∞  must be applied and it takes the place of the second boundary 

condition.  

Rewrite (7.24) as 

   −
𝜅

𝜈
𝑟 =

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑥

𝜕𝑟
),  

and integrate over r  

   −
𝜅

2𝜈
𝑟2 = 𝑟

𝜕𝑣𝑥

𝜕𝑟
+ 𝐴,  

 

Figure 7.4. Flow in a circular vessel. 
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where 𝐴 is an integration constant, thus  

   −
𝜅

2𝜈
𝑟 =

𝜕𝑣𝑥

𝜕𝑟
+

𝐴

𝑟
.  

Integrate again  

   −
𝜅

4𝜈
𝑟2 = 𝑣𝑥(𝑟) + 𝐴log(𝑟) + 𝐵,  

where 𝐵 is another integration constant. For the regularity condition 𝐴 = 0, and using the boundary 

condition at the wall  𝐵 = −
𝜅

4𝜈
𝑅2. 

The solution eventually is  

   𝑣𝑥(𝑟) =
𝜅

4𝜈
(𝑅2 − 𝑟2); (7.25) 

which corresponds to a paraboloid solid profile with maximum velocity at the center of the vessel 

decreasing to zero at the wall as shown in figure 7.5.   

 

The corresponding wall shear stress is  

 𝜏𝑤 = 𝜏(𝑅) = 𝜇
𝑑𝑣𝑥

𝑑𝑟
|
𝑅

= −𝜌𝜅
𝑅

2
=

𝑅

2

𝜕𝑝

𝜕𝑥
, (7.26) 

which represent the friction at the wall. 

The flowing discharge can be computed by integration of (7.25) 

   𝑄 = 2𝜋 ∫ 𝑣𝑥𝑟𝑑𝑟
𝑅

0
=

𝜋

8

𝜅𝑅4

𝜈
;  

and the average velocity 

   𝑈 =
𝑄

𝜋𝑅2 =
1

8

𝜅𝑅2

𝜈
. (7.27) 

Equation (7.27) is also important as it provides a relationship between the forcing pressure gradient 

(the cause) and the resulting mean velocity (the effect). Using (7.27) the solution profile (7.25) can 

be expressed in terms of the mean velocity instead of pressure gradient 

 

Figure 7.5. Velocity profile in a circular vessel. 
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   𝑣𝑥(𝑟) = 2𝑈 (1 −
𝑟2

𝑅2
); (7.28) 

which also shows that the maximum velocity at the center of the duct, 𝑟 = 0, is equal to 2𝑈, twice 

the mean velocity. 

In this case, where the Navier-Stokes equation could be solved exactly, it is immediate computing 

the momentum velocity-correction factor β that appeared in (5.6) 

   𝛽 =
2𝜋 ∫ 𝑣𝑥

2𝑟𝑑𝑟
𝑅
0

𝜋𝑅2𝑈2
= 8∫ (1 − 𝑠2)𝑠𝑑𝑠

1

0
=

4

3
. (7.29) 

It is worth to remark that given a flow rate Q, the pressure loss per unit length increases with the 

fourth power of the vessel diameter 

   𝜅 = −
1

𝜌

𝜕𝑝

𝜕𝑥
=

8𝜈𝑄

𝜋𝑅4
;  

it is therefore natural to recognize that the decrease of the vessel size is accompanied in the vascular 

network by division of the vessel into multiple smaller vessels each bringing a much smaller 

discharges. 

The steady flow solution (7.25) or (7.28) is the result of a balance (7.24) between the force to move 

the fluid due to the pressure gradient pushing over the vessel area, 𝜋𝑅2 𝜕𝑝

𝜕𝑥
, and the viscous friction at 

the vessel wall that resists to the motion 2𝜋𝑅𝜏𝑤. In other terms, this flow is associated with continuous 

pressure loss due to viscous friction.  

We have seen in the previous chapter that local energy dissipation represent a fraction of the available 

kinetic energy. Here too, the distributed energy dissipation can be expresses proportional to the 

available kinetic energy: energy dissipation per unit length is the pressure gradient (kinetic energy is 

constant) thus 

 −
𝑑𝑝

𝑑𝑥
= 𝑓(𝑅𝑒)

𝜌𝑈2

2𝐷
,  

where 𝑓 is a dimensionless friction coefficient (the minus sign is introduced to have positive 

quantities and a positive friction factor). This formula was previously introduced by dimensional 

arguments in equation (1.13), where it was also shown that the friction coefficient must depend on 

the Reynolds number, 𝑅𝑒. In this case, where we have solved the dynamical equations, it is possible 

to determine the function 𝑓(𝑅𝑒). Using the relationship  (7.27) obtained from the flow solution, the 

friction factor for Poiseuille flow is 

  𝑓(𝑅𝑒) =
64

𝑅𝑒
; (7.30) 

where the exact definition of the Reynolds number for this application is 

 𝑅𝑒 =
𝑈𝐷

𝜈
.  

Equation (7.30) shows that the smaller the Reynolds number and the higher are the energy losses due 

to friction; vice versa, when the Reynolds number is high, viscous losses decrease asymptotically to 

zero. The Reynolds number represents a proper dimensionless ratio telling how a flow is viscous; 

therefore, it is of fundamental importance for classifying the type of flow. It represents a ratio between 

the kinetic energy available to the flow and its ability to dissipate energy. The smaller the Reynolds 

number the more the flow is a viscous smooth one, energy is low with respect to the ability to 



Unidirectional Flow in Rectilinear Vessels  Page 80 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

dissipate. The higher the Reynolds number and the more vigorous and energetic the flow. We will 

see shortly that when the Reynolds number is higher than a certain threshold the flow is so vigorous 

with respect to its ability to dissipate that a simple viscous mechanism is insufficient to balance. In 

this case, flow develops turbulence to increase viscous dissipation. 

7.4. Oscillatory and Pulsatile Uniform Flow in a Circular Vessel 

Blood motion in cardiovascular vessels, can be close to steady only in small capillaries and veins. In 

large arteries, flow normally presents a pulsatile behavior, which can be seen as given by a mean 

motion plus a fluctuation of comparable entity. Let us now move forward here and consider the 

solutions of unsteady flows, starting from simple cases and progressing toward more realistic ones. 

(i)  Sinusoidal Oscillatory flow 

Consider the case of flow given by an oscillatory pressure gradient of the sinusoidal type 

   
1

𝜌

𝜕𝑝

𝜕𝑥
= 𝜅 sin 𝜔𝑡, (7.31) 

where the frequency 𝜔 =
2𝜋

𝑇
 and 𝑇 is the period of the oscillation. Under the identical hypothesis used 

for the Poiseuille flow and only removing the assumption of steady flow, the unknown is the unsteady 

velocity 𝑣𝑥(𝑡, 𝑟) that obeys the Navier-Stokes equation 

   
𝜕𝑣𝑥

𝜕𝑡
+ 𝜅 sin𝜔𝑡 = 𝜈

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝑣𝑥

𝜕𝑟
), (7.32) 

with no-slip boundary condition at the wall, 𝑣𝑥(𝑡, 𝑅) = 0, and regularity condition at r=0. The 

linearity of equation (7.32) tells that that the solution must be time periodic with the same frequency, 

𝜔, like (7.31) although possibly a different phase (not just a sin). The solution of equation (7.32) with 

its boundary conditions can be obtained analytically as (Schlichting, 1979) 

   𝑣𝑥(𝑡, 𝑟) =
𝜅

𝜔
[1 −

𝐽0(𝑟√
−𝑖𝜔

𝜈
)

𝐽0(𝑅√
−𝑖𝜔

𝜈
)

] 𝑒𝑖𝜔𝑡, (7.33) 

where 𝐽0(𝑥) is the Bessel function of 1st type of order 0. The denominator in solution (7.33) permits 

to satisfy the boundary condition. The amplitude of the oscillation is given by the ratio 
𝜅

𝜔
, it is higher 

for high pressure gradient and for slow oscillations. The term in square bracket is a complex number 

that modifies the phase of the flow, along the radial coordinate r. 

To better understand this point, solution (7.33) can be preferably expressed in terms of dimensionless 

parameters as 

   𝑣𝑥(𝑡, 𝑟) = 𝑈 [1 −
𝐽0(

𝑟

𝑅
𝑊√

−𝑖𝜋

2
)

𝐽0(𝑊√
−𝑖𝜋

2
)

] 𝑒𝑖2𝜋
𝑡

𝑇, (7.34) 

where 𝑈 =
𝜅

𝜔
  here represents the maximum velocity during the oscillation and  

   𝑊 = 𝑅√
𝜔

𝜈

2

𝜋
=

𝐷

√𝜈𝑇
, (7.35) 

is the Womersley number that gives a measure of the degree of unsteadiness of the oscillation.  
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The Womersley number can be understood as the ratio between the vessel diameter and a measure of 

the thickness of the boundary layer that develops during the period 𝑇 of the oscillation. Indeed we 

have seen before that the thickness of a boundary layer reaches in a time 𝑡 a value proportional √𝜈𝑡; 

in this case the boundary layer is allowed to grow for a time proportional to T , therefore the 

denominator of (7.35), √𝜈𝑇, is a measure of the maximum thickness that the boundary layer can 

reach. Velocity profiles at different values of the Womersley number are shown in figure 7.6. When 

𝑊 is small, the oscillation is slow, the boundary layer has the time to fill the entire vessel. The term 

in brackets is close to unity and the flow is a sequence of velocity profiles close to the Poiseuille type 

that is in phase with the pressure gradient because of the linear relationship between velocity and 

pressure gradient in Poiseuille solution. On the opposite end, when 𝑊 is large, the oscillation is rapid, 

the viscous adherence has not enough time to affect the internal regions of the wall. The viscous 

boundary layer is limited to a thin region near the wall while the center of the vessel moves nearly as 

a uniform profile with marginal influence of viscosity. The viscous layer near the wall is in phase 

with the external forcing and gets progressively out of phase away from the wall because pressure 

gradient here balances with velocity time derivative rather than velocity itself. 

A Reynolds number can also be introduced for the oscillatory flows using the peak velocity as 𝑅𝑒 =
𝑈𝐷

𝜈
, that tells how intense is the bulk flow with respect to the ability of viscous dissipation.  

In unsteady periodic flows, it is sometime useful to introduce another dimensionless number, the 

Strouhal number (see also equation (1.14)), defined as 

   𝑆𝑡 =
𝐷

𝑈𝑇
=

𝑊2

𝑅𝑒
. (7.36) 

The Strouhal number represents a dimensionless frequency of the oscillation. It can be appreciated 

that the length travelled by particles during an oscillation is proportional to 𝑈𝑇 (equal to 𝑈𝑇/2𝜋 in 

sinusoidal oscillation); therefore the Strouhal number can be seen as the ratio between the diameter 

and a measure of the distance travelled by particles. Thus for high 𝑆𝑡, the oscillations are rapid and 

fluid particles oscillate for length smaller than the diameter; low 𝑆𝑡 means that particles travel several 

diameters during each oscillation. 

  

(ii)  Pulsatile flows 

The oscillatory solution describe above is useful to understand the main phenomena entering into 

play in generally period flow. Indeed, flow in cardiovascular vessels is usually pulsatile: unsteady, 

 

Figure 7.6. Oscillatory velocity profile in a circular vessel at different Womersley number. 
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periodic in time, with non-zero time-average velocity. Pulsatile flows is a combination of steady flow 

and a series of sinusoidal oscillations. Under the hypothesis of unidirectional flow, the transport term 

in the Navier-Stokes equation is absent and equations are linear (see (7.24) and (7.32)). Therefore the 

solution corresponding to an arbitrary time-periodic pressure gradient 

   
1

𝜌

𝜕𝑝

𝜕𝑥
= −𝜅0 + ∑ 𝜅𝑛𝑒𝑖2𝜋𝑛

𝑡

𝑇𝑛 , (7.37) 

or an arbitrary mean velocity 

   𝑈(𝑡) = 𝑈0 + ∑ 𝑈𝑛𝑒𝑖2𝜋𝑛
𝑡

𝑇𝑛 , (7.38) 

can be obtained by appropriate linear combination of solution (7.25) and (7.33), or  (7.28) and (7.34).  

In pulsatile flows, the Womersley number is usually defined with the main period 𝑊 =
𝐷

√𝜈𝑇
, while 

the Reynolds number 𝑅𝑒 =
𝑈𝐷

𝜈
 is defined using 𝑈 as either the time-average velocity 𝑈0 or, more 

commonly, the peak velocity whose value depends on the details of the oscillatory components.  

The solutions for pulsatile flow are then given by a Poisuille parabolic flow made with the mean 

velocity plus the individual solutions of sinusoidal flows (like those in figure 7.6). Examples of 

pulsatile flows solutions, given by a mean flow and a single sinusoidal oscillation of amplitude equal 

to the mean flow, are shown in figure 7.7 for a same average velocity and different values of the 

Womersley number.  For low values of 𝑊 the velocity profile is a sequence of Poiseuille solutions 

evaluated with the instantaneous values of the mean velocity; on the opposite end, as 𝑊 increases, 

the solution presents an  inversion of the boundary layer flow in the annulus near the wall. 

 

To give an idea of the order of magnitude, the following table provide indications of typical values 

for these dimensionless numbers in main vessels. It shows that flow is effectively unsteady in major 

arteries of clinical interest while it becomes well described by the Poisueille solution in smaller 

vessels as well as in veins. 

 𝑈 [cm/s] 𝐷 [cm] 𝑅𝑒 𝑊 𝑆𝑡 

Aorta 100 3 10000 20 0.04 

Middle arteries 30 1 1000 5 0.05 

Small arteries 5 0.2 30 1 0.05 

Arterioles 0.1 <0.1 <0.5 <0.5 ~1 

 

Figure 7.7. Pulsatile velocity profile in a circular vessel at different Womersley numbers (mean velocity 

ranges from 0 to U). 
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8. Elements of Turbulent Flow 

8.1. Introduction to Turbulence 

We briefly anticipated before, that the Reynolds number represents the ratio between available kinetic 

energy and ability to dissipate it. When the Reynolds number exceeds a certain threshold the kinetic 

energy can be so high, or ability to dissipate so low, that the regular motion is not able to provide a 

balance between incoming energy and dissipation. This point was clarified in the famous experiment 

performed by Osborne Reynolds (performed back in 1883) describing the transition from laminar to 

turbulent flow in a circular pipe under steady and uniform conditions.  

In this experiment, water was allowed to flow in a glass (transparent) pipe with varying mean velocity 

and a small jet of dye was released at the center of the pipe near the inlet. When velocity was small 

enough, dye trajectory was rectilinear. This type of motion was said to be “laminar”; fluid motion is 

unidirectional and uniform in agreement with the hypothesis used for Poiseuille solution; thus, the 

velocity field was described by that solution (7.25).  

When velocity approached a certain critical threshold, the dye trajectories started to display a slightly 

wavy pattern because the flow is not perfectly laminar. As velocity was further increased above such 

a critical value the dye rapidly mixes and diffuses over the entire pipe. This type of flow was said 

“turbulent”, velocities are irregular in space and in time with an apparently random behavior. 

It is evident that any kinematic flow property (like, for example, the amplitude of turbulent 

fluctuations) must depend on the size of the circular pipe, measured by its diameter D, by the intensity 

of the flow, given by the mean velocity V, and by the properties of the flow, which in Newtonian flow 

are summarized by the kinematic viscosity ν. There were no other parameters that could be varied in 

the experiment. These are 3 dimensional parameters that are based on 2 units (lengths and time); 

dimensional analysis permits to show that any dimensionless property must depend on a single 

dimensionless parameter that can be constructed by the 3 dimensional parameters. The dimensionless 

parameter is the Reynolds number (this is were the name comes from) 𝑅𝑒 =
𝑉𝐷

𝜈
. When the Reynolds 

number is below a critical values 𝑅𝑒𝑐𝑟 the flow is laminar, when it is above the critical value the flow 

is turbulent. The transition from laminar to turbulence occurs over a small interval about 𝑅𝑒𝑐𝑟 ≈

2500, although the exact figure depends on the degree of disturbance that are present in the 

experiment.  

The same concept applies in other types of flow. For any flow arrangement there is a critical value of 

the Reynolds number build with an appropriate velocity scale V and an appropriate length scale L 

such that flow changes from laminar to turbulence regime when the Reynolds number exceeds the 

critical value for that arrangement. For flow behind a cylindrical obstacle evidently uses the upstream 

velocity and the cylinder diameter. In a steady boundary layer one can use the distance from the origin 

as length scale, thus demonstrating that the laminar boundary layer remains stable only for a certain 

length from its origin. 

For many years it was unclear where turbulence comes from. The laminar Poiseuille flow is a solution 

of the Navier-Stokes equation, this may rise doubts on the validity of those equations for describing 

fluid motion in general. However, this is not the case. The Navier-Stokes equation is a non-linear 

equation; as such, it has not necessarily a unique solution to the problem but can admit multiple 

solutions to the same problem. In the case of pipe flow there is one laminar solutions, that is steady 

uniform unidirectional, and others unsteady and irregular, turbulent solutions. When the Reynolds 

number is small enough, the flow is viscous enough to damp the turbulent solution; thus, those 
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turbulent solution are unstable as they would decay toward the laminar solution that is the only stable 

and physically realizable. Vice versa, when the Reynolds number is larger, the laminar solution 

becomes unstable and not physically realizable. Any small disturbance to that solution tends to move 

the flow away from it, other turbulent solutions are stable and realizable. The selection of one or 

another of the many possible turbulent solutions depends on the details of the initial and boundary 

conditions. The solution can also jumps from one turbulent solution to another when disturbed by 

small perturbations that are unavoidably present in physical experiments.  

The point that deterministic equations like Navier-Stokes can give rise to apparently random solutions 

has been debated for years in the last decades. However, it was recognized that even much simpler 

deterministic non-linear equations can present analogous behavior. This was described as the concept 

of deterministic “chaos”. Probably the simpler equation is a difference equation (where time-

derivative is replaced by a difference between discrete time instants) with no spatial dependence. 

Thus consider the variable uk, with values in the open interval 0<uk,<1, where k is the discrete time 

variable obeying the following evolution equation 

    𝑢𝑘+1 = 𝜆𝑢𝑘(1 − 𝑢𝑘); (8.1) 

where and λ is a parameter that plays a role analogous to the Reynolds number for this evolution 

equation. Equation (8.1) has a steady solutions, found by setting 𝑢𝑘+1 = 𝑢𝑘 , which is 𝑢𝑘 =
𝜆−1

𝜆
 (the 

other solution 𝑢𝑘 = 0 is out of the interval of definition). Until λ<3 this solution is stable, any initial 

condition eventually converges to that. At larger values of λ the steady solutions becomes unstable,  

the system becomes unsteady, initially jumping alternatively between two values, between more 

values as λ increases, until for λ=4 the solution oscillates randomly over the entire interval (0,1). The 

equation is deterministic; therefore, once the initial condition is defined also the specific solution is 

defined, while different realizations are the result of different initial conditions. One can notice, 

however, that extremely close initial conditions eventually give rise (after a transient period) to 

macroscopically different solution; the solution at a certain time k is extremely dependent on the 

specific value of the initial condition. This behavior is known as “Sensitivity to Initial Conditions” 

(SIC). Indeed, the smooth dependence of solution on initial/boundary conditions (that solutions 

relative to nearby conditions produce nearby solutions) is a property that is generally valid for linear 

systems only and does not necessarily applies to non-linear systems. 

This behavior also applies to Navier-Stokes equation, with the additional complexity that irregularity 

occurs over time and over the three-dimensional spatial directions. This means that any small 

inaccuracy on initial or on boundary conditions can give rise to different turbulent solutions. 

Moreover, any small external perturbation is analogous to small changes to the initial condition for 

the following evolution and also may drive the system to different turbulent solutions.  

This means that an experiment about fluid turbulence performed under identical conditions produces 

different solutions because a laboratory cannot reproduce conditions that are exactly identical to 

arbitrary accuracy. This is a fundamental conceptual problem that cannot be solved by advances in 

numerical computations as well, because the boundary or initial conditions can be known with a finite 

accuracy only and such small uncertainty reflects to large differences in the solution. Moreover, 

numerical calculus uses a finite accuracy, that may be even different between different computers, 

and it can happen that numerical solutions of the same determinist equations produce different results. 

As a result, when talking about turbulent flows one cannot focus on an individual realization of that 

field, that is just one solution among many other equally possible, and should rather pay attention to 

the main properties that are common to all turbulent realizations of that flow.    
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Physically, turbulence enhances energy dissipation and therefore it is normally a threat of excessive 

energy consumption in the vascular circulation. Another property is the unpredictability of its chaotic 

fluctuations that makes turbulent flows difficult to control, model, and manage. On the other side, 

turbulence has several positive implications; first of all, it makes life possible by enhancing mixing 

and diffusion. While viscous diffusion is an extremely efficient mechanism to distribute substances 

at very small scales, turbulent dispersion dominates mixing at larger scales. For example, viscous 

diffusion length, that grows proportionally to √νt , in water takes a few hundredth of a second to reach 

one millimeter, a few second for one centimeter, and over one hour for one meter. On the contrary, it 

is in everyone’s experience that accelerated turbulent dispersion dominates the mixing and heat 

propagation at scales larger than, typically, a few millimeters. It is evident how turbulence is 

ubiquitous in nature and how it ensures the mixing that is experienced in everyday life. 

8.2. Reynolds Equations 

Turbulent flow are complex and irreproducible; nevertheless, the different realizations of turbulent 

flows under similar conditions present common characteristic, like the mean velocity or the amplitude 

of fluctuations. These properties are also those that present a practical interest. The most common 

strategy to tackle the problem of turbulence relies of statistical methods, searching for a description 

of the average motion (responsible for transport) and of its fluctuations (responsible for dispersion). 

This is such a common practice that the study of turbulence is often considered that of statistical fluid 

mechanics.  

There are several different ways for defining average properties in turbulence, from spatial filtering 

to time filtering. The most straightforward approach is that of considering the mean velocity as time 

average over a period T that defines the separation between fluctuations due to turbulence and those 

caused by the large scale evolution in time. Indicating with angular brackets the averaging operator, 

we define the mean velocity as 

 〈𝒗(𝒙, 𝑡)〉 =
1

𝑇
∫ 𝒗(𝒙, 𝑡)𝑑𝑡

𝑇

2

−
𝑇

2

 , (8.2) 

and the fluctuating velocity 

 𝒗′(𝒙, 𝑡) = 𝒗(𝒙, 𝑡) − 〈𝒗(𝒙, 𝑡)〉 ; (8.3) 

such that the actual velocity is the sum of the mean plus the fluctuating components 𝑣 = 〈𝒗〉 + 𝒗′. 

We can now try to write the equations for the mean velocity applying the average operator to the 

continuity and the Navier-Stokes equations. Applying the mean operator to the continuity equation 

gives  

 〈∇ ∙ 𝒗〉 = ∇ ∙ 〈𝒗〉 = 0 , (8.4) 

which tells that the mean velocity is also a divergence-free field. By difference, it is immediate to 

verify that also the fluctuating velocity field is divergence-free 

 ∇ ∙ 𝒗 = ∇ ∙ (〈𝒗〉 + 𝒗′) = ∇ ∙ 〈𝒗〉 + ∇ ∙ 𝒗′ = ∇ ∙ 𝒗′ = 0 . (8.5) 

The same approach can be applied to the Navier-Stokes equation. To make it simple, consider the x-

component of the equation written in a Cartesian system of coordinates, see equation (5.35), that is 

averaged to give  
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 〈
𝜕𝑣𝑥

𝜕𝑡
〉 + 〈𝒗 ∙ ∇𝑣𝑥〉 = −

1

𝜌
〈
𝜕𝑝

𝜕𝑥
〉 + 𝜈〈∇2𝑣𝑥〉,  

and can be rewritten exchanging the derivative and the averaging operator  

 
𝜕〈𝑣𝑥〉

𝜕𝑡
+ 〈𝒗 ∙ ∇𝑣𝑥〉 = −

1

𝜌

𝜕〈𝑝〉

𝜕𝑥
+ 𝜈∇2〈𝑣𝑥〉. (8.6) 

The second terms is non-linear and does not allow immediate simplification. Let’s us look at this term 

in details 

 

〈𝒗 ∙ 𝛻𝑣𝑥〉 =

= 〈(〈𝑣𝑥〉 + 𝑣𝑥′)
𝜕(〈𝑣𝑥〉+𝑣𝑥′)

𝜕𝑥
+ (〈𝑣𝑦〉 + 𝑣𝑦′)

𝜕(〈𝑣𝑥〉+𝑣𝑥′)

𝜕𝑦
+ (〈𝑣𝑧〉 + 𝑣𝑧′)

𝜕(〈𝑣𝑥〉+𝑣𝑥′)

𝜕𝑧
〉 =

= 〈〈𝑣𝑥〉
𝜕〈𝑣𝑥〉

𝜕𝑥
〉 + 〈〈𝑣𝑦〉

𝜕〈𝑣𝑥〉

𝜕𝑦
〉 + 〈〈𝑣𝑧〉

𝜕〈𝑣𝑥〉

𝜕𝑧
〉 +

+ 〈〈𝑣𝑥〉
𝜕𝑣𝑥′

𝜕𝑥
〉 + 〈〈𝑣𝑦〉

𝜕𝑣𝑥′

𝜕𝑦
〉 + 〈〈𝑣𝑧〉

𝜕𝑣𝑥′

𝜕𝑧
〉 +

+ 〈𝑣𝑥′
𝜕〈𝑣𝑥〉

𝜕𝑥
〉 + 〈𝑣𝑦′

𝜕〈𝑣𝑥〉

𝜕𝑦
〉 + 〈𝑣𝑧′

𝜕〈𝑣𝑥〉

𝜕𝑧
〉 +

+ 〈𝑣𝑥′
𝜕𝑣𝑥′

𝜕𝑥
〉 + 〈𝑣𝑦′

𝜕𝑣𝑥′

𝜕𝑦
〉 + 〈𝑣𝑧′

𝜕𝑣𝑥′

𝜕𝑧
〉 .

 

Consider that the already averaged values can be taken out of the average operator, because they 

behave like a constant with respect to the integral in the averaging operation. Therefore, we can 

rewrite the last terms to get 

 

〈𝒗 ∙ 𝛻𝑣𝑥〉 =

= 〈𝑣𝑥〉
𝜕〈𝑣𝑥〉

𝜕𝑥
+ 〈𝑣𝑦〉

𝜕〈𝑣𝑥〉

𝜕𝑦
+ 〈𝑣𝑧〉

𝜕〈𝑣𝑥〉

𝜕𝑧
+

+〈𝑣𝑥〉
𝜕〈𝑣𝑥′〉

𝜕𝑥
+ 〈𝑣𝑦〉

𝜕〈𝑣𝑥′〉

𝜕𝑦
+ 〈𝑣𝑧〉

𝜕〈𝑣𝑥′〉

𝜕𝑧
+

+〈𝑣𝑥′〉
𝜕〈𝑣𝑥〉

𝜕𝑥
+ 〈𝑣𝑦′〉

𝜕〈𝑣𝑥〉

𝜕𝑦
+ 〈𝑣𝑧′〉

𝜕〈𝑣𝑥〉

𝜕𝑧
+

+ 〈𝑣𝑥′
𝜕𝑣𝑥′

𝜕𝑥
〉 + 〈𝑣𝑦′

𝜕𝑣𝑥′

𝜕𝑦
〉 + 〈𝑣𝑧′

𝜕𝑣𝑥′

𝜕𝑧
〉 .

 

It is immediate to notice that the first term on the right-hand-side is the transport equation written for 

the mean velocity. The second and third terms are both zero because they contain the mean of the 

fluctuating components that are zero by definition. Rewrite the remaining terms and add the average 

of a null terms 𝑣𝑥  ∇ ∙ 𝒗′ that is zero because of (8.5) 

 

〈𝒗 ∙ 𝛻𝑣𝑥〉 = 〈𝒗〉 ∙ 𝛻〈𝑣𝑥〉 +

+ 〈𝑣𝑥′
𝜕𝑣𝑥′

𝜕𝑥
〉 + 〈𝑣𝑦′

𝜕𝑣𝑥′

𝜕𝑦
〉 + 〈𝑣𝑧′

𝜕𝑣𝑥′

𝜕𝑧
〉 +

+ 〈𝑣𝑥′
𝜕𝑣𝑥′

𝜕𝑥
〉 + 〈𝑣𝑥′

𝜕𝑣𝑦′

𝜕𝑦
〉 + 〈𝑣𝑥′

𝜕𝑣𝑧′

𝜕𝑧
〉

=
𝜕〈𝑣𝑥′𝑣𝑥′〉

𝜕𝑥
+

𝜕〈𝑣𝑥′𝑣𝑦′〉

𝜕𝑦
+

𝜕〈𝑣𝑥′𝑣𝑧′〉

𝜕𝑧
;

 

where we used the product of derivatives in the last passage. This result can be reinserted in the 

original equation (8.6) and rewritten in vector terms to better highlight the new structure of the 

equation 

 
𝜕〈𝒗〉

𝜕𝑡
+ 〈𝒗〉 ∙ ∇〈𝒗〉 = −

1

𝜌
∇〈𝑝〉 + 𝜈∇2〈𝒗〉 +

1

𝜌
∇ ∙ 𝕋𝑹. (8.7) 

where the last term is the symmetric Reynolds stress tensor defined by 
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 𝕋𝑹𝑖𝑗
= −𝜌〈𝑣𝑖′𝑣𝑗′〉; (8.8) 

Equation (8.7) is the Reynolds’ equation. It corresponds to the Navier-Stokes equation when 

expressed in terms of mean velocity. The Reynolds equation differs from the Navier-Stokes equation 

for the additional terms that contains the Reynolds stress. The Reynolds stress term has exactrly the 

same form of the stress tensor terms previously found in the Cauchy equation (5.30); however, this 

equation is for the mean velocity, that is not the physical velocity but only a mathematical filter of it. 

The Reynolds stresses therefore are not real stresses experienced by physical fluid elements, they are 

fictitious stresses that represent the influence of the fluctuating velocities on the mean velocities. It 

would represent the energy that is lost the mean flow because it is transferred into the fluctuations 

during the filter period T. 

The Reynolds equation produces simpler, smoother solutions because of the enhanced dissipative 

mechanism introduced by the Reynolds stresses, thus avoiding the contemporary presence of many 

interleaving scales within the flow. This simplification is payed, on the other side, by the fact that the 

Reynolds equation is not closed: it included further unknowns, the Reynolds stresses, that cannot be 

obtained by the equation itself and require a further model or equation. The appearance of novel 

unknowns in the averaged equation is what is known as the closure problem of turbulence. Either 

equations are complicated and unsolvable (Navier-Stokes) o they are not closed (Reynolds, as well 

as many other filtered equation derived from Navier-Stokes) because they present additional 

unknown terms. 

There are numerous models to provide a closure to the Reynolds equation by adding additional 

equations for the terms (8.8). It must be remarked, however, that all these models are not obtained 

from first conservation principles; thus closure models are not rigorous, they are not accurate in 

general and rely on numerous empirical coefficients. They are more reliable in canonical flows of 

practical relevance where extensive experimental and numerical studies permitted to establish reliable 

models. In general the closure problem is still open. 

8.3. Turbulent flow over a wall 

A turbulent flow of paramount applied interest is that flowing near a surface under the hypothesis that 

the mean flow is steady and unidirectional. It cannot be solved exactly as it was done for laminar 

flows; nevertheless, some result can be achieved by properly combining all information available. 

Consider turbulent flow over a flat surface as sketched in figure 8.1. Assume that the flow is steady 

and two-dimensional, on average, thus derivatives of mean quantities along z and t are zero, and that 

the mean flow is unidirectional, <vy>=0 and <vz>=0. By continuity we have the only unknown is the 

x-component of the mean velocity that can vary with the distance y from the wall: <vx(y)>.  

The Reynolds equations along the transversal direction simply state that the mean pressure <p> is 

constant transversal to the mean flow, as can be immediately verified. The x-component of the 

Reynolds equation 

 

𝜕〈𝑣𝑥〉

𝜕𝑡
+ 〈𝑣𝑥〉 ∙

𝜕〈𝑣𝑥〉

𝜕𝑥
+ 〈𝑣𝑦〉 ∙

𝜕〈𝑣𝑥〉

𝜕𝑦
+ 〈𝑣𝑧〉 ∙

𝜕〈𝑣𝑥〉

𝜕𝑧
=

            = −
1

𝜌

𝜕〈𝑝〉

𝜕𝑥
+ 𝜈 (

𝜕2〈𝑣𝑥〉

𝜕𝑥2
+

𝜕2〈𝑣𝑥〉

𝜕𝑦2
+

𝜕2〈𝑣𝑥〉

𝜕𝑧2
) −

𝜕〈𝑣𝑥′𝑣𝑥′〉

𝜕𝑥
−

𝜕〈𝑣𝑥′𝑣𝑦′〉

𝜕𝑦
−

𝜕〈𝑣𝑥′𝑣𝑧′〉

𝜕𝑧
,
  

simplifies with these assumptions to 
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 𝜈
𝜕2〈𝑣𝑥〉

𝜕𝑦2
−

𝜕〈𝑣𝑥′𝑣𝑦′〉

𝜕𝑦
=

1

𝜌

𝜕〈𝑝〉

𝜕𝑥
.  

Make the additional assumption that the mean pressure gradient is zero; this is justified by the fact 

that pressure gradient does not vary with y, and it is an additional constant (over y) that influences the 

value of the velocity but not its profile. Therefore the Reynolds equation, ignoring the pressure 

gradient, suggests the existence of the following relationship 

 𝜈
𝜕2〈𝑣𝑥〉

𝜕𝑦2
−

𝜕〈𝑣𝑥′𝑣𝑦′〉

𝜕𝑦
= 0. (8.9) 

Both terms present a derivative along y; after integration we have 

 𝜈
𝜕〈𝑣𝑥〉

𝜕𝑦
− 〈𝑣𝑥′𝑣𝑦′〉 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡.  

this constant has the dimension of a velocity square and it is commonly written as 𝑢∗
2 

 𝜈
𝜕〈𝑣𝑥〉

𝜕𝑦
− 〈𝑣𝑥′𝑣𝑦′〉 = 𝑢∗

2 (8.10) 

where 𝑢∗ is called the friction velocity whose physical meaning will be clear shortly. 

Equation (8.10) tells that there is a property of the turbulent wall flow, that we call the square of the 

friction velocity, that is constant over the entire velocity profile, from the wall to above the wall. 

Looking carefully to the two terms in (8.10) we can recognize that, if multiplied with the density ρ, 

they represent the mean viscous stress <τxy> and the turbulent Reynolds stress 𝕋𝑹𝑥𝑦
. Therefore, 

equation (8.10) tells that the total stress, given by the sum of viscous plus the turbulent stresses, is 

constant over the turbulent profile; the former dominates close to the wall, where turbulence stress is 

low up to being zero at the wall, while the turbulent stress dominates away from the wall as shown in 

figure 8.1. Equation (8.10) is valid also at the wall where turbulent stress is zero because velocity and 

its fluctuations are zero and the viscous stress is τ0=<τxy(0)>  

 𝜈
𝜕〈𝑣𝑥〉

𝜕𝑦
|
𝑦=0

=
𝜏0

𝜌
 . (8.11) 

Equation (8.11) tells that the friction velocity is given by 

 𝑢∗ = √
𝜏0

𝜌
 . (8.12) 

Consider now equation (8.10) very close to the wall. Here viscous stress dominates and the equation 

can be approximated by 

 𝜈
𝜕〈𝑣𝑥〉

𝜕𝑦
≅ 𝑢∗

2;  

which can be integrated, with boundary condition〈𝑣𝑥(0)〉 = 0, to give the velocity profile very close 

to the wall 

 
〈𝑣𝑥〉

𝑢∗
≅

𝑢∗

𝜈
𝑦; (8.13) 

showing that velocity grows linearly from the wall. Expression (8.13) suggests the existence of a 

viscous length scale, given by  𝑦∗ =
𝜈

𝑢∗
, that provided the length scale of velocity variations in the 

region where viscosity is important. 
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Far from the wall, at distances much larger than such length scale, 𝑦 ≫
𝜈

𝑢∗
, the turbulent stress 

dominates over the viscous one. Equation (8.10) does not allows to solve the velocity profile; 

nevertheless, we can write that the changes in the velocity profile (its y-derivative) should not depend 

explicitly on viscosity. Thus, they can only depend on the turbulent stress, expressed by the friction 

velocity that characterizes the stresses in the entire turbulent layer and by the distance from the wall. 

Functionally we can write 

 
𝜕〈𝑣𝑥〉

𝜕𝑦
= f(𝑢∗, 𝑦). (8.14) 

Dimensional analysis of (8.14) allows simplifying it in the following form 

 
𝜕〈𝑣𝑥〉

𝜕𝑦
=

1

𝑘

𝑢∗

𝑦
. (8.15) 

where 𝑘 is an unknown constant. This constant is known as the Von Karman constant, it was estimated 

experimentally to take the value 𝑘 ≅ 0.4 in most turbulent wall flows. Integration of (8.15) gives 

 〈𝑣𝑥〉 =
𝑢∗

𝑘
ln (

𝑦

𝑦0
); (8.16) 

where y0 is the integration constant that is unknown because there is no boundary condition that can 

be enforces given that this profile is not valid at the wall.  The integration constant y0 is a length and 

should be expressed proportional to the only existing length scale, found in (8.13), as 𝑦0 =
1

𝑎

𝜈

𝑢∗
 where 

now the dimensionless unknown is a. With this substitution, equation (8.16) is rewritten in a form 

analogous to (8.13) as 

 
〈𝑣𝑥〉

𝑢∗
=

1

𝑘
ln (𝑎

𝑢∗

𝜈
𝑦); (8.17) 

where the coefficient a is unknown and should be evaluated for the different cases. The solution 

(8.17), although obtained with several approximations and hypotheses, was demonstrated to be a very 

good representation of real wall-bounded turbulent flows under numerous different configurations, 

with or without pressure gradients, and in different geometries. It is valid for wind blowing over the 

sea or over a town, for water flowing in rivers as well as in cylindrical pipes, for example. A general 

feature of the profile (8.17), sketched in figure 8.1, is its slow modulation; it is very slow varying 

after an initial region close to the wall. Therefore, the turbulent profiles are commonly very flat in 

contrast with the laminar parabolic profile. 

The velocity profile in equation (8.17) is not an exact solution; it presents two dimensionless 

coefficients, 𝑘 and a that must be estimated experimentally, and the friction velocity 𝑢∗ that provides 

the intensity of the actual flow. Friction velocity was defined by (8.12) and is the only velocity scale 

available in this context of generic flow without reference to conduits discharge or external velocities. 

In a conduit, the friction velocity can be related to the pressure gradient that creates the mean flow. 

To this aim, consider a steady and uniform turbulent flow inside a vessel of constant cross-section, 

the global balance of momentum between two sections has zero inertial and zero flux of momentum 

terms, it simply states a balance between the force due to pressure difference and the resistance due 

to wall shear stress 

 𝜏0𝐶 = −
𝜕〈𝑝〉

𝜕𝑥
𝐴 , (8.18) 

where C and A are the perimeter and the area of the vessel, respectively; equal to πD and πD2/4 in a 

circular vessel. Use (8.12) and (8.18) to obtain the friction velocity in terms of the pressure gradient, 
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 𝑢∗ = √−
1

𝜌

𝜕〈𝑝〉

𝜕𝑥

𝐴

𝐶
= √−

1

𝜌

𝜕〈𝑝〉

𝜕𝑥

𝐷

4
 . (8.19) 

with the second equality valid for a circular vessel only. Relation (8.19) shows that the friction 

velocity is not an abstract parameter, it is a velocity scale that can be obtained from macroscopic 

measurable quantities. 

We can also move further and use the previous results to build the relationship between friction 

velocity, or pressure gradient, and average velocity in a vessel of diameter D as follows. The 

logarithmic profile is valid for a large portion of the duct. Therefore, there must be a certain distance 

from the wall y where the local velocity is equal to the average velocity V in the duct. Express this 

distance as proportional to the duct diameter y=a’D, with a’ an unknown constant; we can write in 

formulas that a value a’ must exist such that 〈𝑣𝑥(𝑎′𝐷)〉 = 𝑉. Using (8.17) this condition becomes 

 
𝑉

𝑢∗
=

1

𝑘
ln (𝑏

𝑉𝐷

𝜈

𝑢∗

𝑉
); (8.20) 

where b is the new unknown constant (b=aa’), which was experimentally estimated in circular vessels 

to be 𝑏 ≅ 1.13. 

 

Equation (8.20) provides a relationship between mean velocity and pressure gradient (or friction 

velocity). It is common habit introducing a friction coefficient, the dimensionless Chezy coefficient, 

as the ratio between mean and friction velocities, 𝐶 =
𝑉

𝑢∗
. Using (8.20) the Chezy friction coefficient 

can be estimated in turbulent flows as 

 𝐶 =
1

𝑘
ln (𝑏

𝑅𝑒

𝐶
); (8.21) 

which is an implicit expression for C(Re). The Chezy friction coefficient has the identical role of the 

friction coefficient f(Re) previously introduced in (1.13) and evaluated in (7.30) for the Poiseuille 

flow; the two are related by 

 𝐶 = √
8

𝑓
, 𝑓 =

8

𝐶2
; (8.22) 

 

Figure 8.1. Turbulent flow over a flat surface. 
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thus the Chezy coefficient in Poiseuille flow is 𝐶 = √
𝑅𝑒

8
 . The two friction coefficients can be used 

interchangeably, depending on the traditions in different contexts, regions or disciplines. 

In un unsteady and in spatially non-uniform flows, expressions for the wall shear stress and for the 

energy losses are not available in general, few results are in laminar flows (like those in section 7.4) 

and almost none in turbulent flows. The previous evaluations permit to have initial estimates for 

steady uniform turbulent flows.  
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9. Quasi Unidirectional Flow in Large Vessels 

9.1. Mass Balance in Tapering and Branching Arteries 

Tapered geometry, with area decreasing downstream, and branches, extracting flow from the main 

vessel, are characteristic elements in many arteries. Let us verify what mass balance tells about these 

conditions. Consider first a tapered vessel and assume the duct as undeformable. The discharge Q=VA 

is constant along the vessel thus when area decreases velocity must increase following mass balance 

equation   

 
𝑑𝑄

𝑑𝑥
= 𝐴

𝑑𝑉

𝑑𝑥
+ 𝑉

𝑑𝐴

𝑑𝑥
= 0 , (9.1) 

from which the velocity rate of increase would be 

 
𝑑𝑉

𝑑𝑥
= −

𝑄

𝐴2

𝑑𝐴

𝑑𝑥
> 0 . (9.2) 

This result does not realize physiologically because velocity must decrease when the vessel size 

decreases to avoid excessive friction. 

Indeed, in real arteries the discharge decreases downstream 
𝑑𝑄

𝑑𝑥
< 0 in virtue of the side branches. At 

the same time, the velocity must decrease downstream 
𝑑𝑉

𝑑𝑥
< 0 to avoid increase of friction. These 

considerations give a relationship between area reduction and discharge reduction. Extract the 

velocity gradient from mass balance (9.1) and impose that, differently from (9.2) it must be negative  

 
𝑑𝑉

𝑑𝑥
=

1

𝐴

𝑑𝑄

𝑑𝑥
−

𝑄

𝐴2

𝑑𝐴

𝑑𝑥
< 0 . (9.3) 

Condition (9.3) can be restated as  

 −
1

𝑄

𝑑𝑄

𝑑𝑥
> −

1

𝐴

𝑑𝐴

𝑑𝑥
 . (9.4) 

telling that the relative (percentage) reduction of discharge must be larger than the relative reduction 

of area. 

A similar argument can be applied to bifurcations. Consider a vessel with area A0 and discharge 

Q0=V0A0, where V0 is the velocity, that bifurcates into two equal daughter vessels, each of area A1 and 

discharge Q1=V1A1. Mass conservation tells 

 𝑉0𝐴0 = 2𝑉1𝐴1 ; (9.5) 

where, as discussed before, we want that the condition V1<V0 when A1<A0 . Using (9.5) this implies 

that  

 
𝑉0

𝑉1
=

2𝐴1

𝐴0
> 1 . (9.6) 

Thus, although the individual daughter vessels reduce their size, the sum of their areas must increase. 

The total cross section area increase downstream at every branching. 

To get an ideas of this geometric effect, consider the diameter of the Aorta, the first artery after the 

heart, whose diameter is approximately 3 cm. The total cross section of blood vessel at the root of 

Aorta is approximately AAorta≈7 cm2 where flow has a velocity about VAorta≈1 m/s, thus a 

corresponding discharge Q≈700 cm3/s. A similar discharge must cross the entire cross section of the 
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vasculature at any level of branching. Consider that at the capillary level blood velocity is smaller 

than 1mm/s. This means that the total cross-section of capillary bed is close to 1m2.  

9.2. Flow in Curved Vessels 

The motion of fluid particles in curved vessels, different from the laminar flow in straight vessels 

(Poiseuille flow), cannot proceed by parallel trajectories because particles on the inner side of the 

curve travel a shorter path than those on the external side.  

 

 

From a dynamic perspective, fluid particles are subjected to centrifugal acceleration, proportional to 

the square of their local velocity and inversely proportional to the curvature of the trajectory, v2/R. 

Particles on the internal side have smaller radius of curvature and those near the center of the vessel 

have a higher velocity. Therefore, transversally to the main flow direction there is a pressure gradient 

in the center of the vessel pushing towards the external side. Then, for conservation of mass, flow 

returns from the external side to the internal side along the walls. This gives rise to secondary 

circulation as sketched in figure 9.1.  

Flow in curved vessels always develops secondary circulations. These take the form of two symmetric 

circulating cells when the curvature is planar, thus the system presents a mirror symmetry across the 

transversal plane. Most arteries, however, present a double curvature, mathematically described as 

curvature and torsion like a portion of a helical shape duct. In that case, the two cells symmetry, 

shown in figure 9.1, is altered depending on the degree of torsion, resulting in one cell dominating on 

the other.  

Flow in real, doubly curved, arteries is composed of the main stream wise motion plus a rotation, due 

to the dominance of one cell to the other. The result of such a combination is that fluid particles move 

downstream along helical trajectories. This is remarkably noticeable in the aortic arch like that shows 

in figure 9.2. Helical trajectories develop also in many bifurcations, like the carotid and the iliac 

bifurcations. Helical trajectories are considered to have a physiological significance because they 

permit a higher wash-out of the whose vessel and reduce the development of stagnation regions, 

which give higher chance of aggregation and development of arteriosclerosis. 

 

Figure 9.1. Flow in a curved vessel. 
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9.3. Flow in Elastic Vessels 

Arteries are elastic and deform in virtue of the pressure changes due to the flowing blood inside the 

vessel. In order to analyze the interaction between vessel elasticity and fluid flow let us first analyze 

how the deformation occurs in presence of a change in pressure. 

Consider a vessel or diameter D and thickness s, assumed small, subjected to a pressure increase dp 

of the flow inside its lumen. Vessel deformation obeys the law of motion for the elastic material, that 

is simplified into the equilibrium of forces, and the constitutive equation describing the relation 

between internal stress and deformation. With reference to figure 9.3, internal stresses are indicated 

by τ and are assumed constant over the thickness. Thus, the equilibrium equation is     

 𝜏2𝑠 = 𝑑𝑝𝐷 . (9.7) 

Equilibrium (9.7) is evaluated in the undeformed configuration, thus making the assumption that 

deformations are small (rigorously speaking, infinitesimal); arterial deformation is usually less than 

10% and this approximation is acceptable in this context. The constitutive equation, for small 

unidimensional deformations, gives the following relationship between stress and deformation 

 𝜏 = 𝐸
𝑑𝐷

𝐷
 ; (9.8) 

 

Figure 9.2. Helical trajectories in the Aortic arch. 
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where E is the Young modulus of elasticity that describes the elastic behavior of the tissue. 

Combination of (9.7) and (9.8) permits to relate the increase of pressure with the deformation 

 
𝑑𝐷

𝐷
=

𝑑𝑝 𝐷

2𝐸𝑠
 . (9.9) 

 

Then, mass conservation, permits to evaluate the change of thickness, that for small thickness gives 

 
𝑑𝑠

𝑠
= −

𝑑𝐷

𝐷
 . (9.10) 

With this small background on solid mechanics we can analyze the phenomenon of wave propagation 

in elastic vessels that applies to small pressure pulsations. 

Consider the equation of continuity (4.7) and of motion (5.18) for a vessel  

 {

𝑑𝐴

𝑑𝑡
+ 𝑉

𝜕𝐴

𝜕𝑥
+ 𝐴

𝜕𝑉

𝜕𝑥
= 0 ,

𝑑𝑉

𝑑𝑡
+ 𝑉

𝜕𝑉

𝜕𝑥
+

1

𝜌

𝜕𝑝

𝜕𝑥
= 0 .

 (9.11) 

In writing the second of (9.11) we made the additional assumption that friction is negligible, as it 

does not alter qualitatively the propagation phenomenon and would only produces an attenuation of 

the propagating wave.  

The additional relationship needed here is the coupling between vessel size, A, and fluid pressure, p, 

that we can write in general, assuming uniform properties along the vessel, as a function A(p), one 

simple example being equation (9.9). The existence of a A(p) relationship permits rewriting any 

derivative of the vessel area, in time or space, in term of derivative of pressure  

 
𝑑𝐴

𝑑𝑥,𝑡
=

𝑑𝐴

𝑑𝑝

𝑑𝑝

𝑑𝑥,𝑡
 . (9.12) 

where the function 
𝑑𝐴

𝑑𝑝
 characterizes the vessel elastic response. In the case of infinitesimal 

deformation of the linear elastic vessel discussed above, this function is obtained by the relationship 

(9.9) that can be recast as  

 
𝑑𝐴

𝑑𝑝
=

𝐴𝐷

𝐸𝑠
 . (9.13) 

Let us simplify equations (9.11) for propagation phenomena assuming that the wave propagation 

velocity, the celerity c, is much larger than the physical fluid velocity. This means that the second 

(convective) term in both equations (9.11) can be neglected with respect to the first term. In this 

approximation, and using (9.12), the system (9.11) can be rewritten 

 

Figure 9.3. Deformation of an elastic vessel. 
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 {

1

𝐴

𝑑𝐴

𝑑𝑝

𝑑𝑝

𝑑𝑡
+

𝜕𝑉

𝜕𝑥
= 0 ,

𝑑𝑉

𝑑𝑡
+

1

𝜌

𝜕𝑝

𝜕𝑥
= 0 .

 (9.14) 

Now take the time derivative of the former and subtract the space derivative of the latter; then make 

the additional assumption that the 
1

𝐴

𝑑𝐴

𝑑𝑝
 is a property of the vessel that is slowly varying (with respect 

to the variation of pressure itself) such that its derivatives are negligible. We obtain the equation for 

pressure     

 
1

𝐴

𝑑𝐴

𝑑𝑝

𝑑2𝑝

𝑑𝑡2
−

1

𝜌

𝑑2𝑝

𝑑𝑥2
= 0 .  

This can be rewritten in canonical form as  

 
𝑑2𝑝

𝑑𝑡2
− 𝑐2 𝑑2𝑝

𝑑𝑥2
= 0 ; (9.15) 

which is the wave equation and 

 𝑐 = √
𝐴

𝜌

𝑑𝑝

𝑑𝐴
≅ √

𝐸𝑠

𝜌𝐷
 . (9.16) 

is the celerity of the wave; the second equality in (9.16) being valid for the limit case of infinitesimal 

deformation discussed above. 

The general solution of the wave equation (9.15) is 

 𝑝(𝑡, 𝑥) = 𝑝(𝑥 ± 𝑐𝑡) . (9.17) 

which represents rigid propagation of the initial pressure fields without change of shape. 

For reference, using the second equality (9.16) its is possible to estimate the celerity in Aortic artery, 

where E≈105 N/m2 and s/D≈0.1, between 3 to 5 m/s. Smaller vessels are relatively more rigid and 

celerity increases to about 10 m/s in peripheral arteries. The celerity formula (9.16) is often used to 

estimate the Young modulus of arteries, their rigidity. Celerity is measured by recoding the pressure 

wave at different positions along the vasculature whose time shift divided by the distance between 

the measurement points give celerity. 

The linear analysis of pressure pulse propagation presented here is based on several assumption. A 

general nonlinear treatment is complicated and out of the present scope; however, it is instructive to 

mention how the approximations would affect the general solution (9.17). The tube-law (9.13), and 

thus the celerity (9.16), is not constant and the vessel is more rigid when more deformed; this means 

that celerity is higher in correspondence to higher pressure values. Thus pressure pulse is faster in 

locations where pressure is higher and slower where it is lower; this means that the peaks of the 

pressure wave move faster and give rise to a sharpening of the front side of the pressure wave. The 

transport term, that was neglected assuming velocity much smaller than celerity, would also 

contribute to deform the wave shape. Ultimately, a non-zero friction would produce the attenuation 

of the propagating wave that would be smoothed out downstream.  
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9.4. Impulse Propagation at a Bifurcation 

At bifurcations, the pressure wave is partly transmitted downstream into the daughter vessels and 

partly reflected backwards. Thus, at a bifurcation there is the incident wave (i) moving downward, 

the reflected wave (r) propagating upward and the two transmitted waves (t1 and t2) downward.  

 

In order to quantify, we can express the continuity of pressure at the junction, stating that pressure 

takes the same values when seen from the different vessels  

 𝑝𝑖 + 𝑝𝑟 = 𝑝𝑡1 = 𝑝𝑡2 ; (9.18) 

and the conservation of mass that gives a relationship among discharges 

 𝑄𝑖 − 𝑄𝑟 = 𝑄𝑡1 + 𝑄𝑡2 . (9.19) 

There are 4 unknown pressure and (9.18) provides two equations relating them; in order to move 

forward and use (9.19) let us find a relationship between pressure and discharge.  

Consider a generic sinusoidal pressure wave 𝑝(𝑥, 𝑡) = 𝐹𝑝𝑒𝑖𝜔(𝑥−𝑐𝑡) and the corresponding velocity 

wave  𝑉(𝑥, 𝑡) = 𝐹𝑉𝑒𝑖𝜔(𝑥−𝑐𝑡); substituting them into either continuity of motion equation (9.14) we 

obtain that 𝐹𝑉 =
𝐹𝑝

𝜌𝑐
, thus that the discharge can be related to pressure through  

 𝑄 =
𝐴

𝜌𝑐
𝑝 . (9.20) 

This relationship between flow and pressure is commonly expressed 

 𝑄 =
𝑝

𝑍
, 𝑍 =

𝜌𝑐

𝐴
;  (9.21) 

introducing the concept of impedance, Z, that is a characteristic of a vessel. 

Substituting (9.21) in (9.19), this and (9.18) give a system of 3 equations 

 {

𝑝𝑖 + 𝑝𝑟 = 𝑝𝑡1

𝑝𝑖 + 𝑝𝑟 = 𝑝𝑡2
𝑝𝑖−𝑝𝑟

𝑍0
=

𝑝𝑡1

𝑍1
+

𝑝𝑡2

𝑍2

 ; (9.22) 

where the subscript 0 stands for the parent vessel and the numbers for the two daughters. Substituting 

the first equations into the third we obtain a single equation relating incident and reflected waves 

 
𝑝𝑖−𝑝𝑟

𝑍0
=

𝑝𝑖+𝑝𝑟

𝑍1
+

𝑝𝑖+𝑝𝑟

𝑍2
 .  

 

Figure 9.4. Wave propagation at a bifurcation. 
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This can be rewritten introducing the coefficient of reflection R  

 
𝑝𝑟

𝑝𝑖
= 𝑅, 𝑅 =

1

𝑍0
−

1

𝑍1
−

1

𝑍2
1

𝑍0
+

1

𝑍1
+

1

𝑍2

 . (9.23) 

and a coefficient of transmission can also be obtained after substituting into the first equations in 

(9.22).   

A perfect bifurcation with no reflection, R=0, is obtained when  
𝐴0

𝑐0
=

𝐴1

𝑐1
+

𝐴2

𝑐2
 . We know (remind 

equation 9,6) that 𝐴1 + 𝐴2 > 𝐴0, and that the celerity in a smaller vessel is usually higher, therefore 

in real bifurcation the reflection is effectively small, although non zero. Thus, most of the pressure 

pulse is transmitted downstream and only in small part reflected. 

An important place where reflected waves can be effective is the pulse propagation along the aorta 

where it encounters the iliac bifurcation. This phenomenon is sketched in figure 9.5. The incident 

pressure wave (i) starts from the aortic root and reaches the bifurcation after a time T (which is 

typically about 0.1 s, given by the ratio between the length of the aorta, say something about 50 cm, 

and the celerity, say about 5 m/s). At this point, the reflected wave (r) travels backwards from the 

bifurcation and reaches the aortic root after a time 2T. Therefore, the pressure pulse that one measures 

at the root is the sum of the incident pressure wave, that is given by ventricular contraction and is 

made of a single impulse, plus the reflected wave that is similar to the incident wave, but it is lower 

and delayed of 2T. The backward travelling waves sustains the pressure at the aortic root after the 

initial impulse has passed and (with multiple reflections) ensures its slower decay during diastole. 

This higher pressure helps maintaining the aortic valve close and it is though to help providing 

allowance to the coronary flow during diastole. There are, however, other mechanism involved and 

it is still unclear whether the role of reflection is fundamental or secondary. In any case, it is important 

to be aware that the time profile of pressure measured at any place does not reflect only the primary 

cause generating pressure (like ventricular contraction at the aortic root), it also included the 

contribution of reflected waves.   

 

 

Figure 9.5. Wave reflection in the Aorta. 
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9.5. Collapsible Vessels 

Arteries present a positive transmural pressure and typically operate under stretched conditions. There 

are, however, some other biological districts where internal pressure can become lower than the 

external value and the vessel be subjected to contraction. A contracted vessel maintains the circular 

geometry for small contractions only, then it undergoes to a bending instability and collapses reducing 

sharply its area as shown in the generic “tube law” sketched in figure 9.6.  A collapsed vessel gives 

high resistance to the flow and increased decrease of pressure.     

 

To exemplify possible implication, consider a vessel where flow starts with a given upstream 

transmural pressure p0 at x=0 that decreases downstream, for example following the Poiseuille law 

 𝑝(𝑥) = 𝑝0 −
128

𝜋
𝜇

𝑄

𝐷4
𝑥 . (9.24) 

If the discharge increases, the pressure reduction is more pronounced along the vessels and the 

diameter decreases as well. Under certain conditions, when the upstream pressure is relatively low or 

the vessel is long enough, transmural pressure can become negative and, from the tube law, collapse. 

This further reduces the pressure losses and decreases the pressure up to collapsing the vessel and not 

allowing for the flowing of the discharge Q. 

This is phenomenon is called “flow limitation”: when the system increases the upstream pressure to 

try pushing a higher discharge, it may lead to more pressure losses more than how pressure was 

increased upstream. Thus pressure gets further reduced downstream and lead to the collapse of the 

vessel that does not allow flow passage. Flow limitation typically occurs in airways, where one cannot 

blow more than a limited air rate otherwise the airways collapse and blowing is reduced. It can occurs 

in male urination. It can also occur in long veins and was much studied in the giraffe jugular vein. 

 

  

 

Figure 9.6. Tube law for collapsible vessels. 
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D. ADVANCED ANALYSIS OF SEPARATED FLOW 

10. Vorticity and Boundary Layer Separation 

10.1. Dynamics of Vorticity 

The fluid velocity was assumed as the fundamental quantity for describing fluid motion. However, 

velocity is not able to immediately evidence the underlying dynamical structure of a flow field, like 

stresses, mixing or turbulence, that depend on velocity gradients. The weakness of a description based 

on velocity alone is particularly critical when the fluid motion features the presence of vortex 

structures. In general, vorticity is the preferable fundamental quantity for the analysis of 

incompressible fluid dynamics.  

Vorticity vector was previously introduced through equations (3.6-3.7); it is mathematically defined 

as the curl is of the velocity field  

 𝝎(𝒙) = ∇ × 𝒗 . (10.1) 

It represents the local rotation rate of fluid particles and allows emphasizing the structure that hides 

behind the flow field; it also represents a complete description of the flow and allows recovering the 

whole velocity field once the boundary conditions are imposed. 

The interpretation of vorticity is particularly intuitive in a two-dimensional flow field, when only the 

x and y components of the velocity field exist. In this case, vorticity has only the component z, 

perpendicular to the plane of motion, 𝜔 =
𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦
, and physically corresponds to (twice) the local 

angular velocity of a fluid particle. In fact, a positive vorticity corresponds to a vertical velocity, vy, 

increasing horizontally, along x, and a horizontal velocity vx, decreasing vertically. It is easy to 

understand, see figure 10.1 (leftmost sketch), that this type of velocity differences about a point 

represents a rotational motion.  

The relevance of vorticity is not limited to local rotation. The spatial distribution of vorticity 

characterizes the different possible types of fluid motion, that is why vorticity is commonly 

considered the skeleton of the flow field and the fundamental quantity to define the flow structures 

as shown in figure 10.1. A vortex can be loosely described as a motion that possesses circular or 

swirling streamlines; more correctly, a vortex is actually a region of compact vorticity, a circulatory 

motion surrounds a region where vorticity has accumulated. In addition to vortices, the vorticity map 

allows recognition of any basic flow structure. A shear layer, that is an elongated layer of friction 

between streams with different velocities, is actually a layer of vorticity, a vortex layer. The boundary 

layer discussed previously is a vortex layer adjacent to the wall that develops because of the velocity 

difference between the outer flow and the fluid attached to the wall for viscous adherence. The 

intensity of a vortex is normally measured by its circulation, normally indicated with Γ, that is the 

integral of the velocity along a closed circuit surrounding the vortex that, by the Stokes theorem (3.9), 

is equivalent to the integral of all the vorticity over the vortex area contained inside the circuit. The 

intensity of a vortex layer is measured by the difference of velocity, the velocity jump, commonly 

indicated by γ, between the flow above and below the layer; equivalent to the line integral of the 

vorticity across the layer. Vortices and vortex-layers are the fundamental vorticity structure in flow 

fields. Their different three-dimensional arrangements and combinations give rise to the complexities 

of all evolving flows. 
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The significance of vorticity can be best appreciated by the decomposition, due to Helmholtz and 

Stokes, of the complete velocity field as the sum of one irrotational component 𝒗𝑖𝑟𝑟 = ∇𝜙 , expressed 

as a gradient of a scalar potential, plus a rotational component 𝒗𝑟𝑜𝑡 = ∇ × 𝝍 expressed as the curl of 

a vector streamfunction field.  

 𝒗 = ∇𝜙 + ∇ × 𝝍 . (10.2) 

The rotational component accounts for the whole vorticity in the flow field, while the irrotational 

velocity is independent from the vorticity content. Indeed, if one takes the curl of the velocity (10.2) 

the curl of a gradient is identically zero, and the vorticity is due to the rotational field only. 

The irrotational component of the velocity field is a particularly simple field, in incompressible flows. 

It follows from the conservation of mass only (continuity constraint), and does not involves the 

equation of motion. It is immediate to verify taking the divergence of (10.2) that the divergence of a 

curl is identically zero. The rotational field automatically satisfies the continuity that becomes one 

equation for the potential only 

 ∇ ∙ 𝒗 = 0 ⟹ ∇2𝜙 = 0 . (10.3) 

Vice versa, taking the curl of (10.2) we obtain an equation relating vorticity and streamfunction 

 𝝎 = ∇ × (∇ × 𝝍) . (10.4) 

The linear second order equation (10.3) for the potential is of the elliptic type that is known as the 

Laplace equation. The Laplace equation has a unique solution and can be solved by numerous means. 

Conceptually, this means that the irrotational flow helps to satisfy the instantaneous balance of mass 

without any evolutionary mechanism, without fluid dynamics, only kinematic congruence due to 

 

Figure 10.1. Vorticity corresponds to the local rotation of a fluid particle. The spatial distribution of 

vorticity gives rise to different flow structures. An accumulation of vorticity in a compact region 

corresponds to a vortex; an elongated distribution of vorticity corresponds to a shear layer that, when it is 

adjacent to the wall, is a boundary layer. 
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mass conservation. A flow without vorticity thus gives rise to an irrotational velocity field only that 

can be specified without involving the balance of momentum. The equation of motion can be then 

employed, when required, to derive the pressure distribution corresponding to the known the velocity 

field. In the case of irrotational flow, this can be performed with the simple Bernoulli equation for an 

ideal flow because energy dissipation is absent in an irrotational flow. In fact, the viscous term of the 

Navier-Stokes equation, 2u, which can be written for an incompressible flow as ×ω, is identically 

zero for a flow without vorticity. 

The velocity decomposition is the key tool to recognize the role of vortices in a flow because only 

the dynamics of vorticity involves the balance of momentum. A vortex, as said, is a region where 

vorticity has accumulated; a vortex is not necessarily a region exhibiting circulatory motion. It may 

appear as such or the circulatory pattern may remain hidden behind an irrotational contribution that 

covers its rotary features as shown in figure 10.2. The velocity field corresponding to an isolated 

vortex is purely rotational, its streamlines rotate about the vortex and describe a circulatory motion. 

When an irrotational contribution adds on top of the same vortex flow, it may modify the apparent 

vortex signature in terms of streamlines. To explain this point, let us consider the same vortex of 

figure 10.2 (left) with an additional uniform flow, a rigid translational motion from top to bottom that 

is evidently an irrotational component and does not affect the value of vorticity and of shear rate 

anywhere. The resulting flow fields are shown in figure 10.2 for increasing values of the uniform 

motion (central and rightmost panels). The three fields of figure 10.2 presents exactly the same vortex, 

the same gradients of velocity at all points. The rotational velocity field is always the same, 

corresponding to the leftmost picture, only an irrotational flow is added to the others; nevertheless, 

from a superficial qualitative view in term of streamlines the underlying vortex may not be equally 

recognizable. 

 

Fluid dynamics phenomena related to evolutionary dynamics, friction, dissipation, forces, boundary 

layer, vortex formation etc., are dominated by the rotational part of the velocity field, while the 

irrotational contribution may have a role in terms of transport and mass conservation only. Therefore, 

a flow field can be evaluated from the dynamics of the vorticity, plus an irrotational contribution to 

adjust mass conservation according to boundary conditions. This is why, when the flow field is not 

simple or mostly unidirectional, vorticity, and vortices in which vorticity organizes, is the 

fundamental quantity to understand the flow evolution. 

 

Figure 10.2. A vortex is a region where vorticity has accumulated; it is not necessarily a region exhibiting 

circulatory motion. A flow made of a vortex only is made of circular streamlines (left panel). The 

streamlines are modified when a uniform vertical flow of moderate (centre) ad high intensity (right panel) 

is added. In the three panels the vortex is unchanged, and so is shear in the flow. 
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The vorticity is thus the fundamental quantity for describing a fluid flow. From the knowledge of the 

vorticity field only, the entire flow field inside a given geometry can be reconstructed (technically, 

by inversion of equation 10.4). It is therefore tempting to analyze the dynamics of a fluid motion 

following the dynamics of the vorticity itself. This is often useful because vorticity occupies only a 

small fraction of the flow field, and takes standard shapes that allow an immediate characterization 

of the whole flow field.  

The vorticity field has the further simplifying property that it obeys the same zero-divergence 

constraint of the velocity in an incompressible fluid: mathematically, vorticity is a field with zero 

divergence (simply because the divergence of a curl is zero by definition)  

 ∇ ∙ 𝝎 = 0 . (10.5) 

This means that the vorticity field cannot take arbitrary geometric shapes. Therefore vorticity 

typically develops in terms of vortex tubes (whose associated velocity circulates around the tube) or 

of vortex layers (associated with a difference of velocity, a shear rate, across the layer). Moreover, 

the total vorticity contained inside a vortex tube is conserved like the discharge in a tube of flow: a 

vortex tube cannot terminate abruptly, and must either be a closed ring or terminate by spreading into 

a vortex layer.  

Vorticity is an evolving field that follows deterministic evolutionary laws. Their mathematical 

expression can be immediately derived from the conservation of momentum: namely, the Navier-

Stokes equation (5.35) rewritten in terms of vorticity. Indeed, taking the curl of the Navier-Stokes 

equation (5.35), and reminding that derivatives are linear operators and derivatives  can be exchanged 

with the curl operator, we get 

 
𝜕𝝎

𝜕𝑡
+ ∇ × (𝒗 ∙ ∇𝒗) = 𝜈∇2𝝎; (10.6) 

where the pressure term, like any other conservative force, disappears because the curl of a gradient 

is identically zero. The second term in (10.6) requires some care. Consider the x-component of this 

term in a system of Cartesian coordinates 

 

∇ × (𝒗 ∙ ∇𝒗)|𝑥 =
𝜕

𝜕𝑦
(𝑣𝑥

𝜕𝑣𝑧

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑧

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑧

𝜕𝑧
) −

𝜕

𝜕𝑧
(𝑣𝑥

𝜕𝑣𝑦

𝜕𝑥
+ 𝑣𝑦

𝜕𝑣𝑦

𝜕𝑦
+ 𝑣𝑧

𝜕𝑣𝑦

𝜕𝑧
) =

= 𝑣𝑥
𝜕

𝜕𝑥
(
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
) + 𝑣𝑦

𝜕

𝜕𝑦
(

𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
) + 𝑣𝑧

𝜕

𝜕𝑧
(
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
) +

+
𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑥
+

𝜕𝑣𝑦

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑧
−

𝜕𝑣𝑥

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑥
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𝜕𝑣𝑦

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑦
−

𝜕𝑣𝑧

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑧
 .

 

Recognize now that the terms in bracket are the x vorticity component, and use the continuity equation 

to group 2nd and 3rd terms and 5th and 6th terms in last line as follows 

 

∇ × (𝒗 ∙ ∇𝒗)|𝑥 = 𝒗 ∙ ∇𝜔𝑥 +
𝜕𝑣𝑥

𝜕𝑦

𝜕𝑣𝑧

𝜕𝑥
+ (

𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
)

𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑥

𝜕𝑧

𝜕𝑣𝑦

𝜕𝑥
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𝜕𝑣𝑦

𝜕𝑧
(
𝜕𝑣𝑦

𝜕𝑦
+

𝜕𝑣𝑧

𝜕𝑧
) =

= 𝒗 ∙ ∇𝜔𝑥 +
𝜕𝑣𝑥

𝜕𝑦
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𝜕𝑣𝑦

𝜕𝑥
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𝜕𝑥
=
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) ;

  

where in the last passage we added a terms that equal to zero. Now group the terms properly to give 

 
∇ × (𝒗 ∙ ∇𝒗)|𝑥 = 𝒗 ∙ ∇𝜔𝑥 −

𝜕𝑣𝑥

𝜕𝑥
(
𝜕𝑣𝑧

𝜕𝑦
−

𝜕𝑣𝑦

𝜕𝑧
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𝜕𝑣𝑥
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(
𝜕𝑣𝑥
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𝜕𝑣𝑧

𝜕𝑥
) −

𝜕𝑣𝑥
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(
𝜕𝑣𝑦

𝜕𝑥
−

𝜕𝑣𝑥

𝜕𝑦
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= 𝒗 ∙ ∇𝜔𝑥 − 𝝎 ∙ ∇𝑣𝑥
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Reinserting this result into (10.6) gives the vorticity equation  

 
𝜕𝝎

𝜕𝑡
+ 𝒗 ∙ ∇𝝎 = 𝝎 ∙ ∇𝒗 + 𝜈∇2𝝎; (10.7) 

which represents the Navier-Stokes equation expressed in terms of vorticity.  

Despite the apparent mathematical complexity, the simple qualitative inspection of this equation 

permits to extract some important concepts regarding vortex dynamics. For example, it can be 

immediately recognized that the vorticity equation does not contain the pressure (or any conservative 

force like gravity). In fact, the distribution of pressure has no direct influence on vortex dynamics; on 

the contrary, however, pressure depends on vorticity that rules friction and energy losses. 

A first property of the vorticity evolution is that if vorticity is zero at one instant it remains zero 

afterwards. This is seen by inspection of equation (10.7) where all terms are identically zero when 

vorticity is zero thus its time derivative is also null. This states that vorticity cannot be created inside 

the fluid, thus it can only be generated at the interface between the fluid and the boundary. This 

apparently simple fact is a fundamental element for the study of vortex dynamics: in incompressible 

flows vorticity does not appear spontaneously within the fluid, the only place where vorticity can be 

created is at the boundary between fluid and tissue. Indeed, the issue of the generation of vorticity, 

and vortex formation in particular, is a key one and it will carefully discussed in the next section. 

Equation (10.7) tells that, once vorticity is somehow generated, it is subjected to few possible 

evolutionary phenomena. The primary one is that vorticity is transported with the flow as if it were a 

passive tracer (although not effectively passive, because velocity is related to vorticity itself). This 

phenomenon is provided by the two terms on the left hand side of (10.7) that represent the Lagrangian 

time derivative of vorticity over a particle moving with the flow. The first term is the time variation 

of vorticity at the fixed position crossed by the particle; the second term gives an increase of vorticity 

when a particle points in a direction along which vorticity grows (i.e. when velocity is aligned with a 

positive gradient of vorticity). They take a form analogous to, for example, the first two terms in 

equation Navier-Stokes equation (5.35), describing the acceleration on a moving particle. Therefore, 

vorticity moves with the local fluid velocity, like a tracer, and can further change its value in virtue 

of additional phenomena ruled by the two terms on the right hand side of (8.2). 

The first represents the phenomenon of increase of vorticity by vortex stretching. Consider a small 

cylinder of fluid along whose axis the velocity increases, thus velocity is lower at the base and higher 

at the top of the cylinder; as time proceeds the cylinder elongates, it is stretched by the velocity 

gradient (and shrunk in the transversal direction for the conservation of mass). Well, the vorticity 

vector behaves in the identical manner as material fluid, when fluid is stretched the vorticity vector 

is stretched as well and the vorticity value increases. This term represents the stretching and turning 

of vortex lines as if they were lines of fluid. A further important aspect of this term is that it is exactly 

zero in a two-dimensional flow. In a two-dimensional flow, the vorticity is perpendicular to the plane 

of motion and there is no velocity gradient out of plane: vorticity stretching is intrinsically a three-

dimensional effect. 

Before turning the attention to the last term containing the viscous effects, let us recapitulate the 

dynamics of vorticity in absence of viscous effects. First, an element of fluid that contains no vorticity 

remains without vorticity afterwards. This is the first of the three Helmholtz’s laws for inviscid flow. 

Then, the vorticity is a vector that behaves like a small string element of fluid. It moves with the flow 

and it is stretched and tilted with it. This is essentially the second Helmholtz’s law. The third law, 

follows from the fact that vorticity is a field with zero divergence and the total vorticity contained 
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inside a vortex tube (or a vortex filament, when the tube is thin) is conserved along the filament while 

it moves with the flow. 

The picture becomes extremely simple and intuitive in a two-dimensional flow, or in a motion that is 

locally approximately two-dimensional. In this case, the vorticity vector has a unique nonzero 

component perpendicular to the plane of motion, therefore it loses its vector character and can be 

considered as a scalar. Stretching is absent and vorticity is simply transported with the flow. The 

value of vorticity is stuck onto the individual fluid particles, vorticity simply accumulates into vortex 

patches, redistributes into vortex layer, accordingly to the motion of fluid particles. 

The last, viscous term in the vorticity equation (10.7) introduces the effects of friction and energy 

dissipation in terms of vorticity. The action of viscosity on vorticity is analogous to that of heat 

diffusion or diffusion of a tracer like ink or smoke. The distribution of vorticity is smoothed out by 

viscosity; a sharp vortex reduces progressively its local strength while it widens its size in a way that 

the total vorticity is conserved. In general, the diffusion process is of a simple interpretation. Like in 

any diffusive process, the rate of diffusion is higher in presence of sharp vorticity gradients, therefore 

the magnitude of viscous dissipation become increasingly relevant where vorticity presents changes 

over short distances. This leads to the most important aspect of energy losses in fluid motion: viscous 

dissipation is most effective at small scales. Viscous diffusion, for example, gives rise to the 

annihilation of close patches of opposite sign vorticity. This has a peculiar consequence in three-

dimensions when two opposite-sign vortex filaments get in contact, the opposite-sign vorticity locally 

annihilates and oppositely pointing vortex lines (that cannot terminate into the flow) reconnect. The 

viscous reconnection phenomenon is the underlying mechanism leading to topological changes, 

metamorphoses of three-dimensional vortex structures, and increased dissipation by turbulence. 

In summary, the dynamics of vorticity is made by its transport with the fluid elements, intensification 

by three-dimensional straining of such fluid elements, and smoothing by viscous diffusion. A 

dynamics that see vorticity arranged into tubular and sheet-like structures ensuring a continuity of 

vortex lines. Some exemplary realizations of vorticity dynamics will be discussed later; before then, 

however, it is necessary to address the aspect of the generation of vorticity.  

10.2. Boundary layer separation and vortex formation 

As said above, in incompressible flows vorticity cannot be generated within the fluid. Vorticity can 

only develop from the wall in consequence of viscous adherence between the fluid and the bounding 

tissue. Vorticity is produced because of the no-slip condition at the interface between the fluid and 

the solid surface; it then progressively diffuses away from the wall through the viscous diffusion 

mechanism to produce a layer of vorticity at the boundary. The boundary layer thickness corresponds 

to the length at which the viscous diffusion penetrates into the flow, which is proportional to √νt as 

taught from equation (7.12). The boundary layer was introduced in chapter 7 as the region adjacent 

to the wall where the velocity rises from the zero value that it takes at the boundary to a finite value 

away from it. However, its interpretation as a vorticity layer is more intuitive for addressing vortex 

formation processes.  

The boundary layer has a fundamental importance in fluid mechanics as it represents the unique 

source of vorticity in a flow field. It can be easily verified that the value of vorticity at the wall also 

corresponds to the wall shear rate and, after multiplication with viscosity, to the wall shear stress 

 WSS = 𝜏0 = 𝜇𝜔; (10.8) 
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therefore the wall vorticity is often employed as synonymous of wall shear rate (sometime, given the 

constancy of viscosity, also of wall shear stress). 

In small vessels, the thickness of the boundary layer is comparable to the diameter and fills the entire 

flow field. At such small scales, in arterioles and capillaries, viscous diffusion is the dominant 

phenomenon; vorticity smoothly diffuses into the whole flow and vortices, with rare exceptions, are 

absent. On the contrary, in large blood vessels or inside the cardiac chambers, the boundary layer 

often remains thin and is capable to penetrate for diffusion over a small fraction of the vessel size. 

Indeed, until it remains attached to the wall, it has a relatively minor influence to the flow and only 

represents a viscous slipping cushion for the outside motion.  However, under many circumstances, 

it happens that such a thin boundary layer separates from the wall and enters into the bulk flow. This 

is the process of boundary layer separation, when thin layers of intense vorticity enter into the flow 

and give rise to local accumulation of vorticity and eventually to the formation of compact vortex 

structures. 

Boundary layer separation is normally a consequence of the local deceleration of the flow. The 

process of boundary layer separation is sketched in figure 10.3. When flow decelerates, the upper 

edge of the boundary layer is subjected to deceleration as well and, because of incompressibility, 

produces the growth of the thickness at the same location. This tongue of vorticity is lifted and 

strained by the outside flow while the vorticity value at the wall below decreases. As this process 

progresses, opposite sign wall vorticity appears and a secondary boundary layer develops below the 

separating shear layer. The separation point at the wall, from where the separation streamline departs, 

corresponds to the place where vorticity is zero. The secondary vorticity is itself decelerated in its 

backward motion and is lifted up. Eventually, it cuts the connection between the original boundary 

layer and the separating vorticity that detaches and enters into the flow. This follows because the local 

velocity transports vorticity but the latter is not a passive tracer, it is made of velocity gradients that, 

when transported, alter the underlying structure of the flow itself. Figure 10.3 shows qualitative 

velocity profiles and streamlines that develop in correspondence of the separating vorticity field. 

Boundary layer separation is thus a consequence of the local deceleration of the flow. In other terms, 

separation develops in presence of an adverse pressure gradient (pressure growing downstream) that 

pushes from downstream and decelerates the stream. The most common way to have an adverse 

pressure gradient is that of a geometric change: a positive curvature of the wall, like an enlargement 

in a vessel. In this case, the velocity decreases, for mass conservation, kinetic energy decreases and 

the value of pressure increases for the Bernoulli balance. Therefore, boundary layer separation 

develops behind a stenosis, or at the entrance of an aneurism. An extreme case of geometric change 

is that of a sharp edge, this is often found at the entrance of a side-branching vessel, and certainly on 

the trailing edge of the leaflets of the cardiac valves. In the case of sharp edges, the flow deceleration 

is so local that the position of boundary layer separation is definitely localizable at the edge. The 

vorticity that developed on the upstream side detaches at the sharp edge and leaves the tissue 

tangentially. 
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Figure 10.3. Sketch of the boundary layer separation process. The dark gray indicates layers with 

clockwise vorticity, the light gray is counter-clockwise; streamlines and velocity profiles are drawn. The 

deceleration of the flow produces a local thickening of the boundary layer due to mass conservation 

balance (upper panel). Such emerging vorticity is therefore lifted and transported downstream by the 

external flow (see arrows). A shear layer then extends away from the wall and produces a secondary 

boundary layer, with oppositely rotating vorticity (mid panel). The separated clockwise vorticity tends to 

roll-up while the secondary layer lifts up for the same initial mechanism, because it backward motion is 

decelerating (see arrows). Eventually, the separating vortex layer detaches from the boundary layer and 

becomes an independent vortex structure. 
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Geometric changes are not the unique possible sources for the development of a flow deceleration. 

Immediately downstream of branch sucking fluid away from a main vessel, the velocity reduces and 

an adverse pressure gradient develops. Similarly, boundary layer separation develops for the so-called 

splash effect, when a jet reaches a wall and produces high velocity streamlines that decelerate when 

they are deflected along the wall. Finally, the local flow deceleration is often produced by previously 

separated vortices. A vortex that gets close to a wall gives rise to a localized increase (or reduction, 

depending on its circulation) of the flow velocity at the wall below, and a corresponding deceleration 

immediately downstream (or upstream). The vortex-induced boundary layer separation is a frequent 

phenomenon that may become particularly critical in some applications. In fact, the area of principal 

separation is often localizable and properly protected, whereas a separation induced downstream due 

to a previously separated vortex may occur at unexpected locations. 

 

The separation of the boundary layer represents the starting phase of the vortex formation process. 

The featuring property of any shear layer is the difference of velocity between its two sides: the farther 

side of shear layer that detaches from the wall moves with a speed that is higher than the side closer 

to the wall. Therefore, the separating shear layer curves on itself and eventually rolls-up into a tight 

spiral shape. Now, during the rolling-up process, the distance between two successive turns of the 

vortex layer progressively reduces, with the closest neighboring turns at the center of the spiral. The 

viscous diffusion process smears out this tight spiraling structure into by a compact inner core with a 

Figure 10.4. Vortex formation from a sharp edge obstacle. The shear layer separates from the upstream 

“wetted” wall and rolls-up into a spiral. The tight turns in the inner part of the spiral spread for viscous 

diffusion into the inner core of the formed vortex. 
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smooth distribution of vorticity. The roll-up and the formation of an isolated vortex behind a sharp 

edge obstacle are shown in figure 10.4.  

The vortex formation from a smooth surface is still described by the picture given above, where a few 

additional elements of complexity can be emphasized. First, the actual position of separation depends 

on the local flow structure; it cannot be preliminarily identified and may even change during time. 

Furthermore, the separation from a smooth surface is inevitably accompanied by a more direct 

interaction between the forming vortex and the nearby wall when the viscous dissipation effects 

normally support the formation of smoother vortex structures. 

 

One typical example of the external separation from the smooth surface of a bluff body is shown in 

figure 10.5 featuring the formation of oppositely rotating vortices from the two sides of a circular 

cylinder. In such an example, vortices interact and influence the opposite separation process 

eventually producing a sequence of alternating vortices known as the von Karman street that is usually 

found behind bluff bodies. The development of alternating vortices is quite a common phenomenon 

when previously separated vortices may influence vortex formation in nearby regions. It is also 

present, with some differences, in internal flows when a vortex formed on one side of a vessel creates 

a vortex-induced separation on a facing wall. That, in turn, may induce a weaker further separation 

in a sort of wavy pattern extending and decaying downstream. 

The internal separation, with the following formation of a vortex inside of a vessel is in general a 

smoother phenomenon because the presence of confining walls does not allow vortices to grow into 

large structures, keeps vortices more constrained within smaller scales and is more influenced by 

viscous diffusion. Nevertheless, the presence of a vortex inside a vessel may change the entire flow. 

It has a blocking effect that locally deviates the streamlines modify the wall shear stress distribution, 

possibly producing further separations. It changes the unsteady pressure drop and in a branching duct, 

it may affect the relative flows division in the daughter vessels. An example is given in figure 10.6 

that reports the vortex formation in the bulb of a carotid bifurcation. During the systolic acceleration, 

the boundary layer separates tangentially from the common carotid artery and develops a smooth roll-

up within the bulb close to the nearby wall. During deceleration, the formed vortex locally affects the 

 

Figure 10.5. Formation of vortices behind a circular cylinder. Oppositely rotating vortices separate from 

the two sides of the body in an alternating sequence. The previously separated clockwise vortex detached 

from the upper wall translated downstream, a counter-clockwise vortex has been formed from the lower 

wall, and a novel clockwise vortex is under formation from the wall above. 
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wall shear stress inside the bulb with multiple opposite sign wall vorticity. It has a blocking effect 

that deviates the streamlines at the entrance of the internal carotid artery into a faster jet. It produces 

secondary vortex-induced separation inside the internal carotid; that eventually (not shown in the 

picture) gives a secondary vortex formation and a further small separation little downstream. 

 

A peculiar phenomenon associated with the vortex formation process can be outlined when the flow 

enters from a small vessel into a large chamber forming a jet whose head is the forming vortex. Here, 

after the very initial roll-up phase, a measure of the length of such a jet is given by the product of Vt 

where V is the velocity at the opening and t is the time. In this case it is enlightening to define a 

dimensionless vortex formation time, VFT, as the ratio of the jet length with respect to the diameter 

of the opening D 

 𝑉𝐹𝑇 =
𝑉𝑡

𝐷
; (10.9) 

The formation time represents a dimensionless number that characterizes the progression of vortex 

growth and allows a unitary description under different conditions. In reality, the definition of 

formation time has a more profound physical meaning. The separating shear layer has a strength given 

by the jump of velocity between its two sides, given approximately by V, and translates downstream 

with a velocity that is something like the average of velocity on the two sides of the layer, which is 

V/2, thus it feeds the circulation Γ of the forming vortex at a rate  

 

Figure 10.6. Formation of vortices in a model of a carotid bifurcation. The accelerating systolic flow (upper 

panel, at peak systole) leads to a smooth boundary layer separation at the carotid bulb. After the peak 

(lower panel) the vortex just formed at the bulb either interacts with the bulb boundary layer creating 

multiple small vortices, and gives rise to a vortex-induced secondary separation in the oppositely facing 

wall of the internal carotid artery. The same phenomena in a much weaker version are noticeable also on 

the opposite side at the entrance in the external carotid artery. 
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𝑑𝛤

𝑑𝑡
≅

1

2
𝑉2; (10.10) 

The formation time thus also represents the dimensionless measure of the vortex strength, the 

circulation Γ, normalized with VD. The definition (10.9) can be extended to the case when either V 

or D vary during time, by integration of the ratio V/D during the period of vortex formation  

 𝑉𝐹𝑇 = ∫
𝑉(𝑡)

𝐷(𝑡)
𝑑𝑡.  

10.3. Three-dimensional Vortices and their Interactions 

The vortex formation process described above is given in terms of two-dimensional pictures. It allows 

an immediate and intuitive understanding of the fundamental phenomenon because the initial phase 

of any vortex formation process is, with rare exceptions, locally two-dimensional and the three-

dimensional organization of the vorticity enters into play at some later stages. 

The simplest case of three-dimensional vortex formation is that from a circular orifice, in that case 

vortex formation has a circular symmetry and the forming three-dimensional vortex tube has the 

shape of a ring. Vortex rings are well known objects of fluid dynamics, which are easily generated 

using a piston-cylinder apparatus. A vortex ring is a stable vortex structure, it has an axial symmetric 

and vortices with a shape close to a ring also tend to the axisymmetric shape by an internal 

homogenization. Because of their stability, vortex rings are often encountered in nature, including 

when puffing smoke out of the mouth.  

Figure 10.7 shows one instant during the formation of a vortex ring behind a circular orifice. The 

vorticity distribution on a transversal section (left panel) shows the shear layer separating from the 

orifice that eventually rolls-up into the jet head; however it must be kept in mind that this planar 

picture corresponds to a three-dimensional vortex structure that is more difficult to represent on paper. 

The vortex ring corresponding to the vortex core is shown (right panel) to emphasize the main element 

of the three-dimensional vortex. In general, however, there is some ambiguity on the effective 

delineation of a vortex boundary. This is not a big issue in two-dimensional systems when the entire 

vorticity field can be shown in color scale on the picture plane and the different elements of the vortex 

structure are immediately recognized, from the separating shear layer, to the rolling-up spiral, to the 

vortex core. However, this case is particularly simple because the vorticity has an axial symmetry and 

only the azimuthal component: this flow is conceptually planar. Nevertheless, its three-dimensional 

representation, on the right panel of figure 10.7, certainly contains less complete information, and the 

choice of the vortex core boundary severely influences the three-dimensional structure that is 

eventually visualized.  

A three-dimensional vortex ring present a self-induced velocity that is due to the curvature of the 

vorticity lines (lines everywhere tangent to the vorticity field). This follows from the relation between 

velocity and vorticity, a curved vortex tube corresponds to a velocity field made of a rotation around 

the tube, when the tube is curves this rotation also induces a translation of the tube itself. Thus, once 

formed, a ring continues to translate downstream for its own self-induced velocity field. Such a self-

induced velocity gives rise to a peculiar limiting process of three-dimensional vortex formation: 

during its formation, the vortex ring is continuously fed by the rolling-up shear layer separating from 

the orifice edge, therefore its circulation grows and the self-induced vortex translation velocity of the 

vortex ring rises until it exceeds the velocity of the separating shear layer. At this point, the primary 

vortex detaches from the layer behind with a phenomenon known as pinch-off. At the same time the 

newly separated vorticity cannot reach the escaped vortex and eventually rolls-up in its wake. This 
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limiting process occurs for a critical value of the vortex formation time that is about VFTcr≈4. Above 

this limit, the vortex ring cannot grow as a unique structure and multiple vortices develop in its wake 

developing higher dissipation. It was found that the VFT in the human heart is close to this optimal 

limit and decreases in diseased hearts. 

 

The case of vortex ring formation after a circular opening represents the simplest case of three-

dimensional vortex formation. Let us move forward and consider the flow across sharp edge orifices 

with a slender shape. In this case, the opening has a variable curvature and the separating vortex will 

present a variable curvature as well. Therefore, the self-induced velocity, that is proportional to the 

curvature, will be different along the vortex tube and will progressively further deform it. When this 

deformation becomes high enough, the compact tubular vortex structure becomes unstable and breaks 

down into smaller elements, that in turn deform into even smaller ones, until they are dissipated for 

viscous effects. Commonly, vortex formation from a three-dimensional geometry gives rise to 

irregularly shaped structures, which become unstable and undergo to a rapid energy dissipation. One 

exemplary case of the three-dimensional vortex formation from a slender orifice is shown in figure 

10.8. 

The three-dimensional vortex formation from smooth surfaces, after a constriction like a stenosis or 

in a vessel enlargement, introduces additional elements of complexity that do not allow drawing a 

simple unitary picture of the involved phenomena. The initial instants following boundary layer 

separation and initial roll-up are essentially two-dimensional with a moderate influence from the 

 

Figure 10.7. Formation of a vortex ring from a circular sharp orifice. Left panel: distribution of vorticity 

on a transversal cross-cut; the vortex core is indicated with a dashed line. Right panel: three-dimensional 

view of the vortex ring core. 
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three-dimensional structure. Afterward, the three-dimensional development leads to widely different 

results depending on the separating geometry, the interaction with the nearby walls and with other 

surrounding vortices. 

  

Before moving further, it is important to remark that the vortex formation process is not just a 

kinematic adjustment of the flow but it has dynamical consequences. The generation of a vortex is 

 

Figure 10.8. Three-dimensional vortex formation from a slender orifice at four instants in sequence. One 

quarter of the entire space is shown for graphic clarity (allowed by symmetry); the vorticity contours are 

reported on the side planes to help understating the three-dimensional arrangement of the principal vortex 

filaments. In the initial phase, the formed vortex loop presents a variable curvature and deforms because 

of the different self-induced translation speed; this leads to further deformations until the vortex structure 

loses its individuality and becomes a set of entangled three-dimensional elements that rapidly dissipate for 

viscosity. 
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associated with the development of a force on the walls from where the vortex originates; this “vortex 

force” is given by the rate of growth of the vortex impulse 

 𝑭 =
𝑑𝑰

𝑑𝑡
, 𝑰 = 𝜌 ∫𝝎 × 𝒙 𝑑𝑉; (10.11) 

where the integral is non zero only where the vortex (vorticity) is present. To clarify this point, 

consider the case of generating a vortex ring, which represent the roughly early stage of many three-

dimensional vortex formation processes.  The vortex impulse of a vortex ring of circulation Γ and 

radius R has only the component directed along the vessel axis, say x, (perpendicular to the plane 

containing the ring) which is 𝐼𝑥 = 𝜌𝛤𝜋𝑅2; therefore, given that the radius does not vary or varies 

very slowly during the formation process, the force is proportional to the rate of growth of the vortex 

 𝐹𝑥 ≅ 𝜌𝜋𝑅2 𝑑Γ

𝑑𝑡
≅

𝜋

2
𝜌𝑅2𝑉2; (10.12) 

that, using (10.10) turns out to be proportional to the square velocity. This vortex force is due to the 

unsteadiness of the formation process. In a pulsatile flow, the vortex force (10.11), or (10.12), 

produces a continuous hammering onto the tissues where the vortex develops. 

The ideal vortex formation picture described above is complicated when two or more vortices come 

nearby each other, because they likely interact in an intense and irreversible manner. The interaction 

of vortices involves many different and very complicated phenomena. In the simple case of two-

dimensional vortices that come in close encounter, they reciprocally induce such a rotation velocity 

each other. When such vortices have the same sign they rotate together one around the other, winding 

up one over the other to eventually merge into a single larger one made by the sum of them. On the 

contrary, two vortices with opposite circulation, a vortex pair, translate together for the self-induced 

velocity (similarly to what a vortex ring does) along a straight or curved path depending on the relative 

strengths. Again, the differential velocity inside each single vortex produces the winding up of one’s 

vorticity on other, however such vorticity strips are of opposite sign and do not merge rather they 

annihilate each other and reduce the individual vortices’ strength. 

The interaction between three-dimensional vortex structures occurs prevalently between two 

oppositely rotating portions of vortex tubes (because they are more likely driven one toward the other, 

while concordant 3D tubes tend to separate) and begins with the local interaction between the closest 

elements. One example of the interaction between two identical vortex rings is shown in figure 10.9. 

Initially, the local interaction is approximately the two-dimensional: the nearby oppositely rotating 

tubular elements induce the velocity each other and try to translate away. This produces a local 

stretching of the three-dimensional vortex tube, a stretching that accelerates while the tubes become 

closer and would locally wind up one another. The interacting structures develop increasingly small 

scales until viscous diffusion becomes a dominant effect, at this point the reconnection of vortex lines 

occurs: adjacent opposite vorticity is annihilated by dissipation and the vortex tubes tend to fuse one 

onto the other. 

The interaction between two identical vortices, like that shown in figure 10.9, may result into a 

complete vortex reconnection and a relatively simple new vortex tube. More often, however, one 

vortex is stronger than the other is, only part of its tubular structure can reconnect with the other 

weaker vortex and the incomplete reconnection gives rise to new vortices with a complex branched 

geometry (see also figure 10.8 where some vortex reconnection occurs). In general, the vortex 

structure resulting from the fusion of previous interacting vortices, typically presents a very irregular 

geometry. Differential curvatures, that give sharply variable self-induced velocity and local motion, 

and differential vorticity strength, that give axial flow along the tube, tend to rapidly further deform 
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the vortex, produce further reconnections and gives rise to smaller vorticity structures. In other terms, 

an irregular three-dimensional vortex structure is overall unstable, tends to destroy itself, and it is 

short lived. The more a vortex is regular, like a vortex ring, the more it remains coherent and lasts 

longer. 

 

Vortices also interact with the nearby walls; a phenomenon that is particularly relevant in closed 

systems like cardiovascular vessels. The vortex-wall interaction can be divided into two different 

phenomena: the irrotational interaction, that is a consequence of the wall impermeability; and the 

viscous interaction with the vorticity in the boundary layer. Let us consider the two effects separately. 

 

First, an isolated vortex induces a rotary motion where streamlines are circular. When such a vortex 

approaches an impermeable wall, the streamlines must deform to avoid crossing the boundary. With 

 

Figure 10.9. Vortex interaction between two identical impacting vortex rings; the brightness of the 

filament indicates the strength of the corresponding vorticity. When oppositely rotating vortex tubes get 

close, they produce a local vortex stretching due to the self-induced velocity (from left to central panels). 

During stretching, the boundary between the vortices becomes locally sharper until the filaments fuse one 

into the other for viscous effect (from central to right panels). After vortex reconnection a new structure 

is formed, typically its geometry is irregular, the vortex is often unstable and short lived.. 

 

Figure 10.10. The interaction of a vortex with the wall produces two separate effects. First (left panel), the 

condition of impermeability is satisfied by a distortion to the vortex-induced flow that is equivalent to 

having an opposite vortex placed symmetrically below the wall. The presence of such a “image” vortex 

increases the tangential velocity next to the wall, and induces a translation velocity to the otherwise still 

vortex. The second effect (right panel) is due to viscous adherence, the development of a boundary layer 

and eventually a vortex-induced separation.. 
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reference to figure 10.10 (left panel), the modification of the flow field that satisfies the 

impermeability condition can be immediately constructed simply by symmetry considerations. It is 

the irrotational flow that would be induced by an image vortex of opposite circulation placed 

symmetrically below the wall. Such an image vortex gives a velocity perpendicular to the wall that is 

opposite to that of the real vortex, and thus ensures that the fluid does not penetrate into it. On the 

contrary, the tangential velocity has the same sign of that due to the real vortex and therefore the 

velocity adjacent to the wall increases (splash effect). In addition, the image vortex also induces a 

velocity to the real vortex that accelerates or decelerates (depending on the direction of the 

circulation) with respect to the background flow because of this image effect. For example, a 

(clockwise) vortex that just formed from a wall underneath is decelerated by the image below the 

same wall, while it accelerates when it approaches a wall on the opposite side.  

Second, in addition to the image effect, a vortex near a wall also influences the development of the 

boundary layer because of the viscous adherence condition at such a wall. A vortex creates a local 

velocity gradient along the wall, acceleration followed by deceleration. This perturbation, as 

previously discussed, may give rise to a vortex-induced boundary layer separation and to the 

formation of secondary vortices as it is sketched in figure 10.10 (right panel). 

When the vortex-boundary interaction described above applies to a tract of a three-dimensional vortex 

tube, it eventually affects the following three-dimensional dynamics. First, the image effect gives a 

local stretching and deformation of a vortex filament. Second, when the vortex gets closer, it 

eventually interacts directly with the vortex-induced vorticity distribution. This is an interaction 

between oppositely circulating vorticity. That gives rise to the local wind-up of the wall vorticity 

around the approaching vortex and to reconnection with its vortex lines. Eventually, the vortex crops 

by dissipation in the regions closer to the wall, this unbalances the three-dimensional vortex structures 

that tends to rapidly further deform and develop small structures that are eventually dissipated. 

10.4. A Further Account to Turbulence 

Let us enter smoothly into the physics of turbulence by deepening a little further the concept 

introduced in chapter 8. We’ve said there that the interaction between two vortices first deforms the 

overall, large scale geometry of the vortex loops then, after sequences of reconnections, breaking of 

vortices and further deformations, it eventually transforms the original vorticity into several irregular 

small structures. Such small scale elements present sharp velocity gradient, viscous friction, and are 

rapidly dissipated. 

Physically, on average, vortices of the size of the large scales are continuously formed from the 

surrounding boundary; these large vortices are unstable and produce progressively smaller flow 

structures until they are small enough to produce dissipation. The resulting flow witnesses the 

simultaneous presence of these large structures with others of all intermediate sizes from these down 

to the smallest vortices dominated by viscosity. A measure of the complexity of such a flow can be 

provided by from the amount of such contemporary vortices, measured by the ratio between the 

largest scale, say L (given by the diameter of the pipe, or the size of the obstacle, for example), and 

the smallest friction-dominated one, that we indicate with η. When L is comparable to η, the flow is 

a regular one. When L is much larger than η, the flow presents changes over a large number of 

intermediate scales from L to progressively small size up to the smallest scales η.  The order of 

magnitude of this complexity can be estimated in statistically steady turbulence from the 

phenomenological theory due to Kolmogorov in 1941. 
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A flux of energy, indicated with ε, is injected in the flow at a scale close to L, say the energy of a 

vortex formed after an obstacle. when L>>η, the same energy passes to smaller scales with essentially 

no dissipation, and is eventually dissipated when approaching the viscous scale η, such that  ε is also 

the rate of energy dissipation. It can be hypothesized that at small enough scales turbulence becomes 

locally uniform and isotropic, independent on the details of how turbulence was generated. Thus, the 

fluctuations of velocity depend only on the amount of energy that arrives from large scales and is 

transferred to the small scales. From dimensional arguments, the rate of injection of kinetic energy in 

the large scales is proportional to the kinetic energy, proportional to V2, divided by the time to 

transport such energy away, proportional to L/V, 

   휀~
𝑉3

𝐿
. (10.13) 

In such uniform and isotropic conditions, the viscous scale will depend solely on the amount of energy 

flux and by viscosity 

   휂 = 𝑓(휀, 𝜈). (10.14) 

This is a dimensional equation involving two units. By dimensional analysis, it is immediate to obtain 

the estimate 

   휂~
𝜈

3
4

1
4

 . (10.15) 

The viscous scaled defined by (10.15) is also called the Kolmogorov scale. The degree of complexity 

of turbulent flows is represented by the amount of interleaving scales and can be estimated by the 

ratio 

  
𝐿
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𝜈
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= 𝑅𝑒
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4 . (10.16) 

that is proportional to the Reynolds number. That again represents the measure of a distance between 

energy flow scales and viscous scales. 

As a further remark, these estimates demonstrate how the Navier-Stokes equations, that do not allow 

general analytical treatments, may be difficult to be tackled even by numerical approaches when 

turbulence develops. Numerical solutions require a spatial accuracy up to about the Kolmogorov scale 

to possibly reproduce the details of turbulent flows. Therefore, the space spanning the entire length 

of interest, of size proportional to L, must be sampled with resolution η. Thus, the number of points 

N along any spatial direction must be not smaller than L/η and the total number of points required in 

three-dimensions is something like  

   𝑁3 ≈ (
𝐿
)
3

= 𝑅𝑒
9

4 . (10.17) 

The estimate (10.17) sets a limit to the actual feasibility of numerical solution of turbulent flows at 

large Reynolds number. Due to this limitation, turbulence literature was mainly based on solution of 

the Reynolds equations (or different version of them based on different averaging/filtering) 

introducing a “closure” model for the unknown terms appearing therein as discussed in section 8.2. 

All such closure methods are however approximate and their reliability limited to relatively simple 

flows. As a result, turbulence remains an open challenge and it is important to build a physical picture 

of possible turbulent phenomena in flows of interest. 
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In general, we may think of turbulence as a system of entangles and interacting vortex elements of 

disparate sizes. Ranging from the large size generated by the boundaries, to the smaller size where 

the flow is smoothed out by viscous effects. Understanding that turbulence is generated by a sequence 

of interacting three-dimensional vortices allows its description in terms of the energy cascade 

described above. An external energy input (like a pressure difference across a valve) pushes a fluid 

across an orifice or along an irregular vessel bend. The flow thus generates energetic vortices whose 

size is comparable with that of the container. These large vortices interact and produce smaller eddies, 

that further interact producing turbulent eddies of progressively smaller size capable to dissipate 

kinetic energy into heat. At the lower end of this energy cascade, energy very small eddies are entirely 

dissipated and do not generate anything smaller. 

An increased friction between fluid elements and enhanced energy dissipation with respect to regular 

fluid motion characterizes turbulence. In fact, the development of turbulence is the strategy used by 

fluids to dissipate the excess energy. When a fluid motion presents a large kinetic energy (high 

velocity), the fluid may be unable in a regular motion to maintain equilibrium between viscous 

dissipation and the external energy source, in that case it increases the particle paths by developing 

swirling motions and small scales with higher shear rate to increases viscous dissipation up to 

equilibrium. The Reynolds number represents, through (10.16), the ratio between the kinetic energy 

introduced in the large scales, proportional to ρV2, and their ability to dissipate with shear stress, 

grossly estimable as proportional to ρνV/L. When the Reynolds number increases above a certain 

threshold, smaller scales develop to enhance dissipation. In other words, regular flow becomes 

unstable and turbulence appears. That’s why every realization of flow motion presents a critical value 

of the Reynolds number above which the motion develops turbulence.  

In the cardiovascular system, turbulent flows are rarely encountered. The largest scales of motion 

achievable in the arterial network cannot exceed the vessel size, of a few centimeters at most. The 

Reynolds number is normally well below one thousand, with the exception of the very largest vessels. 

The flow in the ascending Aortic and, sometime, in the left ventricular cavity can reach values of the 

Reynolds number up to some thousands. When turbulence develops, it is weak turbulence with an 

energetic level that does not influence dramatically the main dynamics. It should be remarked, that 

the highest levels of turbulence, if any, in an unsteady pulsatile flow are recorded during the 

deceleration after the peak of the flow. In fact, although the instantaneous Reynolds number has 

decreased, the flow has been filled with energy during the maximum velocity and has to dissipate 

such energy during deceleration. Deceleration enhances instability phenomena that supports 

turbulence. 

Weak turbulence may develop in the diastolic filling of the left ventricle when the mitral jet impacts 

onto the walls, as it may occur with a large cardiac output. The most frequent appearance of 

turbulence occurs in the aortic artery, particularly in the ascending part. Here the tri-leaflet geometry 

of the aortic valve provokes a rather complex three-dimensional vortex formation that, associated 

with the large Reynolds number (roughly from 3000 to 8000 at peak systole), produces weak 

turbulence.  

Boundary layer separation, vortex dynamics and weak turbulence represent key elements in the 

interaction between fluid flow and surrounding tissues in large vessels. Understanding these 

fundamental phenomena is necessary to allow proper interpretations of fluid dynamics in 

cardiovascular regions of interest.  They are particularly relevant for pathological developments and 

will be discussed in the next chapters. 
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11. Separated Flow in Large Arteries 

11.1. Arteriosclerosis and boundary layer separation 

Arteriosclerosis is the deposition of substances transported with blood on the internal walls of the 

arteries provoking a progressive reduction of their lumen. The initial phase of arteriosclerosis can be 

imputed to multiple causes, like the inflammation of the arterial wall giving a thickening of intima-

media layer, pathologies of the endothelium reducing its protective function, or just the progressive 

deposition of fat material. The individual arteriosclerotic risk level depends on numerous causes 

ranging from the properties of substances transported with blood to the affinity of these with 

endothelium. Besides those biological reasons, certain characteristics of fluid dynamics play a 

fundamental role, possibly for the starting and certainly for the progression of arteriosclerosis, and 

represents a sure risk factor for its development. 

Flow and surrounding tissues can interact only though the exchange of dynamic actions: forces and 

stresses. Blood flow interacts with the endothelial layer of the arteries though the wall shear stress 

(WSS), which is recognized to have a primary role in the development of arteriosclerosis. The 

endothelium is made of elongates cells that are kept aligned with the flow by the normal wall shear 

stress. When the wall shear stress is abnormal and not directed along the vessel, stresses may 

progressively alter this alignment of endothelial cells that get randomly oriented. In that case, the 

endothelium becomes rougher and more prone to deposition of fat material transported with the blood. 

Wall shear stress changes during the heartbeat and several measures were introduced to relate 

anomalous wall shear stress and arteriosclerosis. The most immediate is the value of the wall shear 

stress averaged during the heartbeat, of duration T,  

  AWSS =
1

𝑇
∫ WSS𝑑𝑡

𝑇

0
 ; (11.1) 

low or negative values of AWSS where shown to correlate with atherosclerosis. More modern indices 

were also introduced to better underline the importance of reversal of WSS for pathology; one of 

those is the oscillating shear index (OSI) that is defined 

  OSI = 1 −
|∫ WSS𝑑𝑡

𝑇
0 |

∫ |WSS|𝑑𝑡
𝑇
0

 ; (11.2) 

that is close to zero when the WSS is always positive and increases when negative WSS develop. 

The WSS quantity contained in (11.1) and (11.2) refers to the stream wise component. In general, the 

wall shear stress is a vector tangent to the endothelium. Vector quantities are more difficult to be 

synthesized into simple indicators accounting to complex physiological phenomena. The general rule 

is that the risk of atherosclerosis is related to the anomalous wall shear stress of the endothelium, high 

fluctuation and spatial gradient, especially when stresses are not aligned with the main flow direction. 

It is evident that boundary layer separation and vortex formation are the key cause to the development 

of flow reversal and anomalous wall shear stress. Additionally, regions with flow reversal are 

associated with higher blood stagnation and material aggregation. Therefore, the location of boundary 

layer separation are considered regions with higher risk of atherosclerosis.  

It is fundamental to be aware of which regions may, at least qualitatively, present higher chances of 

developing boundary layer separation and thus higher risk of atherosclerosis. Boundary layer 

separation typically occurs in those regions where velocity decreases along the wall; figure 11.1 

displays some typical geometric conditions where this is can happen.  
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Separation is largely expected after a vessel narrowing, which can happens in presence of stenosis, 

the outcome of progressive atherosclerosis, or at an enlargement, which is typically due to the 

wakening of arterial wall leading to aneurysms; both cases will be discussed in more details later. 

Boundary layer separation can also occur under physiological condition for example at a bifurcation. 

In particular the carotid bifurcation presents an enlargement (carotid sinus) on the side of the internal 

carotid and is a region at risk. In general, however, any branching leads to local flow decelerations 

that may give rise to boundary layer separation. We have also seen that a vortex, after its formation, 

interacts with the wall and gives rise to secondary boundary layer separation. Therefore, any 

important boundary layer separation may provoke secondary separation and create regions at risk 

even somehow away from those regions considered critical by geometric consideration only. 

 

11.2. Stenosis 

Stenosis is a pathological conditions corresponding to the reduction of arterial lumen due to 

atherosclerosis. From a mechanical, fluid dynamics, perspective it can start from a small disturbance 

in the flow that reduces the wall shear stress and induces further deposition of material. This reduction 

of the vessel size provokes boundary layer separation and further disturbance that in turn reduces the 

wall shear stress downstream and enhances deposition. The narrowing of the vessel reduces the blood 

availability in the organs served by that vessel; eventually the stenosis can even lead to a blockage of 

the vessel and ischemic phenomenon to the downstream area. Stenotic narrowing is a self-sustained 

phenomenon where the growth helps further growth; therefore, it is extremely unlikely to record a 

reduction of stenosis during time. 

Stenosis reduced the flow and causes ischemia to the regions whose blood (oxygen) allowance is 

given by that vessel. Sometimes, secondary circulation can partially overcome this issue although 

 

Figure 11.1. Regions with higher chances of boundary layer separation, which are also higher risk of 

atherosclerosis. 
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secondary allowance is rarely sufficient ensure efficiency when the oxygen request increase, because 

of exercise or stress, above a minimum rate. 

 

Fluid dynamics in presence of a stenosis is characterized by boundary layer separation and generation 

of a deformed vortex ring downstream the stenosis. This gives disturbed flow therein and further risk 

of atherosclerosis development. 

In addition to the partial or total blockage of the vessel, the main risk of a stenosis is its partial 

breaking with the release of a small fragment (a thrombus) that is transported downstream. Along the 

branching arterial network vessels becomes progressively smaller until the transported element is 

unable to pass through and one gets blocked closing a vessel and preventing blood availability to the 

tissues perfused by that. For this reason stenosis are also studied to assess its “vulnerability” to break 

up and release fragments. This depends whether the stenosis is well perfused, it is hard passive 

material or it is composed of different materials. The process of stenosis break can be influenced by 

the entity of vortex formation as we have seen above, in equation (10.11), that it gives rise to dynamic 

hammering that may help to making the stenosis unstable and release material.  

    

 

One typical site at risk of stenosis are the two carotid bifurcations (symmetric on the two sides of the 

neck) as shown in figure 11.3. The right or left common carotid artery divides into the external carotid 

artery, bringing blood to the muscles of the face, and the internal carotid artery bringing blood to the 

 

Figure 11.2. Development of arteriosclerosis and stenosis in an artery. 

 

Figure 11.3. Stenosis in the carotid artery. 
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brain. The latter is the most important and it is the vessel at higher risk of atherosclerosis because it 

starts from the side of the carotid sinus where separation can occur naturally and is particularly 

subjected to stenosis. The consequence of stenosis at the internal carotid is the reduction of blood 

allowance to the brain. Its partial breaking can have consequences like ictus, which can be severe or 

temporary (TIA, transient ischemic attach) or be fatal leading to death.   

Carotid sinus is so prone to development of the atherosclerotic plaque that it is commonly monitored 

as an indicator for the predisposition of individuals to develop stenosis in the other parts of the arterial 

network. Its analysis is also relatively easy because the carotid is a superficial artery on the neck and 

can visualized with good quality by simple ultrasound imaging (Doppler echography).  

Therapeutic strategies for carotid stenosis at the early stage are made of blood thinners to reduce the 

risk of further aggregation and growth. When the stenosis is relevant or at risk of rupture, therapies 

are based on surgery or endovascular surgery. In either cases, the therapeutic procedure and its 

outcome must take into account the alterations they induced on fluid dynamics. 

Carotid endarterectomy is a common surgical approach to remove the arteriosclerotic plaque at or 

near the carotid bifurcation. Its diffusion also follows the relatively simple access to the carotid 

bifurcation. The procedure is schematically sketched in figure 11.4. The carotid lumen, once the blood 

transit is temporarily deviated, is accessed through a longitudinal cut on the arterial wall. The material 

is then removed and the artery is sutured. During the suture, a small patch is commonly added to the 

artery wall to avoid a reduction of the lumen of the sutured artery. Evidently, the shape of such a 

patch influences the geometry of the reconstructed vessel, therefore the distribution of wall shear 

stress, which in turn influences the risk of re-stenosis after surgery. Patches are made large enough to 

ensure a good passage of blood; however, they must not be too large to avoid local enlargements and 

boundary layer separation. Which is a major risk factor, by the fluid dynamics perspective, to the 

therapeutic outcome. Monitoring the flow in the reconstructed artery, for example with color Doppler 

ultrasound, is important to assess the risk associated with fluid dynamics. 

 

Surgery is often substituted by endovascular procedures; shown schematically in figure 11.5. In this 

case, the vessel is accesses by a guided catheter that releases an endovascular prosthesis (stent). A 

balloon is expanded pressing the plaque at the wall, without removing it, and a prosthesis is placed 

 

Figure 11.4. Carotid endarterectomy surgery. 
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on the expanded vessel restoring a sufficient lumen to allow blood passage. This prosthesis alters the 

vessel geometry and creates an elasticity mismatch. These changes affects the fluid dynamics and the 

interaction between flow and tissue, which may in turn alter the distribution of wall shear stress. Cases 

of restenosis are observed and may sometime be imputable to the alteration of blood motion, which 

should be monitored as a measure of the quality of the therapy. 

 

Another major site at risk of stenosis is the coronary tree. Coronaries are the arteries that bring 

oxygenated blood to the myocardium, the heart muscle. The two main coronaries, the right and left 

coronary arteries (RCA and LCA), originate just behind the aortic valve from two of the three sinuses 

of Valsalva (better described in chapter 13). Thus the heart pumps blood from the left ventricle cavity 

into the Aorta and, right after the aortic valve, part of that blood return to the heart to feed its own 

myocardium. As shown in figure 11.6, the RCA feeds the myocardium on the side of the right 

ventricle, the LCA divides into circumflex and in the anterior and posterior interventricular arteries 

to feed the left ventricle and the interventricular septum.  

 

We previously discussed carotid stenosis as a life threatening disease because it reduces blood 

allowance to the brain: Similarly, coronary stenosis is a life threatening disease because reduces blood 

allowance to the heart. The consequence of a coronary stenosis (see figure 11.7) is the ischemia 

 

Figure 11.5. Carotid endovascular prosthesis. 

 

Figure 11.6. Major coronary arteries that supply blood to the myocardium. 
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(reduction of oxygen) to the myocardium that, for this reason, reduces its ability to contract. When 

the stenosis blockage is almost complete, the oxygen allowance is reduces to near zero and the region 

of muscle perfused by that coronary undergoes to myocardial infarction. When the lack of oxygen 

persists for some time that tissue dies and becomes necrotic. 

Myocardial ischemia, or infarction, affects the ability of the heart muscle to contract, thus the ability 

of the heart to pump blood into circulation.  

An extended infarction, due to stenosis in a large upstream artery, leads to the inability for the heart 

to pump enough blood and can lead to death if not recovered rapidly before the infarcted tissue dies. 

A small infarction or ischemia, are primarily detected in terms of reduction of the cardiac function; 

thus their symptoms are those of a cardiac disease, and they are first detected by cardiac dysfunction, 

although they originate from a vascular disease.  

 

The most common approach to recognize the presence of myocardial ischemia is thus that of 

echocardiography to observed whether some region of the wall present reduced contraction. 

Sometime, the blood allowance is sufficient for an approximately normal contraction at rest, while it 

becomes insufficient under stress or exercise. Therefore, it is also common to perform a stress 

echocardiography (by exercise, or using pharmacologic stress in patients who cannot perform 

exercise) to recognize contraction abnormality in presence of a higher demand of oxygen. This occurs 

in presence of small stenosis as well as when some blood is able to reach the region through secondary 

circulation. Suspected coronary stenosis are then verified by coronary angiography that permits to 

visualize the blood flowing into the coronary tree and thus the lumens of the coronary arteries.   

Therapies for coronary stenosis are those of blood thinners to avoid their progression. Surgical 

approach is that of coronary by-pass as shown in figure 11.8. After a by-pass, the blood flow can be 

disturbed at the junctions that can become regions at further risk of stenosis. Much more common, 

however, is now the endovascular procedure. The procedure is shown schematically in figure 11.9: 

the vessel is reached by a guided catheter from the Aorta that expands the endovascular prosthesis 

and a prosthesis (stent) remains in position after the catheter is released. The changes in geometry 

and elasticity about the stent position may sometime disturb the fluid dynamics and alter the 

   

Figure 11.7. Coronary stenosis (left) and myocardial infarction (right). 



Separated Flow in Large Arteries  Page 125 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

distribution of wall shear stress. However, these are subjects at risk, where cases of restenosis are not 

more frequent than those of new stenosis, and are commonly kept under periodic control. 

 

 

Carotid and coronary stenosis are most common; however, stenosis can develop in numerous other 

arterial positions. Examples are the branches on the aortic root, or the iliac bifurcation. Nowadays, 

most arteries are solved by endovascular procedures, whose technology is continuously advancing. 

Stent are available for about any dimension and shape, and multiple stents can also be combined to 

reconstruct bifurcations and multiple branching. Typically, patients who developed a stenosis are 

subjects with higher predisposition to atherosclerosis. Therefore, alteration of the fluid dynamics in 

such patients must be carefully monitored in those sites where boundary layer separation is likely or 

is observed. 

  

 

 

Figure 11.8. By-pass coronary surgery. 

   

Figure 11.9. Endovascular coronary surgery. 
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11.3. Aneurism 

Aneurism is a local enlargement of the vessel with consequent thinning and weakening of the 

stretched tissue and that presents risk of rupture. Aneurysm are more frequent in the Aorta, at all 

levels, and in the brain arteries. The main issue associated with aneurysm is that in most cases they 

do not give flow impairment and do not produce symptoms. Therefore, they are detected by specific 

searches (for inheritance or other risk factors) or, frequently, by chance. However, when the aneurysm 

undergo to a rupture in many cases it can be fatal.  

Schematically, aneurysms are divided into two main geometric types as shown in figure 11.10. The 

fusiform aneurysm is a dilatation of the entire vessel that is characterized by a diameter large than 

normal; the saccular aneurysm is a side bulging of the vessel tissue that generates a balloon-like 

protrusion. Evidently, the categorization is not necessarily so sharp and all intermediate conditions 

may also exist. 

The fluid dynamics inside an aneurysm depends from details of its specific shape. Fusiform 

geometries usually present a central jet due to boundary layer separation at the expansion and 

recirculating regions at the enlargement. The jet may or may not be aligned with the distal vessel and 

possibly impact on the side wall of the aneurysm. In a saccular geometry, the flow is mainly 

stagnating therein with more or less wash-out of the blood. Therefore, the first fluid dynamics 

phenomenon in aneurysms is the presence of stagnation areas, that may form thrombi when there is 

not enough exchange of blood with the main flow. The second important phenomenon is the impact 

of the jet on the side wall provoking overpressure in the splash area; an impact occurring at every 

heartbeat thus hammering on a wall that is already thin and weak increasing its risk of rupture. 

 

The birth of aneurysms can be imputable to the local weakening of the tissue. This phenomenon is 

sometime related to alteration of the local fluid mechanics that creates overpressure or shear stress at 

the wall. More frequently, however, this follows an alteration of the tissue itself for multiple causes 

and often follows genetic predisposition. The progression and development of the aneurysm is 

primarily due to the continuing presence of the causes that generated it. Progression, however, can 

also be imputable to the specific alteration of the fluid dynamics therein. The major risk is its rupture 

that can bring to ictus (brain aneurysm) and internal hemorrhage, which in turn can lead to sudden 

death. 

  

 

Figure 11.10. Type of aneurysms. 
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A typical sites for the development of aneurysm is the Aorta. In the aortic root, a wall deformation in 

the proximal part of the ascending Aorta can follow from genetic causes or also be a consequence of 

anomalies in the aortic valve. In the latter case, the valve jet may presents high velocity that are 

deviated toward the aortic wall, because the orifice area is small and tilted. The impact of the jet on 

the wall creates high shear that can weaken the epithelium and produces a continuous hammering, 

every heartbeat, on such wall. This type of aneurysm is sometime associated with the presence of bi-

leaflet aortic valves, whose opening may provokes a laterally directed fast jet. In the aortic arch, 

including part of the ascending and descending Aorta, the aneurysm develops mainly because of 

genetic alteration of the wall tissue. The abdominal Aorta above to the iliac bifurcation, as shown in 

figure 11.11, is one of the most frequent for the formation of aneurysms, which deserved an own 

acronym AAA, for Abdominal Aortic Aneurysm.  

 

Fluid dynamics plays a role for the progression of the aneurysm. Consider a saccular aneurysm first. 

The flow may occur mostly along the vessel, without significant exchange with the side expansion; 

for example, when the bulge is very lateral and the opening is small and aligned with the vessel wall. 

In this case, a thrombus can likely develop inside the aneurysm and remains therein to somehow 

protect the bulged wall. This aneurysm is stable, by a fluid dynamic point of view, because flow is 

not expected to induce its growth. On the opposite, when the main flow partly enters into the side 

bulge, as partly shown in the case of figure 11.12, it can provoke additional shear and epithelial 

damage, it does not allow coagulation of blood, thus keeps the bulge camera active. In this case, the 

aneurysm is unstable, by a fluid dynamic perspective, because it is expected to progress and to present 

an increasing risk of rupture. Similar evaluations can be brought forward about fusiform aneurisms. 

In these case the complete coagulation is less common. Here, the deviation of the main flow, as shown 

in figure 11.13, and its potential impact in the wall is more important for assessing stability properties 

to aneurysm progression.  

Fluid dynamics, however, is rarely used clinically to categorize the risk of progression or rupture of 

aneurysm. Currently, this is essentially based on the size of expansion only. However, the progression 

of imaging techniques now allow evaluation of intra-aneurysm blood velocity vector field and novel 

solutions are under development to improve the categorization. 

  

 

Figure 11.11. Abdominal aortic aneurysm (AAA), of fusiform type. Sketch (left), reconstruction from 

CT image (center), picture before surgery (right). 
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Once an aneurysm has been detected, there is no specific pharmacological therapeutic treatments 

(beside those for associated risk factors, like high blood pressure). The periodic control is crucial to 

monitor its progression. Therapies are essentially of surgical or of the endo-surgical type as sketched 

   

Figure 11.12. Flow in a saccular aneurysm where the main flow exchanges blood and provokes shear 

inside the aneurysm. 

   

Figure 11.13. Flow in an aortic fusiform aneurysm where the deviated flow impacts on the side wall. 
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in figure 11.14. Surgery is performed through bandage or, more likely, removal of the aneurysm and 

replacement with a prosthesis. Endovascular surgery is performed by inserting a stent in the vessel. 

After the insertion of the endovascular prosthesis, as shown in figure 11.15, the blood flows through 

the prosthesis while stagnating blood is left to coagulate in the lateral expansions that is excluded 

from the circulation. 

We said above that the causes of aneurysm formation are genetic or due to regional alteration of either 

tissue or flow properties. The surgical repair solves the effects but does not removes the causes that 

led to aneurism development. Therefore, frequent controls are important after surgical therapy close 

to the repaired vessel where tissues can have sub-optimal mechanical properties, as well as in other 

sites at risk. Monitoring is mainly performed looking at the vessel geometry; however, it also 

important to verify the presence of anomalies in the flowing blood that witnesses abnormal dynamics 

and possibly induces later deformations.  

 

 

  

  

 

Figure 11.14. Surgical (left) and endovascular surgical (right) treatment of an abdominal aortic aneurism. 

   

Figure 11.15. Changes in the fluid dynamics after endovascular surgery of a saccular aneurysm. 
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12. Cardiac Mechanics I: Fluid dynamics in the cardiac chambers 

12.1. Cardiac electro-mechanical cycle 

The heart is an organ than contains two biological pumping systems, the right heart and the left heart, 

each composed of an atrium that receives low pressure blood and is connected to the respective 

ventricle that pumps higher pressure blood into the circulation. The left and right sides work 

synergistically in the whole heart although they are arranged in series along the circulatory network. 

The left heart pumps oxygenated blood in the primary circulation that, after oxygen release to all 

body, terminates into the right side of the heart. The right heart pumps de-oxygenated blood in the 

pulmonary circulation, where it entrains new oxygen and, that terminates in the left heart. 

The heart anatomy, with indication of the blood flow pattern, is shown in figure 12.1.  

   

On left side, the pulmonary veins bring oxygenated blood in the left atrium. This connects to the left 

ventricle through the mitral valve, a valve with two leaflets (bicuspid valve) that opens into the 

ventricle and avoids backflow, despite the high pressure difference that can develop between left 

ventricle and left atrium, because leaflets cannot open into the atrium as they are connected to the 

inside of the ventricle wall by chordae tendineae. A thick myocardial muscle surrounds the left 

ventricle and permits its contraction to vigorously pump blood into the Aorta, the first artery of the 

primary circulation. The aortic valve is placed at the base of the ventricle, on the right side of the 

mitral valve, and separates the left ventricle from the aortic artery. It is a tricuspid valve (with three 

leaflets) that avoids backflow, for the relatively lower pressure difference from Aorta to the left 

   

Figure 12.1. Heart anatomy and blood flow paths. 
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ventricle, by the leaflet geometry that make them close with the tips aligned downstream. On the right 

side, the right atrium receives poorly oxygenated blood from the inferior and superior venae cavae, 

and connects to the right ventricle through the tricuspid valve. The right ventricle is surrounded by 

thin myocardium and pushes blood into the pulmonary artery through the pulmonary valve. 

Geometrically, the left ventricle has roughly the shape of a prolate spheroid and the right ventricle 

lies around it, for about 45 degrees, in a triangular shape. The two are separated by a part of the 

myocardium called the interventricular septum. 

The left ventricle (LV) is the principal mechanical element of the human heart. It has the function of 

a volumetric pump that receives low pressure blood from the venous system through the left atrium 

and ejects it with higher pressure through the aortic valve into the primary arterial system. The LV 

chamber is surrounded by a muscular tissue, the myocardium, that operates in a sequence of mostly 

passive relaxations, when it receives the blood, and active contractions to push it into the circulation. 

Given the fundamental mechanical function of the heart, the myocardial tissue deformation and the 

blood flow inside the LV represent a central issue of clinical evaluations.     

 

Cardiac activity is stimulated by electrical signal and develops in terms of mechanical contraction. 

For this reason the cardiac cycle is commonly referred as an electro-mechanical cycle. The 

electrocardiogram (ECG) records the polarization and de-polarization of the muscular fibers, due to 

electrical voltage difference, which give rise to fibers contraction and relaxation, respectively. One 

typical ECG trace is reported in figure 12.2. The electrical stimulation starts from the sinoatrial node 

placed about the tip of the atrium (on the right side) and propagates into the myocardium surrounding 

the atria. It produces polarization and consequent shortening of the muscular fibers: the atrial 

contraction; which pushed some blood into the ventricle; this weak polarization is noticeable in the 

ECG by a small peak that is called the P-wave. The electrical conduction converges into the atrio-

ventricular node, placed between the ventricle and the atrium where it slows-down before propagating 

rapidly into the ventricles’ branches. The QRS complex in the ECG indicates the polarization of the 

ventricular myocardial fibers, after which the ventricular contraction develops. The ventricular 

contraction, or systole, pushes blood in the circulation. When contraction is completed the muscular 

fibers depolarize, revealed by the T-wave in the ECG, and relax allowing the blood to fill the ventricle 

during diastole. Diastole is then completed by the following atrial contraction. 

The electric cycle has a parallel mechanical cycle of ventricular filling and ejection. We will keep the 

focus on the LV, unless otherwise specified, that is the most energetic element of the human heart; 

however, the right ventricle follows in parallel an analogous process. With reference to figure 12.3, 

   

Figure 12.2. The electric cycle. 
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we can correlate the electric cycle with the mechanical activity. During systole the LV contracts, the 

mitral valve is closed, its volume decreases and flow is ejected (S-wave) at systolic pressure through 

the Aorta. Then the myocardium relaxes, pressure decreases below that of the left atrium, aortic valve 

closes, mitral valve opens and blood flows into the LV that increases its volume. This is the early 

filling phase, the E-wave terminates when the atrial and ventricular pressure become comparable and 

flow into the ventricle is very small during diastasis. Afterwards, the atrial contraction completes the 

LV filling (A-wave) and the diastolic phase.   

 

The function of the LV is primarily described through parameters as those of a volumetric pump. The 

volume at end-diastole, VED, is the maximum size of the LV chamber that then contracts to reach a 

minimum value at end-systole, VES. Therefore the stroke volume SV=VED-VES is the volume of blood 

ejected by the LV into the circulation, as well as the volume entering during diastole. The SV is the 

volume the passes through each cross-section of the circulatory network during one heartbeat.   

The SV is usually normalized with the VED to provide a dimensionless measure of the entity of the 

contraction relative to the available volume. This measure is defined ejection fraction  

 EF =
VED−VES

VED
=

SV

VED
 ; (12.1) 

which represents the most common clinical parameter to assess the LV function. Evaluation of EF 

requires the evaluation of LV volumes, which can be performed with numerous methods based on 

imaging, from echocardiography to MRI and others. In normal hearts the EF is usually about 65%, 

   

Figure 12.3. The electro-mechanical cycle. 
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and considered abnormal when it falls below 55% (although exact figures depend on the measurement 

method). The reduction of the EF commonly reveals the presence of a cardiac dysfunction, although 

there are also pathologies that present a preserved EF.   

12.2. Fluid dynamics inside the left ventricle (with mention to the other chambers) 

Heart function is about creating and sustaining motion of blood. The previously discussed electro-

mechanical cycle is therefore associated with the dynamics of blood flowing through the LV from 

mitral to aortic valve.  

Despite this apparent simplicity of the heart cycle, the fluid dynamics inside the left ventricle is a 

very intense dynamical phenomenon and represents a fundamental element in cardiac function. The 

jet develops impulsively; within a few hundreds of second, it reaches speeds above the meter per 

second to enter a few centimeters long cavity. Then, just as rapidly, flow must reverse the direction 

of motion of 180° to re-direct toward the aorta where it will exit at the same high speed. The diastolic 

jet presents boundary layer separation from the tips of the mitral valve and immediately gives rise to 

a swirling motion within the cavity, as exemplified in figure 12.4. The mitral orifice is slightly offset 

with respect to the ideal ventricular axis for which the jet redirects towards the lateral wall and gives 

rise to an asymmetrical swirling structure. The underlying phenomenon is that of the formation of a 

vortex ring, both during the A-wave and during the E-wave, that then dissipates and stretched toward 

the outflow tract at the beginning of systole.   

 

The length of the jet, the phenomena associated with its impact on the endocardial tissue, as well as 

the development and dynamics of the vortex structure, depend on various physiological and pato-

physiological factors. A fundamental role is given by the geometry of the chamber and its synergistic 

contraction and elastic relaxation, as well as the geometry of the mitral valve orifice. All these 

concurring elements can make the difference that makes the vortex a stable structure maintaining 

kinetic energy or an unstable structure that creates turbulence. It must also be considered that blood 

is an incompressible medium. All myocardial regions must work in harmonic synergy to push blood 

  

 

Figure 12.4. Blood motion inside the left ventricle during diastolic filling. Sketch (left), streamlines on 

the central longitudinal plane reconstructed from echocardiography (center), three-dimensional vorticity 

structure computed by numerical simulations (right). 
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toward the aortic exit and receive blood evenly; an incorrect timing of contraction or relaxation in 

one region of the wall has the result of pushing blood toward the other region, thus creating 

intraventricular pressure gradients that are not appropriate to create blood motion. 

Once we have clear in mind the featuring phenomena of LV fluid dynamics we can briefly mention 

what is known about the other chambers. Blood motion in the left atrium is driven by the pulmonary 

veins that enter the atrium transversally. Very much dependent from the angle of attach of these veins, 

the resulting flow can take a rotary motion or be more irregular and weakly turbulent; when the mitral 

valve opens this possibly rotary motion flows down into the left ventricle in a funnel-like patters. 

These considerations are extracted from few visualization and not much more is known. Similarly, 

little is known about the right atrium, which receives blood from the inferior and superior cavae veins. 

Currently there are only few works performed with respect to characterization of right ventricular 

(RV) fluid dynamics, although RV function has been shown to be a major determinant of clinical 

outcome in numerous cardiac dysfunction. Additionally, it is worth to mention that, because the 

circulation system is a closed one, the volume of blood ejected from the RV must be equal to that 

ejected by the LV.  

Evaluation of RV geometry and blood motion is extremely challenging because of the anatomic and 

functional complexities of this chamber, which is difficult to visualize by two-dimensional imaging. 

The flow inside the RV is expected to form a complex three-dimensional (3D) vortex formation from 

the tricuspid valve as well as redirection of the jet towards the lateral pulmonary outflow. Numerical 

and imaging results revealed a complex flow field. During diastole, a vortex ring develops past the 

tricuspid valve. Given the transversal shape of the RV, one side of the vortex ring is close to the 

interventricular septum where it rapidly dissipates; the remaining portion of the vortex ring gets 

stretched, during systole, toward the converging pulmonary outflow giving rise to a swirling outflow 

(upward on the right side and downward on the left side). However, the flow within the RV can 

becomes highly disturbed mainly due to the complex crescent-shape geometry. This highly vortical 

flow may promote proper mixing of the blood in the RV, thus prevents blood stagnation. 

The fluid dynamics inside the LV has a critical role in two fundamental aspects. The first is a 

kinematic aspect, about the efficiency of the flow transit; the second is a dynamic aspect, about the 

exchange of forces between fluid and surrounding tissues. 

(i)  Kinematic aspects: Flow transit 

The quality of flow transit corresponds to verifying the presence of stagnation regions and the time 

of residence of blood elements inside the chamber. The presence of stagnating regions reduces the 

wash-out of blood in the LV and represents a risk factor for thrombus formation; especially when the 

higher residence time is accompanied by a higher shear stress that can trigger aggregation 

mechanisms.  

Major advanced in this point were achieved by processing 3D phase-contrast MRI acquisitions, 

usually called 4D Flow MRI, that provides the 3D velocity vector field in the entire LV (with the 

limitation of moderate time and space resolution, and of having results for an average heartbeat 

instead of real-time). One approach proposed to subdivide the LV end-diastolic volume, VED, into 4 

sub-volumes depending on whether they reside more or less that one heartbeat in the LV chamber, as 

follows. The direct flow, Vdirect, is the volume of blood that entered during diastole and transits 

directly to the aortic outlet during systole, thus residing less than one heartbeat in the LV. The retained 

volume, Vretained, is the part that entered during diastole that is not ejected during the following systole 

but during the next one. The delayed volume, Vdelayed, was already present in the LV at the beginning 
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of diastole and is then ejected during the following systole. Finally, the residual volume, Vresidual, that 

was present in the LV and yet not ejected in the next systole. In a formula, the VED is divided as 

 VED = Vdirect + Vdelayed + Vretained + Vresidual . (12.2) 

The first two terms on the right hand side are the volumes that are the ejected during systole, thus 

their sum is the stroke volume VED–VES= Vdirect+Vdelayed; the other two terms are those remaining in 

the LV at the end of the systolic ejection, VES=Vdelayed+Vresidual. It can be noticed that the four sub-

volumes are related by three linear relationships (see Eq. (12.2) and lines below). Therefore three of 

them can be recovered from the knowledge of a single one (typically Vdirect, but any other could be 

used) that represents a single independent measure of the LV blood transit. From the knowledge of 

this and of the LV volumes, VED and VES, all other sub-volumes can be computed by their linear 

combinations. It was shown that the direct flow component was reduced in dilated LV with respect 

to normal hearts. 

The analysis of flow transit and residence time is relevant for recognizing stagnating regions and 

helping to stratify the risk of thrombus formation. A more systematic approach to recognize 

stagnation regions can be obtained by resolving a simple pure transport-diffusion equation for the a 

passive scalar that corresponds to individual blood particles “marked”, for example, at the end of 

diastole. Call C(x,t) the concentration of particles, the diffusion-transport equation is 

 
𝜕𝐶

𝜕𝑡
+ 𝒗 ∙ ∇𝐶 = 𝐷∇2𝐶; (12.3) 

that can be solved with relative ease, numerically, once the velocity field v(x,t) is known. This can be 

solved starting from end-diastole with the condition that C=1 everywhere in the LV volume. The 

concentration will decrease after every systole of an amount that depends on the quality of blood 

washo-out. The average value of C is curve that is equal to 1 initially and decreases after every 

heartbeat (typically exponentially). Normally, about 50% of end-diastolic blood is ejected during the 

first systole (the average value of C is about halved after one heartbeat); this one-beat reduction is 

equivalent to the Vdirect previously introduced. This approach, however, produces a curve, instead of 

a single value, which provides a more comprehensive information of the wash-out process. In dilated 

ventricles, the curve decays more slowly and in presence of stagnation regions the tail of the curve is 

sustained for long time because the region with blood stasis is more difficult to wash-out. 

This approach can also provide maps of concentration or, with minor changes, of the residence time. 

It can also be combined with the entity of shear stress, to weight the measure of stagnation with the 

potential degree of biological activation for developing thrombus. Clinical studies along this line are 

still at an early stages; however they are promising for providing quantitative measures of the risk of 

thrombus formation and better modulate the anticoagulation therapy in subjects at risk. 

(ii)  Dynamic aspects: Hemodynamic forces or intraventricular pressure gradients  

Hemodynamic forces are the forces acting on blood to produce acceleration. The field of the 

hemodynamic force per unit volume f(x,t) can be computed from the fluid acceleration, once  the 

intraventricular velocity field v(x,t) is known, as  

 𝒇 = 𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗). (12.4) 

This field is essentially equivalent to the intraventricular pressure gradient field (IVPG), p, which 

is known from literature (with measures made by catheter in animals) to be fundamental in LV 
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function. Indeed, the p field can be obtained after rearrangement of the Navier-Stokes equation as

  

 ∇𝑝 = −𝜌 (
𝜕𝒗

𝜕𝑡
+ 𝒗 ∙ ∇𝒗) + 𝜇∇2𝒗, (12.5) 

which differs from (12.4) for the viscous friction (last term) that is usually nearly negligible along the 

short intra-chamber paths.  

 

It is sometime suggested to directly compute the relative pressure field p by solving the Poisson’s 

equation  

 ∇2𝑝 = −𝜌∇ ∙ (𝒗 ∙ ∇𝒗) (12.6) 

obtained by taking the divergence of Eq. (12.5). When solving (12.6), however, care must be taken 

in imposing appropriate boundary conditions because this is a second order equation on pressure and 

the average pressure gradient (tri-linear terms in pressure) is solution of the homogeneous Laplace 

operator and its value follows from the boundary conditions only.   

Hemodynamic forces, or IVPGs, drive blood motion during both ventricular ejection and ventricular 

filling as shown in figure 12.5. They represent the ultimate result of LV deformation and play a central 

role in cardiac function that governs blood flow. Moreover, flow-mediated forces influence and 

participate to cardiac adaptation in presence of pathologies. Despite their potential relevance, 

hemodynamic forces or IVPGs have never been utilized in clinical cardiology due to the complexity 

of their acquisition.  

The usage of hemodynamic forces has been recently renewed with the introduction of methods able 

to estimate them non-invasively by medical imaging. Clinical results are under way and much 

promising as a natural early indicator of sub-clinical physiological changes and a predictor of 

cardiovascular diseases. 

   

Figure 12.5. Relationship between pressure gradient and flow acceleration in phases of the cardiac cycle. 
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12.3. Fluid dynamics in cardiac pathology 

Pathologies of the left ventricle can be roughly classified, by a mechanical viewpoint, as those due to 

a reduced myocardial contraction (perfusion defect) or to a general inability to properly deliver an 

appropriate contraction/relaxation rhythm that can progressively lead to the syndrome of heart failure. 

Further pathologies are imputable to dysfunctions of electrical conduction; some of these can be 

purely neurological defects, like fibrillations, some others can lead to improper contraction or 

relaxation and, either mechanically or therapeutically, are included in the class of heart failure. Other 

dysfunctions are imputable to pathologies of cardiac valves, which are discussed later in dedicated 

sections. It should altogether keep in mind that many such pathologies are inter-related and the present 

classification is driven by discussion on intraventricular fluid dynamics more than on clinical 

scenarios.    

(i)  Perfusion defects (myocardial ischemia)  

The most known pathology of the left ventricle is ischemia, whose extreme is the myocardial 

infarction, that is a consequence of the reduction of myocardial perfusion due to coronary stenosis. 

This is, therefore, a consequence of vascular disease; when a coronary reduces blood flow, the 

myocardial territory perfused by that vessel receives less oxygen allowance and reduces its contractile 

ability. The ischemic disease is commonly considered a systolic dysfunction because the myocardium 

is unable to properly contract during systole. 

Ischemic diseases present a reduction of the EF; this reduction is mostly due to regional contractile 

defect, in the poorly perfused myocardial region, that can be recognized by cardiac imaging methods 

allowing visualization and quantification of myocardial motion. When this defect is small, it can be 

hidden and may become appreciable only under stress condition, thus requiring imaging performed 

under exercise of pharmacologic stress. In alternative, perfusion defects can be evaluated by perfusion 

imaging techniques, available in nuclear imaging, MRI and, sometime, echocardiography. When 

recognized, they are eventually evaluated by coronary angiography to assess the actual coronary 

stenosis as discussed previously. 

Intraventricular fluid dynamics is also affected by myocardial ischemia. Blood near a segment that 

presents a reduced motility is more stagnant, especially when this is near the LV apex. This gives a 

reduction of wash-out and increased risk of thrombi. It also creates an imbalance in the 

intraventricular forces with over-stresses in some regions, even distant from the infarcted zone. Over-

stresses, or anomalous stresses, can progressively induce a feedback and ventricular adaptation that 

alters the LV geometry with potential further pathological implications.  

Ischemia is typically solved by coronary endovascular surgery. However, when the solution is not 

complete, for example when one or few are treated among multiple stenosis, some ischemia may 

remain and give ventricular imbalances. Similarly, when the ischemia has lasted for too long time, 

some regions of the myocardium may not be able to fully recover its contractile ability. In presence 

of such remaining imbalances may induce ventricular adaptation and progressive dysfunction (up to 

heart failure). 

(ii)  General mechanical dysfunction (heart failure)  

Heart failure (HF) is the principal social threatening cardiac progressive dysfunction. It presents either 

as a primary pathology or as a consequence of numerous (almost all) primary diseases. It can be a 

consequence of partly recovered ischemia; it can follow electrical dysfunctions that do not allow a 

synchronous of contraction; it can simply due to varied stiffness/thickness in the myocardium (for 

example due to hypertension) that does not allow a uniform relaxation, to cite a few examples. On 



Cardiac Mechanics I: Fluid dynamics in the cardiac chambers  Page 138 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

the other hand, it can develop as a primary disease following poor medical conditions. In any case, 

heart failure is the terminal stage of a progressive disease associated with impaired cardiac function.   

The clinical syndrome of heart failure is associated with the development of ventricular remodeling: 

a modification of ventricular geometry that progressively alters its functional parameters whose final 

stage is the LV dilatation, known as dilated cardiomyopathy (DCM). Remodeling represents a 

physiologic adaptation feedback that often does not lead to a stable configuration rather to a 

progressively worsening of the cardiac function and eventually to failure. Despite modern treatments, 

hospitalization and death rate remains high, with nearly 50% of people diagnosed with heart failure 

dying within 5 years.  

 

The physiological causes leading to LV remodeling (as exemplarily sketched in Figure 12.6 for a case 

of ischemia) are mainly ascribed to an increase of stress on the myocardial fibers (around an ischemic 

area, or because of hypertension etc.), which stimulates the growth and multiplication of cells giving 

rise to an increase of muscular thickness (hypertrophy) or extension (local dilatation). However this 

picture is unable to differentiate patients exhibiting differences in LV structure and function, it is not 

consistently predictive of the future risk of cardiac remodeling and does not clarify how a regional 

disease rapidly remodels the LV as whole. The availability of predictive models that can forecast 

progression or reversal of LV remodeling following initiation of therapeutic interventions would be 

invaluable for overall risk stratification, improvement of preventive healthcare, and reduction of the 

perspective social burden. 

Progressive disease and heart failure have numerous possible causes and can also develop in different 

ways, as shown in figure 12.7.  

Heart failure is most commonly associated to ventricular dilatation (DCM). In this case, the 

myocardium is stretched and thinner. The heart muscle contract very little and is able to eject a 

sufficient SV with small contraction because of the large volume. The EF is well reduced, and we 

talk about HF with reduced ejection fraction (HFrEF), also referred to as systolic heart failure. In 

HFrEF, the intraventricular fluid dynamics is very weak; the SV is a small percentage of the chamber 

volume. Typically, blood flow takes either a continuous weak rotary motion, when the inflow is 

aligned to feed the central vortex, or it presents a weak turbulence. In both cases, flow is featured by 

stasis and thrombus risk. Intraventricular hemodynamic forces are reduced and incoherent. 

Another type of HF is associated with thickening and/or stiffening of the myocardium. The ventricular 

volume is about normal and the pumping parameters are also normal but the ventricle does not relax 

   

Figure 12.6. Progression of left ventricular (LV) remodelling after an ischemic event. Left side: a 

ventricle with normal geometry and a regional reduced contractility. Centre: a moderately dilated 

ventricle. Right: a dilated cardiomyopathy at the late stage of heart failure. 



Cardiac Mechanics I: Fluid dynamics in the cardiac chambers  Page 139 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

properly during ventricular filling because of its stiffness. The EF is thus preserved, usually because 

the ventricle is hypertrophic and the inward thickening helps supporting systolic ejection. volume 

reduction. In this case, that is more difficult to recognize, we talk about HF with preserved ejection 

fraction (HFpEF), also referred to as diastolic heart failure. Intraventricular blood flow in this case is 

more similar to normal; however, dynamical difference reflecting the altered filling pattern are 

expected although not studied, yet. 

 

The causes leading to LV remodeling are still largely incomplete. During the progression there are 

changes in the pumping function. These can be noticed by changes in the relative intensity between 

E-wave and A-wave, with an extra-burst by atrial contraction when early filling is insufficient, or 

alteration of timing of acceleration and decays of E-wave. Clinicians use the combination of 

numerous indicators trying to figure out the specific pathological scenario; however a comprehensive 

mechanical picture is still missing. 

It has been recently shown that alteration in the intraventricular fluid dynamics are observable well 

before the tissue has undergone to noticeable often-irreversible changes. Given the incompressible 

nature of blood, in a cardiac chamber that is filled with blood, every segment is somehow in touch 

with the others and, as a result, the blood inertia associated with the rapid acceleration-deceleration 

about one region can instantaneously influence distant regions. The role of flow on cardiac 

remodeling has been considered in the past only through global indicators like volumetric changes, 

the inflow velocity of E- and A-wave, or combinations thereof. The absence of more specific fluid 

dynamics indicators is mainly due to the lack of technologies able to evaluate intraventricular fluid 

dynamics with sufficient ease and reliability.  

Normal intraventricular fluid dynamics is known to be associated to a physiologically stable cardiac 

function that does not lead to remodeling. Vice versa, a progressive disease corresponds to a 

physiologically unstable state that is expected to proceed further away from normality. As shown 

schematically in figure 12.8, an alteration of intraventricular fluid dynamics induces alteration of 

forces and shear stress on the tissue, these can trigger adaptation feedbacks and bring to progressive 

dysfunction. In an initial phase, the alteration of flow-mediated stresses may lead to stiffening of the 

   

Figure 12.7. Types of remodeling and heart failure. 
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myocardial tissue that sometime is associated to the increase of myocardial thickness (hypertrophy). 

This can be a condition going to HFpEF, or a quick passage toward progressive tissue dilatation with 

further reduction of LV function and eventually going to the more common HFrEF. 

 

 

Therapies for heart failure are complicated as they should go to the cause leading to remodeling. Moreover, 

HF often involves dysfunction in physiologically related organs and, therefore, precise guidelines are not 

available, and therapies are varied. 

Multipoint pace makers were shown to be one successful option in many cases, especially when HF is 

associated with a disturbed electrical activity (either as a cause or a consequence of HF), because they permit 

to restore a synchrony in LV contraction and relaxation. This approach, called cardiac resynchronization 

therapy (CRT), requires the definition of stimulation intervals in the pace-maker to ensure optimal therapeutic 

outcome. Typically, they can be chosen by electric conduction optimization or though synchronization of 

myocardial tissue motion. However, the rate of success is still low (nearly 40% patients do not benefit of CRT). 

Fluid dynamics offers a global perspective to define the proper contraction pattern, by ensuring that 

hemodynamic forces are maximized and properly aligned along the base-apex direction. However, studies are 

currently in progress to verify its effective clinical results. This concept can, however, be generalized to 

evaluate the normality of cardiac function after the acute cause that may, or may not, lead to heart failure. 

These include endovascular prosthesis, valvular repair or transplant, and so on.  

Intraventricular fluid dynamics appears as the first mechanical factor modified after, even minor, alteration of 

cardiac function. It appears a promising central element for the prediction of progressive disease or of 

therapeutic outcomes.  

  

   

Figure 12.7. Flow-mediated path toward heart failure. 
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13. Cardiac Mechanics II: Heart Valves  

The heart contains four valves, as sketched in figure 13.1. Two of them are atrioventricular valves, 

the mitral valve on the left side and the tricuspid on the right side; the other two valves are for the 

communication from the ventricle to the circulation, the aortic valve and the pulmonary valve for the 

left and right ventricles, respectively. The main function of the cardiac valve is to allow flow in one 

direction and prevent backflow.  

During systole, the ventricles contract and eject blood through the aortic and pulmonary valves, for 

the LV and RV, respectively, while the other valves remain closed. Ventricular contraction is made 

of an inward motion of the ventricular endocardial surface, combined with a shortening of the base-

apex length. Given that the apex is relatively fixed, shortening is obtained by the motion of the entire 

valvular plane downward. Vice versa, during diastolic ventricular expansion, the ventricles expand 

and the valvular plane moves upwards. This upward-downward motion creates a relative velocity at 

the valve that supports ventricular filling-emptying and helps anticipating valvular opening and 

closure. It must otherwise reminded that the velocity measured just above and below the valves can 

be non-zero when the valves are closed because of the motion of the valve itself.  

Despite their overall common function, cardiac valves present important differences, due to the actual 

anatomical position and to the fluid dynamics operating conditions. The therapeutic solution can also 

be very different. We discuss here the two main valves sited on the left side, as the valves on the right 

side are much less studied and their solutions are mostly borrowed from the left ones. 

 

   

Figure 13.1. Valvular plane containing the 4 cardiac valves (seen from top of ventricles). 
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13.1. Aortic valve 

Aortic valve is situated in the left ventricular outflow tract where the aorta begins. It consists of three 

lunar-shaped flaps of tissue, referred to as cusps. The leaflets of the aortic valve are attached partially 

to the muscular walls of the LV. The aortic valve is crossed by flow ejected from the LV into Aorta 

during systole and its function is of preventing backwards flow into the LV during diastole when the 

aortic remains closed. Once it is closed, the cusps are coapting, aligned and separate the LV from the 

aorta. Artistic representations of the aortic valve are shown in figure 13.2. 

The anatomy and function of the aortic valve have inspired studies for the past 600 years beginning 

with Leonardo da Vinci who studied aortic valve and the role of the sinuses of Valsalva. The Valsalva 

sinuses are dilatations in the aortic wall, just behind the valve, in correspondence of each of the 

semilunar cusps of the aortic valve. Generally, there are three aortic sinuses, the left, the right and the 

posterior, each one in correspondence of a leaflet. The left aortic sinus gives rise to the left coronary 

artery, and the right aortic sinus gives rise to the right coronary artery, while no vessels arise from the 

posterior aortic sinus, which is known as the non-coronary sinus. 

 

The aortic jet presents as a turbulent jet with Reynolds number that can reach about 10,000 (velocity 

near 2 m/s and orifice diameter about 2 cm). It is probably the only fully turbulent flow in the 

circulatory system.  The Strouhal number is about 10-2, thus the jet is well above 10 diameters long.  

Given the enlargement at the Valsalva sinuses, and the close-to-triangular shape of the open valve, 

the systolic flow separated from the nearly straight edge given by each of the open leaflet and detaches 

downstream as a free shear layer that rolls-up forming a vortex structure that develops main 

recirculation in the Valsalva sinuses. The role of vortex formation in the sinuses is not completely 

understood, yet. This backflow was initially considered to help the leaflet closure at the end of systole; 

it is also expected to facilitate the flow into the coronaries. More likely, the coronary flow is 

principally driven by the backflow that develops near the boundary during diastolic deceleration while 

the bulk flow, at the center of Aorta still moves downstream, and by the reflected pressure wave. 

Surely, the presence of the Valsalva sinuses prevents the leaflet to touch the aortic wall and to close 

of the coronary entrance. 

   

Figure 13.2. Aortic valves, close (left) and while opening (right). 
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The aortic jet exists from a rounded triangular orifice into the center of the Aorta thus, despite its 

strength, it does not interferes directly with the aortic walls; the jet then develops into helical 

streamlines when going through the aortic arch as shown in figure 13.3 (left side).  

Normal aortic valve is tricuspid; however, a significant percentage of the population (about 2%) is 

born with a bicuspid aortic valve (BAV) where two leaflets are not fully separated or they are totally 

fused as one. One possible effect of BAV is the reduced orifice size when the valve is open, giving 

rise to even stronger jet and possible higher resistance to the ejection requiring an extra effort to the 

LV with consequences similarly to what happens in valvular stenosis (discussed below). Another 

important possible phenomenon related to a BAV is the asymmetric opening of the unequal leaflets, 

which may deviate the jet towards the aortic wall. This increases the risk of damaging the wall and 

developing aneurisms in the aortic root. An example of flow recorded (by MRI) in normal and BAV 

individuals is shown in figure 13.3. BAV subjects can have a normal life; however, given the 

additional risk factors, they must be monitored to ensure absence of progressive diseases 

development. 

 

 

13.2. Pathologies of the aortic valve 

Major valvular pathologies can be roughly grouped, from a mechanical standpoint, as those due to 

valvular stenosis or to valvular insufficiency. 

Valvular stenosis is a reduction of the valvular orifice due to calcification of the valve leaflets that 

makes them less elastic and more difficult to open as sketched and shown in figure 13.4.  Valvular 

stenosis thus reduces the effective orifice area and provokes a stronger jet entering into the Aorta, 

with velocities that can reach several meters per second, which means higher turbulence and risk of 

damage to the arterial wall when such jet is deviated.  

   

Figure 13.3. Aortic jet under normal valve (left) and for bi-leaflet aortic valve (right). 
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The major consequence imputable to valvular stenosis is the higher energetic resistance to ejection:  

higher pressure drop across the aortic valve that, at peak systole, is proportional to the square of 

velocity, see equation (6.10). This additional pressure loss can be significant (if velocity is in m/s, 

pressure loss in mmHg is given by 4v2) and it is totally in charge of the LV as it occurs immediately 

at its exit. This means that the ventricle requires to build up a higher pressure to get the same output 

pressure in the Aorta. In turns, LV requires an extra effort and the myocardium is subjected to higher 

stresses. Such a condition can likely give rise to tissue stiffening and possibly to LV dilatation setting 

the path toward heart failure as discussed before. 

The other major pathology of aortic valve is valvular insufficiency. In valvular insufficiency, the 

leaflets are looser, or the valve is dilated, and leaflets coaptation is insufficient; as a result the leaflets 

are unable to properly close the valve during diastole giving rise to valvular regurgitation. Valvular 

regurgitation means that, during LV filling, when the LV pressure decreases and blood flows in 

through the Mitral valve, some flow also enters into the LV back from Aorta. This means that part of 

the net LV pumping effort is wasted because a percentage of the ejected blood is returned to LV itself.  

  

  

 

Figure 13.4. Aortic valve stenosis. 

   

Figure 13.5. PISA method to estimate the regurgitant flow from color Doppler echocardiographic image 

proximal to the regurgitant orifice. 
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Measuring the entity of the regurgitant volume is the principal mean to assess the severity of aortic 

insufficiency. This can be performed by MRI, recording the velocity across a plane just above or 

below the valve; this is the most accurate option although a relatively time-consuming procedure. A 

simpler, less accurate, approach is by color Doppler echocardiography that permits to look at the color 

map of the vertical component of blood velocity. The regurgitant downstream jet is not measurable 

because velocities are too high and disturbed; instead the color Doppler image proximally to the 

regurgitation orifice shows a smooth pattern corresponding to converging flow that can be somehow 

analyzed. This method, called Proximal Isosurface Velocity Area (PISA method), hypothesizes that 

the converging upstream velocity is axially symmetric; therefore the value of the Doppler (vertical) 

velocity, 𝑣Doppler, at a distance R on the axis is assumed to be equal to the radial velocity over a 

hemispherical shell as shown in figure 13.5. Therefore, the regurgitant discharge is obtained, by 

continuity, as that crossing the shell 

 𝑄𝑝𝑒𝑎𝑘 = 2𝜋𝑅2𝑣Doppler. (13.1) 

This gives the regurgitant flow rata at peak diastole; it would require a time integration to be 

transformed in volume. The regurgitant volume, 𝑉𝑟𝑒𝑔𝑢𝑟𝑔, is often estimated by other means; typically, 

recording the time profile of the mitral inflow velocity (by pulsed-wave Doppler) and assuming a 

proportionality between velocity peak value (vpeak) and velocity time integral (VTI) that can be 

performed in most echographs; 𝑉𝑟𝑒𝑔𝑢𝑟𝑔 = VTI × 𝑄𝑝𝑒𝑎𝑘/𝑣peak. The entire PISA approach is very 

approximate, some further improvement has been introduced by using 3D color Doppler data and 

corrections for irregular orifices. It has the merit to be a quick procedure feasible routinely; 

nevertheless, it should be repeated to improve reliability of results and used as a preliminary 

information only and not as a rigorous measurement. 

 

   

Figure 13.6. Flow in the LV in presence of Aortic valve regurgitation. 
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The entity of regurgitation is not the only matter responsible for the clinical severity of the 

insufficiency. Aortic regurgitant jet can conflict with the mitral inflow as shown in figure 13.6, giving 

rise to turbulence and disturbed LV filling that may further affect the LV function.  

Because of aortic insufficiency, the LV tends to dilate for the extra volumetric load coming from the 

regurgitant blood volume. At the same time, the reduction of net flow downstream in the Aorta 

induces metabolic feedback to stimulate the LV pumping to allow the necessary blood in the 

circulation. This requirement of an abnormal an extra effort to a LV, that was already increasing its 

volume, sets again the path toward heart failure.  

The therapeutic solutions to aortic stenosis as well to aortic regurgitation are those of surgical valvular 

repair or, most commonly, valvular replacement. Surgical valvular replacement contemplates the 

substitution of the diseased valve with a prosthetic one that is directly sutured in its place. This type 

of surgery may also include the substitution of the aortic root with a prosthetic vessel. Prosthetic 

valves are typically of two types: mechanical valves and biological valves depicted in figure 13.7.  

 

     

Several types of mechanical valves were introduced in the past and are still designed. Currently the 

most common is the bi-leaflet mechanical valve; which ensures life-long duration. However, due to 

the hardness of the material, mechanical valve produce the phenomenon known as hemolysis: they 

  

 

Figure 13.7. Prosthetic valves: bi-leaflet mechanical valve (top-left) and the same with prosthetic vessel 

(top right); tri-leaflet biological valves (bottom) 
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break red blood cells that induce coagulation for repair and higher risk of thrombus formation. For 

this reason, they also require life-long anticoagulant medication. Mechanical valves also largely alter 

the fluid dynamics downstream the valve. The aortic jet presents multiple shear layers with altered 

vortex formation process and higher turbulence. The relationship between the three leaflets and three 

Valsalva sinuses is broken thus other contraindications may accompany such an implant. A more 

natural alternative is that of biological valves that better mimic the original natural geometry and do 

not require anticoagulant. Biological valves, on the other side, are not guaranteed for life-long 

duration although technological improvements give confidence for their reliability.  

A widely used solution that avoids open surgery is the Trans-catheter Aortic Valve Implant (TAVI), 

or equivalently called Trans-catheter Aortic Valve Replacement (TAVR). In TAVI the valve is placed 

inside an endovascular prosthesis that can be positioned by catheter avoiding surgery. TAVI is 

described in figure 13.8. In this procedure, the previous valve is initially squashed at the wall, then 

the new valve is expanded and placed over the previous one. The resulting fluid dynamics is very 

similar to that of a biological valve and does no exhibit critical phenomena.    

 

13.3. Mitral valve 

Mitral valve is the bi-leaflet valve that relates left atrial chamber to the left ventricle. The valve 

consists of two leaflets of unequal size, with a coaptation between the two that takes a D-shape, as 

artistically shown in figure 13.9. The anterior leaflet is the largest, positioned between the mitral 

orifice and the left ventricular outflow tract, while the smaller posterior leaflet is placed to the left of 

the mitral orifice close to the posterior-lateral wall. 

The leaflets edges are connected to the papillary muscles via cord-like tendons, called chordae 

tendineae, that prevent valvular opening toward the atrium. While the aortic valve is inside a tubular 

shape vessel, the Mitral valve is contained in the atrioventricular plane; here, the Mitral valve is 

surrounded by a fibrous annulus, that approximates a hyperbolic paraboloid similar to a riding saddle, 

which modulates its shape during the heartbeat.   

 

  

Figure 13.8. Trans-catheter aortic valve implant (TAVI). 
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The transmitral flow is characterized by two impulses, the early filling wave (E) and the atrial 

contraction (A). Before the early filling, at the end of systole, the ejected flow decelerates and LV 

pressure is lower at the apex than at the LV base. At the passage between systole and diastole, the 

myocardial contractile elements are deactivated and release the stored elastic energy, this results in 

further pressure drop inside the LV whose response is the opening of mitral valve. Both these two 

mechanisms about the transition between systole and diastole are associated with a lower pressure at 

the apex than at the LV base and both actively contribute to early ventricular filling impulse. 

Afterwards, before the end of diastole, the electric stimulation starts with the atrial systole and the A-

wave completes the LV filling. The relative entity of E and A-waves is an indicator of LV function. 

The E and A peaks of mitral velocity are usually assessed by Doppler echocardiography; typically, 

E-wave velocity is some greater than the A-wave; this ratio is reversed when early filling is 

insufficient and additional effort is given by atrial contraction, suggesting diastolic dysfunction. This 

ratio is also reversed in normal fetal hearts before the cardiac maturation. 

The anatomic asymmetry of the Mitral valve has a fundamental influence on the development of LV 

fluid dynamics. The vortex formation process is made of a distorted vortex ring that is stronger on 

the anterior side and weaker on the posterior; that deviates the ring towards the posterior side (because 

the anterior side has a higher self-induced velocity, while the posterior side is slowed down by the 

image vorticity at the wall). As a result, the larger leaflet on the anterior side helps to redirect the 

blood flow along the lateral-posterior wall. The anterior vortex eventually occupies most of the LV 

cavity and ensures the development of a proper circulation inside the LV (as previously shown in 

figure 12.4). Normal transmitral flow is usually laminar and relatively low in velocity (usually less 

than 100 cm/s); nevertheless the vortex formation creates vortical structures that are complex 

although not strictly turbulent.  

13.4. Pathologies of the mitral valve 

Like for the aortic valve, Mitral stenosis, shown in figure 13.10, is due to calcification and reduces 

the orifice size. The mitral jet presents higher velocities and can be deviated inside the LV. This can 

   

Figure 13.9. Mitral valve, close (left) and open (right) showing the chordae tendineae attaching the 

leaflets to the papillary muscles inside the ventricle. 
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create disturbed even turbulent flow with higher energy dissipation and abnormal shear and pressure 

increase on regions of the wall. The narrower valve is also associated with the increase of transmitral 

pressure drop, with consequent impairment of LV filling, higher atrial pressure. The increased atrial 

pressure can influence back pulmonary circulation, produce pulmonary congestion and higher RV 

pressure. These effects can set the path towards diastolic heart failure and RV dilatation.     

 

Mitral insufficiency can present as a secondary effect to LV dilatation; in this case the entire LV 

increases its volume and the mitral annulus also enlarges such that the leaflets are unable to cover the 

entire mitral area allow backflow. Mitral insufficiency, however, frequently develops as a primary 

valvular disease in presence of Mitral valve prolapse. Mitral prolapse is due to the growth of the 

leaflets that become wider, longer and looser. The leaflets of the mitral valve bulge (prolapse) back 

into the left atrium for the LV pressure during systolic contraction, like a parachute held by the 

chordae tendineae at the edges. Prolapse is a frequent phenomenon giving no specific symptoms and 

not requiring treatment. However, it must be monitored because, as shown in figure 13.10, eventually 

the loose leaflets may not properly close the valve and allow blood flowing backward into the left 

atrium producing mitral valve regurgitation.  

The severity of mitral regurgitation can be evaluated by measuring the regurgitant volume with the 

same imaging methods (MRI or echography) previously described for aortic valve regurgitation. 

Mitral regurgitation reduces the effectiveness of LV pumping because part of the stroke volume is 

not ejected into the Aorta and flows backwards into the left atrium. This induces metabolic feedbacks 

to increase LV pumping and stressing the LV, especially under exercise or stress. The most evident 

pathologic consequence of severe regurgitation is the dilatation of the left atrium, which must comply 

with the additional blood volume and is subjected to systolic LV pressure. When the atrial dilatation 

becomes important mitral prolapse requires treatment.  

Pharmacologic treatments to mitral valve diseases can reduce the effects of this pathology but not 

heal the defect. A surgical solution to mitral valve stenosis or, sometime, prolapse is the replacement 

of the diseased valve with a prosthetic valve. As discussed for the aortic valve, prosthesis can be 

either biological or mechanical. A prosthetic valve alters the intraventricular fluid dynamics and can 

   

Figure 13.10. Mitral valve stenosis. 
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give rise to further problems in LV function. It was shown, see figure 13.12, that the symmetry of a 

mechanical bi-leaflet, in contrast with natural asymmetry of the Mitral valve, increase turbulence and 

may even reverse the vortical circulation inside the LV. However, as these observations are difficult 

to perform clinically, there are no indications on the consequences of such LV flow alterations. 

 

 

 

   

Figure 13.11. Mitral valve prolapse and regurgitation. 

   

Figure 13.12. Flow redirection with bi-leaflet mechanical valve in mitral position. 
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Balloon angioplasty is usually the first option for stenosis before other surgical options. To this aim, 

a balloon is inserted trans-catheter and expanded at the valve position to break the stenosis.  

The most common surgical option for the mitral valve is mitral valve repair (MVR). This is the 

primary choice for prolapse, although it is performed in presence of stenosis as well. As shown in 

figure 13.13, MVR aims to recreate the natural valvular geometry removing the exceeding tissue and 

suturing the original tissue into a proper geometry. Often, MVR is performed including a new 

prosthetic mitral ring replacing the older one that can be dilated.  

Trans-catheter mitral valve is another option; however, endovascular solutions are less common than 

they are for aortic valve. Indeed, these present the complexity to anchor the prosthesis in the mitral 

plane, without a surrounding vessel as was available for the aortic valve. Reliable endovascular 

solutions for the Mitral valve are still in progress.  

 

 

One endovascular solution for reducing regurgitation in Mitral valve prolapse has been recently 

introduced. It consists of a “clip” (similar to a paper clip) introduced trans-catheter that sticks together 

the two leaflet thus transforming the wide prolapsed orifice in two small orifices, as shown in figure 

13.14, that do not allow regurgitation when closed. This methods is a trans-catheter version of a 

previous surgical solution called edge-to-edge repair that was then replaced by MVR. After Mitral 

clip, regurgitations is normally reduced or eliminated; however, this treatment dramatically alters the 

intraventricular fluid dynamics, as shown in figure 13.14 (right). The mitral jet transforms into two 

distinct jets diverging from the valve and impacting on the opposite walls, higher turbulence, varied 

shear stress and intraventricular pressure gradients. The long term clinical consequences of this 

alteration are still under analysis. This solution is advised for critical Mitral regurgitations conditions 

and for patients that cannot undergo to open-chest surgery.  

 

  

 

Figure 13.13. Mitral valve repair. 



Cardiac Mechanics II: Heart Valves  Page 152 

 

An Introduction to Fluid Mechanics for Cardiovascular Engineering Draft Lecture Notes 

 

 

13.5. A mention to congenital cardiac disease: Tetralogy of Fallot 

Several diseases are related to congenital malformations of the heart, most of them related to 

pathological alterations of cardiac valves. This is a wide and complex topic that is out of the scope 

this basic text and not discussed here. However, it is worth mentioning the most common (frequency 

of 1 every 2000 children) severe congenital heart defect that is found in new born children: Tetralogy 

of Fallot. 

The Tetralogy of Fallot (TOF) is a combination of four defects, interrelated and concurring, that 

directly influence the blood circulation in the heart. Each defects one can present with different degree 

of severity and in different combinations. The common result is low blood oxygenation, which can 

gives rise to cyanosis; for this reason, this defect is also called the “blue baby syndrome”.  

TOF is characterized by the followings malformations as graphically described in figure 13.15.  

1. A defect in the interventricular septum that is not complete and allows passage of blood between 

RV and LV; this measn that part of the non-oxygenated RV blood can enter the LV and delivered 

into the circulation.  

2. The pulmonary valve, at the RV outlet, is narrower thus reducing the amount of blood delivered 

toward the pulmonary circulation for oxygenation.  

3. The Aorta is displaced towards the right side, because the basal part of the interventricular septum 

is absent, therefore it can receive either the oxygenated blood from the LV and part of the non-

oxygenated blood ejected by the RV.  

4. The communication between LV and RV and the narrower pulmonary valve provoke the 

increases of the RV pressure and hypertrophy of the RV wall that becomes thicker. 

TOF typically requires open-heart surgery in the first years of life. The procedure involves increasing 

the size of the pulmonary valve and pulmonary arteries and repairing the ventricular septal defect. 

  

 

Figure 13.14. Mitral valve edge-to-edge repair with Mitral clip. 
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The exact timing of surgery depends on the symptoms and size. Normally, surgery is delayed as much 

as possible in order to act on more grown heart. When surgery is made early, further surgery may be 

required to adapt the therapeutic repairs along with the increasing size of the heart. 

The big challenge in TOF therapy is therefore to be able to anticipate the evolution of the disease, in 

order to better plan the timing of the various therapeutic activities. The dynamic analysis of intra-

cardiac fluid dynamics was recognized to have a role in cardiac morphogenesis as well in cardiac 

development. Therefore, research is in progress to evaluate fluid dynamics in TOF patients, especially 

by 3D Phase-contrast MRI (4D flow MRI), with more centers under creation in numerous sites. The 

aim is of providing evaluations of the actual status of the cardiac circulation and, possibly, indications 

of the probable evolutions that can be precious for optimization of surgical choices and timing of 

therapy. 

 

 

  

  

 

Figure 13.15. Tetralogy of Fallot. 
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