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Abstract 
While different optical flow techniques continue to appear, there has been a lack of quantitative evaluation of exist- 
ing methods. For a common set of real and synthetic image sequences, we report the results of a number of regularly 
cited optical flow techniques, including instances of differential, matching, energy-based, and phase-based methods. 
Our comparisons are primarily empirical, and concentrate on the accuracy, reliability, and density of the velocity 
measurements; they show that performance can differ significantly among the techniques we implemented. 

1 Introduction 

Without doubt, a fundamental problem in the process- 
ing of image sequences is the measurement of optical 
flow (or image velocity). The goal is to compute an 
approximation to the 2-D motion field--a projection 
of the 3-D velocities of surface points onto the imaging 
surface--from spatiotemporal patterns of image inten- 
sity (Horn 1986; Verri & Poggio 1987). Once computed, 
the measurements of image velocity can be used for a 
wide variety of tasks ranging from passive scene inter- 
pretation to autonomous, active exploration. Of these, 
tasks such as the inference of egomotion and surface 
structure require that velocity measurements be accu- 
rate and dense, providing a close approximation to the 
2-D motion field. Current techniques require that rela- 
tive errors in the optical flow be less than 10% (Barron 
et al. 1990; Jepson & Heeger 1990). Verri and Poggio 
(1987) have suggested that accurate estimates of the 2-D 
motion field are generally inaccessible due to inherent 
differences between the 2-D motion field and intensity 
variations, while others (e.g., Aloimonos & Duric 1992) 
argue that the measurement of optical flow is an ill- 
posed problem. For these reasons it has been suggested 
that only qualitative information can be extracted. 

Many methods for computing optical flow have been 
proposed--others continue to appear. Lacking, how- 
ever, are quantitative evaluations of existing methods 
and direct comparisons on a single set of inputs. 
Kearney et al. (1987) discussed sources of error with 
gradient-based methods. Little and Verri (1989) com- 
pared properties of differential and matching methods 
and reported some quantitative comparisons, but only 
on two relatively simple, synthetic test cases; the accu- 
racy they reported was not encouraging, with average 
relative errors of 10-20 %, and average angular errors 
of 7-12 ° in the best cases. More recently, Willick and 
Yang (1991) have examined the merits of the gradient 
constraint used by Horn and Schunck (1981) compared 
to the constraints suggested by Schunck 0984, 1986) 
and Nagel (1989). Of these three, they argue that the 
original gradient constraint is superior. This article 
reports a comparison of widely cited optical flow 
methods. We implemented nine techniques including 
instances of differential methods, region-based match- 
ing, energy-based and phase-based techniques, namely 
those of Horn and Schunck (1981), Lucas and Kanade 
(1984, 1981), Uras et al. (1988), Nagel (1987), Anandan 
(1987, 1988), Singh (1990, 1992), Heeger (1988), Wax- 
man et al. (1988) and Fleet and Jepson (1990, 1993). 
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Despite their differences, many of these techniques 
can be viewed conceptually in terms of three stages of 
processing: 

1. prefiltering or smoothing with low-pass/band-pass 
filters in order to extract signal structure of interest 
and to enhance the signal-to-noise ratio, 

2. the extraction of basic measurements, such as spatio- 
temporal derivatives (to measure normal components 
of velocity) or local correlation surfaces, and 

3. the integration of these measurements to produce a 
2-D flow field, which often involves assumptions 
about the smoothness of the underlying flow field. 

Our selection of techniques for comparison was moti- 
vated in part by a desire to examine properties of these 
individual stages; for example, we have two first-order 
differential techniques that differ only in the method 
used to integrate measurements. Where applicable, we 
also report results concerning the measurement of nor- 
mal velocity since there is growing interest in the use 
of normal velocity, thereby side-stepping some of the 
assumptions inherent in current methods for integrating 
measurements to find 2-D velocity (Aloimonos & 
Brown 1984; Aloimonos & Duric 1992; Barron et al. 
1990; Cippola & Blake 1992; Horn & Weldon 1988; 
Negahdaripour & Horn 1987). 

We have used both real and synthetic image se- 
quences to test the techniques. In both cases however, 
we have chosen sequences that are not severely cor- 
rupted by spatial or temporal aliasing. This enables us 
to test basic implementations of differential methods 
and matching methods on the same data without the 
complexities of hierarchical coarse-to-fine control and 
warping techniques. For example, we do not consider 
stop-and-shoot sequences (Dutta et al. 1989). 

Here, we concentrate on the accuracy and density 
of velocity estimates produced by the nine methods. 
Confidence measures have been used to extract subsets 
of estimates for which we report error statistics. While 
confidence measures are rarely addressed in the litera- 
ture, we find that they are crucial to the successful use 
of all techniques. Thus we have also examined the use 
of several different confidence measures. For more 
detail concerning the results outlined below we refer 
the interested reader to a revised technical report 
(Barron et al. 1993). 

2 Optical Flow Techniques 

We begin with a brief description of the different tech- 
niques, and several of the implementation specifics. 

Although most of the important issues are addressed 
here, the interested reader should consult the original 
papers for further details. In addition, our source code 
and our image sequences are available via anonymous 
ftp from f t p .  csd. uwo. ca in the directory pub/  
v i s i o n .  

2.1 Differential Techniques 

Differential techniques compute velocity from spatio- 
temporal derivatives of image intensity or filtered ver- 
sions of the image (using low-pass or band-pass filters). 
The first instances used first-order derivatives and were 
based on image translation (Fennema & Thompson 
1979; Horn & Schunck 1981; Nagel 1983), that is, 

l(x, t) = I(x - vt, 0) (1) 

where v = (u, v) r. From a Taylor expansion of (1) 
(Horn & Schunck 1981) or more generally from an 
assumption that intensity is conserved, dI(x, t)/dt = O, 
the gradient constraint equation is easily derived: 

VI(x, t) • v + It(x, t) = 0 (2) 

where It(x, t) denotes the partial time derivative of 
I(x, t), Vl(x, t) = (Ix(X, t), Iy(x, t)) r, and VI"  v 
denotes the usual dot product. In effect (2) yields the 
normal component of motion of spatial contours of con- 
stant intensity, vn = s n. The normal speed s and the 
normal direction n are given by 

s(x,  t) = - I t (x ,  t) 
Iiv/(x, t)ll 

n(x, t) - VI(x, t) (3) 
]NI(x, t)lt 

There are two unknown components of v in (2), con- 
strained by only one linear equation. Further constraints 
are therefore necessary to solve for both components 
ofv.  

Second-order differential methods use second-order 
derivatives (the Hessian of I) to constrain 2-D veloc- 
ity (Nagel 1983, 1987; Tretiak & Pastor 1984; Uras 
et al. 1988): 

Ixy(X, t) Iyy(X, t) v2 

~"/tx(X, t )~  ~ 0 ~  
+ ~ Ity(X, t) = (4) 

Equation (4) can be derived from (1) or from the con- 
servation of VI(x, t), dVI(x, t)/dt = 0. Strictly speak- 
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ing, the conservation of'VI(x, t) implies that first-order 
deformations of intensity (e.g., rotation or dilation) 
should not be present. This is therefore a stronger 
restriction than (2) on permissible motion fields. To 
measure image velocity, assuming dVI(x, t)/dt = O, the 
constraints in (4) may be used in isolation or together 
with (2) to yield an over-determined system of linear 
equations (Girosi et al. 1989; Tistarelli & Sandini 
1990). However, if the aperture problem prevails in a 
local neighborhood (i.e., if intensity is effectively one- 
dimensional), then because of the sensitivity of numeri- 
cal differentiation, second-order derivatives cannot 
usuaUy be measured accurately enough to determine 
the tangential component of v. As a consequence, veloc- 
ity estimates from second-order methods are often 
assumed to be sparser and less accurate than estimates 
from first-order methods. 

Another way to constrain v(x) is to combine local 
estimates of component velocity and/or 2-D velocity 
through space and time, thereby producing more robust 
estimates of v(x) (Singh 1990). There are two common 
methods to accomplish this: The first method fits the 
measurements in each neighborhood to a local model 
for 2-D velocity (e.g., a low-order polynomial model), 
using least-squares minimization or a Hough transform 
(Fennema & Thompson 1979; Kearney et al. 1987; 
Lucas & Kanade 1981; Singh 1990; Waxman & Wohn 
1985). Usually v(x) is taken to be constant, although 
linear models for v(x) have been used successfully 
(Waxman & Wohn 1985; Fleet & Jepson 1990). The 
second approach uses global smoothness constraints 
(regularization) in which the velocity field is defined 
implicitly in terms of the minimum of a functional 
defined over the image (Horn & Schunck 1981; Nagel 
1983, 1987; Nagel & Enkelmann 1986). 

Of course, one requirement of differential techniques 
is that I(x, t) must be differentiable. This implies that 
temporal smoothing at the sensors is needed to avoid 
aliasing and that numerical differentiation must be done 
carefully. The often stated restrictions that gradient- 
based techniques require image intensity to be nearly 
linear, with velocities less than 1 pixel/frame, arise from 
the use of 2 frames, poor numerical differentiation or 
input signals corrupted by temporal aliasing. For exam- 
ple, with 2 frames, derivatives are estimated using first- 
order backward differences, which are accurate only 
when (1) the input is highly over-sampled or (2) inten- 
sity structure is nearly linear. When aliasing cannot be 
avoided in image acquisition, one way to circumvent 
the problem is to apply differential techniques in a 

coarse-to-fine manner, for which estimates are first pro- 
duced at coarse scales where aliasing is assumed to be 
less severe, with velocities less than 1 pixel/frame. 
These estimates are then used as initial guesses to warp 
finer scales to compensate for larger displacements. 
Such extensions are not examined in detail here. 

Reported here are the results from four differential 
techniques; they include first-order and second-order 
constraints, as well as local and global methods of com- 
bining the local constraints. We found that all these 
techniques, as described in the literature, require some 
confidence measure as a means of separating reliable 
from unreliable measurements. Although we have used 
such thresholds to obtain the results reported below, 
it is important to note that they were not taken from 
the original literature in all cases, but rather are a first 
attempt on our part to improve the accuracy of the 
measurements. They are discussed below and in more 
detail in (Barron et al. 1993). 

Horn and Schunck. Horn and Schunck (1981) com- 
bined the gradient constraint (2) with a global smooth- 
ness term to constrain the estimated velocity field 
v(x, t) = (u(x, t), v(x, t)), minimizing 

fo ( v z . v  + it) 2 + xz(Hvu[t2 2 + NVv[I 2) dx (5) 

defined over a domain D, where the magnitude of X 
reflects the influence of the smoothness term. We used 
X = 0.5 instead ofX = 100 as suggested by Horn and 
Schunck (1981), because it produced better results in 
most of our test cases. Iterative equations are used to 
minimize (5) and obtain image velocity: 

uk+l = ~k _ Ix[Ix ~k + IY Fk + Itl 
oL2 + I2 + I, 2 

vk+l = ~ k  __ ly[Ix ~k + Iy Fk + Itl 
°! 2 + 12 + 12 (6) 

where k denotes the iteration number, u ° and v ° denote 
initial velocity estimates (set to zero), and ~k and 9 k 
denote neighborhood averages of u k and v*. We use at 
most 100 iterations in all testing below. 

The original method described by Horn and Schunck 
used first-order differences to estimate intensity deriva- 
tives. Because this is a relatively crude form of numeri- 
cal differentiation and can be the source of considerable 
error, we also implemented the method with spatiotem- 
poral presmoothing and four-point central differences 
for differentiation (with mask coefficients ~2(-1, 8, 0, 
-8 ,  1)). We used a spatiotemporal Gaussian prefilter 
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with a standard deviation of 1.5 pixels in space and 1.5 
frames in time (1.5 pixel-frames), sampled out to three 
standard deviations. Results from both the original and 
our modified method are reported below. 

Lucas and Kanade. Following Lucas (1984), Lucas and 
Kanade (1981), and others (Adelson & Bergen 1986; 
Kearney et al. 1987; Simoncelli 1993; Simoncelli et al. 
1991), we implemented a weighted least-squares (LS) fit 
of local first-order constraints (2) to a constant model 
for v in each small spatial neighborhood f/by minimizing 

W2(x)[VI(x, t) • v + I,(x, t)] 2 (7) 
xE~2 

where W(x) denotes a window function that gives more 
influence to constraints at the center of the neighbor- 
hood than those at the periphery. The solution to (7) 
is given by 

ATW2Av = ArW2b (8) 

where, for n points x i E fl at a single time t, 

A = [ V I ( x l )  . . . . .  V I ( x n ) ]  T 

W = diag [W(Xl) . . . . .  W(xn)] 

b = - [ I t ( X l )  . . . . .  It(x,)] r 

The solution to (8) is v = [ArW2A]-IATW2b, which 
is solved in closed form when ArW2A is nonsingular, 
since it is a 2×2 matrix: 

ArW2A = 

W2(x)lx2(X) r W2(x)Ix(X)Iy(x) 
I]~W2(x)Iy(X)Ix(X) ~ WZ(x)/y~(X)1 (9) 

where all sums are taken over points in the neighbor- 
hood fL 

Equations (7) and (8) may also be viewed as 
weighted least-squares estimates of v from estimates of 
normal velocities v n = sn; that is, (7) is equivalent to 

W2(x)wZ(x)[v • n(x) - s(x)] 2 (10) 
xE~ 

where the coefficients w2(x) reflect our confidence in 
the normal velocity estimates; here, w(x) = HvI(x, t)]]. 

our  implementation first smooths the image sequence 
with a spatiotemporal Gaussian filter with a standard 
deviation of 1.5 pixel-frames. This helps attenuate tem- 
poral aliasing and quantization effects in the input. 
Derivatives were computed with four-point central dif- 
ferences with mask coefficients ¼2(-t, 8, 0, -8 ,  1). 
Spatial neighborhoods fl were 5 ×5 pixels, and the win- 

dow function W2(x) was separable and isotropic; its 
effective 1-D weights are (0.0625, 0.25, 0.375, 0.25, 
0.0625) as in (Simoncelli et al. 1991). The temporal sup- 
port for the entire process was 15 flames. In a more 
recent implementation, Fleet and Langley (1993) have 
replaced the FIR filters with IIR recursive filters and 
temporally recursive estimation. This method requires 
only three frames of storage, delays of only two or three 
frames, and yields results of similar accuracy. 

Simoncelli et al. (1991, 1993) present a Bayesian per- 
spective of (7). They model the gradient constraint 
equation (2) using Gaussianly distributed errors on gra- 
dient measurements, and a Gaussianly distributedprior 
on velocity v. The resulting maximum aposteriori solu- 
tion is similar to (8), and yields a covariance matrix 
for the velocity estimates. We found that this modifica- 
tion does not change the accuracy significantly but it 
does suggest that unreliable estimates be identified 
using the eigenvalues of ATW2A, kl >-- X2, which de- 
pend on the magnitudes of the spatial gradients, and 
their range of orientations. Although Simoncelli et al. 
suggested using the sum of eigenvalues, we found that 
the smallest eigenvalue alone was somewhat more reli- 
able. Therefore, in our implementation, if both kl and 
k2 are greater than a threshold ~-, then v is computed 
from (8). If kt -> r but k2 < r,  then a normal veloc- 
ity estimate is computed; and if kl < 7-, no velocity 
is computed. Unless stated otherwise, we used r = 1.0. 
Interestingly, this also gives us two ways of computing 
normal velocities: (1) from the gradient constraint (3), 
and (2) from this LS minimization. Results from both 
methods are given below. 

NageL Nagel was one of the first to use second-order 
derivatives to measure optical flow (Nagel 1983, 1987; 
Nagel & Enkelmann 1986). As with Horn and Schunck, 
the basic measurements are integrated using a global 
smoothness constraint. As an alternative to the con- 
straint in (5), Nagel suggested an oriented-smoothness 
constraint in which smoothness is not imposed across 
steep intensity gradients (edges) in an attempt to handle 
occlusion (Nagel 1983, 1987; Nagel & Enkelmann 
1986). The problem is formulated as the minimization 
of the functional 

o~ 2 

IIvlIl  + 

X [(RxIy --  uylx) 2 + (vxI r - vxlx) 2 

+ + + + # ) j  dy (11) 
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Minimizing (11) with respect to v attenuates the varia- 
tion of the flow Vv in the direction perpendicular to the 
gradient. As suggested by Nagel (1987), we fix 6 = 1.0. ~ 
Also, unless otherwise stated we set ot = 0.5. 

With the use of Gauss-Seidel iterations, the solution 
may be expressed as 

U k+l = ~(U k) -- Ix(Ix~(uk) + Iy~(V k) + It) 
I2 + I2 + ot2 

vk+l = ~(vk ) __ [y(lx~(U k) + Iy~(V k) + It) 
+ 12 + (12) 

In these equations, k represents the iteration number, 
and ~(u k) and ~(v k) are given by 

~(u k) = ft k _ 2Ixlyuxy - qT(Vuk ) 

~(vlC) = ~k _ 2Ixlyvxy _ qT(Vvk ) 

where 

1 VI  r lyy 
q -  Fx + I2 + 26 -Ixy Ixx 

+ 2 ~x~ Iy]~ WI 

u k and v~ denote estimates of the partial derivatives xy 
of v k, t~ k and 9 k are local neighborhood averages of u k 
and v k, and W is the weight matrix 

w = + + L -I Iy + 

In our implementation, all velocities are set to zero 
initially. The image sequence is presmoothed with a 
Gaussian kernel with a standard deviation of 1.5 pixels 
in space and time? Intensity derivatives were computed 
using four-point central-difference operators, cascaded 
in different directions to get the second derivatives. 
First-order velocity derivatives were computed using 
two-point central-difference kernels, ~A(1, 0, -1), and 
second-order derivatives were computed as cascades 
of first-order derivatives. We used 100 iterations to ob- 
tain the results reported here. Details of our implemen- 
tation can be found in (Barron et al. 1993). 

Uras, Girosi, Verri, and Torre. The other second-order 
technique considered here is based on a local solution 
to equation (4). Following Uras et al. (1988), (4) may 
be solved for v wherever the Hessian H of I(x, t) is 
nonsingular. In practice, for robustness, they divide the 
image into 8 × 8 pixel regions. From each region they 
select the 8 estimates that best satisfy the constraint 
I I M V I  I I ~ I I v i ,  l t, where M =- (Vv) r. Of these they 

choose the estimate with the smallest condition number 
r(H) of the Hessian in equation (4) as the velocity for 
the entire 8×8 region. 

Our implementation presmooths the image sequence 
with a Gaussian kernel with a standard deviation of 3 
pixels in space and 1.5 frames in time? Derivatives of 
I(x, t) and v were computed using four-point central- 
difference operators, cascaded in different directions 
to get the second derivatives. Although Uras et al. 
suggest that r(H) be used as a confidence measure for 
the velocity estimates, we found that the determinant 
det(H) (the spatial Gaussian curvature of the smoothed 
input) is more reliable. Therefore, when reporting 
error statistics, we extract subsets of velocity estimates 
using the constraint: det(H) >_ 1.0 (unless stated 
otherwise). 

2.2 Region-Based Matching 

Accurate numerical differentiation may be impractical 
because of noise, because a small number of frames 
exist, or because of aliasing in the image-acquisition 
process. In these cases differential approaches may be 
inappropriate and it is natural to turn to region-based 
matching (Anandan 1989; Burt et al. 1983; Glazer et al. 
1983; Little & Verri 1989; Little et al. 1989). Such ap- 
proaches define velocity v as the shift d = (d x, dy) 
that yields the best fit between image regions at different 
times. Finding the best match amounts to maximizing 
a similarity measure (over d), such as the normalized 
cross-correlation or minimizing a distance measure, 
such as the sum-of-squared difference (SSD): 

SSOa,2(x; d) = ~ ~ W(i, j )  
j=-n i=-n 

× [Ii(x + (i, j ) )  - I2(x + d + (i, j))12 

= W(x) * [Ii(x + d)] 2 (13) 

where Wdenotes a discrete 2-D window function, and 
d = (dx, dr) takes on integer values. 

There is a close relationship between the SSD dis- 
tance measure, the cross-correlation similarity measure, 
and differential techniques. Minimizing the SSD dis- 
tance amounts to maximizing the integral of product 
term Ii(x)Ie(x + d). Also, the difference in equation 
(13) can be viewed as a window-weighted average of 
a first-order approximation to the temporal derivative 
of I(x, t). 
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Anandan. The first matching technique considered here, 
reported by Anandan (1987, 1989), is based on a Lapla- 
cian pyramid and a coarse-to-fine SSD-based matching 
strategy. The Laplacian pyramid (Burt & Adelson 1983) 
allows the computation of large displacements between 
frames and helps to enhance image structure, such as 
edges, that is often thought to be important. 

We begin at the coarsest level where displacements 
are assumed to be 1 pixel/frame or less. SSD minima 
are first located to pixel accuracy by computing (i.e., 
sampling) SSD values in a 3×3 search space (i.e., dx 
and dy take values -1, 0, and 1 pixel/frame), using a 
5×5 Gaussian for W(x). Subpixel displacements are 
then computed by finding the minimum of a quadratic 
approximation to the SSD surface (about the minimum 
SSD value found with integer displacements d). As sug- 
gested by Anandan, Beaudet operators were used to 
estimate the quadratic surface parameters (Beaudet 
1978). Confidence measures, Cmin and Cmax, are de- 
rived from the principle curvatures, Cmin and Cma×, of 
the SSD surface at the minimum: 

Cm~x 
Cmax = kl + kaSmin + k3 Cmax 

Cr~ (14) 
Cmin = kl + k2Smin + k3 Cmin 

where kl, k2, and k3 are normalization constants, and 
Smm is the SSD value at the minima. Anandan uses k I = 
150, k2 = 1, and k 3 = 0 (see Anandan 1987, p. 130). 

Anandan also employs a smoothness constraint on 
the velocity estimates, taking Cmin and Cma x into ac- 
count, by then minimizing 

f f  (Ux2 + Uy 2 + r 2 + Vy 2) + Cmax(V" ema x -- 

V0 × emax) 2 + Cmin(V " emin -- V0 " emin) 2 (15) 

w h e r e  ema x an d  emi n are the directions of maximum 
and minimum curvature of the SSD surface at the 
minimum, and Vo denotes the displacements propa- 
gated from the higher level in the pyramid. Using 
Gauss-Seidal iterations Anandan derives the following 
equation: 

vk+l = ,~k + Cmax [(Vo - ,~k) . emax]emax 
Cm~x + 1 

.q_ Cmin 
Cmin + 1 [(Vo - ~ 7k) " emin]en~ (16) 

where ffk is the neighborhood average of v k computed 
using mask 

1E 101 o 1 
1 0 

Initially, ,~0 is set to v0. Anandan allows 10 iterations 
to achieve convergence. 

Matching and smoothing are performed at each level 
of the Laplacian pyramid. When moving from coarser 
to finer levels the initial 3 ×3 SSD search area is deter- 
mined by projecting the coarser-level estimate at each 
pixel to all pixels in a 4 ×4 region at the next-freer level 
so that each pixel at the finer level has 4 initial guesses. 
The SSD search area is then the union of the 3x3 areas 
centered at each of the 4 initial displacements. We used 
a Laplacian pyramid with two or three levels depending 
on the range of speeds in the image sequence we exam- 
ine3 We attempted to extract subsets of estimates using 
a threshold on the confidence measures suggested by 
Anandan, that is, cw~ and Cmax. However, as discussed 
below, we did not find such measures to be reliable. 

Singh. We also implemented Singh's two-stage match- 
ing method (Singh 1990, 1992). The first stage is based 
on the computation of SSD values with three adjacent 
band-pass filtered images, I_l, I0 and 1+1:3 

SSD0(x, d) = SSD0,1(x, d) + SSD0,_I(x, - d )  (17) 

where SSDi,j is given in (13). Adding two-frame SSD 
surfaces to form SSD 0 tends to average out spurious 
SSD minimum due to noise or periodic texture. Singh 
then converts SSD0 into a probability distribution using 

Rc(d ) = e-kSSDo (18) 

where k = - l n  (0.95)/(minimum (SSD0)). ~ The sub- 
pixel velocity vc = (Uc, Vc) is then computed as the 
mean of this distribution (averaged over the integer dis- 
placements d: 

Re(d) dx 
u¢ = E R~(d) 

Re(d) dy (19) 
v~ = ~ Rc(d) 

As this only works well when the Re(d) is nearly sym- 
metrical about the true velocity, Singh suggests a 
coarse-to-fine strategy using a Laplacian pyramid as 
in Anandan (1987, 1989) so that the effective SSD sur- 
face is centered at the true displacement. This also 
allows for large speeds and produces computational 
savings. Finally, Singh suggests the eigenvalues of the 
inverse covariance matrix as measures of confidence, 
where the covariance matrix is given by 



Performance o f  Optical Flow Techniques 49 

1 
Sc ~ Rc(d) 

IE , Rc(d)(d x - Uc) 2 

RAd)(dx - u~)(dy - v~) 
Rc(d)(d x - Uc)(dy - 

lCc(d)(dy - Vc) 2 vc]  
(20) 

In our implementation of step 1 we use a single reso- 
lution: The SSD surface is computed for a wide range 
of integer displacements, with - 2 N  < d x, dy < 2N, 
where N :is as large as 4 pixels. Like Singh, in (13), 
we use a uniform window W of width 5 (unless speci- 
fied otherwise). From this (4N + 1) × (4N + 1) SSD 
surface we extract a (2N + 1) × (2N + 1) subregion 
about the minimum found within the central portion 
of the original search window (i.e., for displacements 
between - N  and N).7 Our goal was to extract the SSD 
surface sampled symmetrically about the minimum, to 
better satisfy the symmetry assumption for the distribu- 
tion that was mentioned above. For N = 4 this yields 
a 9×9 SSD patch about the integer velocity from within 
the 17×17 original SSD surface. 

The second step in the algorithm propagates velocity 
using neighborhood constraints. That is, it is assumed 
that a weighted least-squares velocity estimate Vn = 
(Un, Vn) could be derived from velocities vi = (ui, vi) 
in its local (2w + 1) x (2w + 1) neighborhood as 
follows: 

]~i en(Vi)Ui 
Un -- ~'i Rn(vi)  

~i Rn(Vi)vi (21) 
v~ - ~i Rn(vi) 

where Rn(vi) is a Gaussian function of the distance 
between the center of the neighborhood and the location 
of the estimate vi. Although Singh used w = 1, we 
found better results with w = 2. The corresponding 
covariance matrix is 

1 
s.  

z~ R~(v~) 

I ~i en(vi)(Ui -- Un) 2 Zi gn(Vi)(Ui - Un)(Vi - •n) 

]~i Rn(vi)(ui - Un)(Vi - Vn) ]~i Rn(vi)(vi - Vn) 2 J 

(22) 

The final velocity estimate, v = (u, v), is chosen to 
minimize 

f f (v - v°)rSn (V-Vn) 
+ (V -- Vc)TSc-I(v -- V e ) d x  dy  (23)  

Here, Vc and Sc are derived directly from intensity data 
in step 1, while v, and Sn require the velocities to be 
known at each neighboring point and cannot be com- 
puted explicitly. Singh therefore derives iterative equa- 
tions using the calculus of variations: 

0 
V n = V c 

~n +1 = [ S c  I + (Skn) - l ] - l [ s~- lvc  + (Snk)-lVkn] (24)  

We use a maximum of 25 iterations (less if all velocity 
differences between adjacent iterations is 10 -2 or 
less). Singh uses an SVD to compute the matrix inverse 
in (24), replacing singular values less than 0.1 by 0.1 
to avoid singular systems. 

Finally, eigenvalues of the covariance matrix [Sci 
+ an -1 ] - l ,  denoted X 1 and X2, where Xl -> k2, serve 
as confidence measures estimates for step 2. In report- 
ing error statistics, we threshold the 2-D velocities, re- 
jecting those velocities where Xl - r, for r being 
some constant. We also report error statistics for subsets 
of the velocity estimates from step 1 (19), with a thresh- 
old based on the largest eigenvalue of S c (20). 

2.3 Energy-Based Methods 

A third class of optical flow techniques is based on the 
output energy of velocity-tuned filters (Adelson & 
Bergen 1986; Barman et al. 1991; Bigun et al. 1991; 
Haglund 1992; Heeger 1988; Jahne 1987). These are 
also called frequency-based methods owing to the 
design of velocity-tuned filters in the Fourier domain 
(Adelson & Bergen 1985; Fleet 1992; Stanten & 
Sperling 1985; Watson & Ahumada 1985). The Fourier 
transform of a translating 2-D pattern (1) is 

~(k, o,) = ir0(k) ~(o, + v rk )  (25) 

where Io(k) is the Fourier transform of I(x, 0), (3(k) is 
a Dirac delta function, ~0 denotes temporal frequency, 
and k = (kx, ky) denotes spatial frequency. This shows 
that all nonzero power associated with a translating 2-D 
pattern lies on a plane through the origin in frequency 
space. Interestingly, it has been shown that certain 
energy-based methods are equivalent to correlation- 
based methods (Adelson & Bergen 1985; Santen & 
Sperling 1985) and to the gradient-based approach of 
Lucas and Kanade (Adelson & Bergen 1986; Simon- 
celli, 1993). Indeed, as mentioned below, results re- 
ported by Haglund (1992) and Simoncelli (1993) with 
our image sequences are close to those for our imple- 
mentation of the Lucas and Kanade gradient-based 
method and therefore support this claim. 
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Heeger. Here we consider the method developed by 
Heeger (1987, 1988), formulated as a least-squares fit 
of spatiotemporal energy to a plane in frequency space. 
Local energy is extracted using Gabor-energy filters, 
with 12 filters at each of several spatial scales, tuned 
to different spatial orientations and different temporal 
frequencies. Ideally, for a single translational motion, 
the responses of these filters are concentrated about a 
plane in frequency space. Heeger derives the expected 
response R(u, v) of a Gabor-energy filter tuned to fre- 
quency (kx, ky, ~o) for translating white noise as a func- 
tion of velocity: 

1-47r2~@o~t(ukx + vky + cO) 1 
R(u, v) = exp (UCrxat) 2 + (vayat)2 + (axay)2 

(26) 

where % ~., and at are the standard deviations of the 
Gaussian component of the Gabor filter. 

To derive Heeger's solution, let Mi, 1 <_ i <_ 12, de- 
note the sets of filters with the same orientation tuning, 
and let rhi and R/be  the sum of measured and pre- 
dicted energies, mj and Rj, from filters j in the set M/: 

l~l i = ~ mj and i~ i = ~ gj(u, v) (27) 
jEMi jEMi 

A least-squares estimate for (u, v) that minimizes the 
difference between the predicted and measured motion 
energies is given by the minimum of 

12[ Ri(u, v) l 2 
f (u ,  v) =~]~ m i - l~l i (28) 

i=l R i ( u ,  v) 

Heeger (1987, 1988) has outlined two ways of minimiz- 
ing (28): We implemented the nonlinear minimization 
using Newton's method but the results were unsatisfac- 
tory; in addition to requiring a good initial guess we 
often did not obtain convergence if the measurement 
error was much over 10%. 

For the results reported below we estimated v using 
a modified version of Heeger's parallel method: We 
construct a distribution g(v) = exp (-°95f(v)) for a range 
- N  _< (u, v) < N, the minimums of which gives the 
subpixel velocity estimate, unless the aperture problem 
occurs in which ca:e the minima form a trough. To 
compute the subpixel minima we devised an ad hoc 
method that involves multiresolution minimum selec- 
tion. At the coarsest resolution we compute g(u, v) 
values in the range - N  -< u, v _< N in 0.2 increments. 
If  the spread of the lowest 30 values (their average 
distance from the global minimum denoted here as 

(UM, VM)) is within some threshold (we used a value 
of 3), we assume a 2-D velocity and recompute (u, v) 
at a finer resolution about the minimum. That is, we 
compute g(u, v) values for UM -- 0.2 < u < UM + 0.2 
and VM -- 0.2 <- v <_ VM + 0.2 in 0.01 increments and 
determine the full velocity as the location of the result- 
ing minimum. If the spread of the smallest 30 values 
at the coarsest resolution is large (>  3) we assume a 
normal velocity and fit a straight line through the mini- 
mums, determining the normal velocity as the vector 
from the origin to the closest point on the line. 

Like Heeger, we apply the Gabor filters to each level 
of a Gaussian pyramid; the filter parameters were taken 
from Heeger (1988). Our implementation permits the 
use of any level of the pyramid and, as Heeger suggests, 
we choose the estimate of v from the level that best 
satisfies expected range of speeds for that level. Level 0 
(the image) should be used for speeds between 0-1.25 
pixels/frame, while levels 1 and 2 should be used for 
speeds between 1.25-2.5 and 2.5-5 pixels/frame. 

2.4 Phase-Based Techniques 

We refer to our fourth class of methods as phase-based, 
because velocity is defined in terms of the phase behav- 
ior of band-pass filter outputs. For this report we have 
classified zero-crossing techniques (Buxton & Buxton 
1984; Duncan & Chou 1988; Hildreth 1984; Waxman 
et al. 1988) as phase-based methods because zero- 
crossings can be viewed as level phase-crossings. The 
generalized use of phase information for optical flow 
was first developed by Fleet and Jepson (Fleet 1992; 
Fleet & Jepson 1990). 

Waxman, Wu, and Bergholm. Waxman, Wu, and 
Bergholm (1988) apply spatiotemporal filters to binary 
edge maps to track edges in real time. Edge maps 
E(x, t), based on DOG zero-crossings (Marr & 
Hildreth 1980), are smoothed with a Gaussian filter to 
create a convected activation profile A(x, t): 

A(x, t) = G(x, t; ax, ay, at) * E(x, t) (29) 

Level contours of A(x, t) are then tracked using differ- 
ential methods. However, because the spatial gradient 
of A(x, t) will be zero at edge locations, a second-order 
approach is adopted, applying the constraints in (4) to 
A(x, t). Velocity estimates at edge locations are then 
given by 
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(AxtAyy - AytAxy , AytAxx -- AxtAxy ) 
v = (30) 

- 

where the second derivatives of A(x, t) are computed 
by convolving the appropriate Gaussian derivatives with 
the edge maps. 

In our implementation, the central Ganssian of the 
DOG had a standard deviation of 1.5 pixel-frames and 
the ratio of surround to center sizes was 1.6. For the 
activation profile we used ax = Cry = 2.0 and at = 1.0 
(we require 7 frames for our implementation). Waxman 
et al. also proposed a multiple a method which attempts 
to choose the best velocity at an edge location. For var- 
ious a x = Oy values (we use 1.0, 1.5, and 2.0) we 
choose the velocity that maximizes 

max - - I l v l l  (31) 
trx + ay 

Finally, as suggested by Waxman et al., the Hessian 
of A (i.e., the Gaussian curvature of A given in the de- 
nominator in (30)) provides a confidence measure for 
the velocities: If the Hessian is greater than or equal 
to a threshold r (here we use r = 0.5), then full velocity 
is computed at the edge location. If it is less than r 
we can proceed with a normal velocity calcuation 

1 
(Un, Vn) = - ~ (A~t, Ay,) (32) 

Fleet  a n d  Jepson.  The method developed by Fleet and 
Jepson (1990) defines component velocity in terms of 
the instantaneous motion normal to level-phase contours 
in the output of band-pass velocity-tuned filters. Band- 
pass filters are used to decompose the input signal ac- 
cording to scale, speed, and orientation. Each filter out- 
put is complex-valued and may be written as 

R(x, t) = t)(x, t) exp [i(h(x, t)] (33) 

where O(x, t) and 4~(x, t) are the amplitude and phase 
parts of R. The component of 2-D velocity in the direc- 
tion normal to level-phase contours is then given by 
vn = sn, where the normal speed and direction are 
given by 

-4,,(x, t) v4,(x, t) 
s - IIV4~(x, t ) l l '  n - IIV~b(x, t)ll (34) 

where Vq~(x, t) = (4~x(x, t), thy(X, t)) r. In effect, this 
is a differential technique applied to phase rather than 
intensity. The phase derivatives are computed using the 
identity 

~.(x, t) = Im [n*(x, t) Rx(x, t)] (35) 
In(x, 012 

where R* is the complex conjugate of R. 
The use o f  phase is motivated by their claim that 

the phase component of band-pass filter outputs is more 
stable than the amplitude component when small devia- 
tions from image translations that regularly occur in 
3-D scenes are considered (Fleet & Jepson 1993). How- 
ever, they show that phase can also be unstable, with 
instabilities occurring in the neighborhoods about phase 
singularities. Such instabilities can be detected with a 
straightforward constraint on the instantaneous fre- 
quency of the filter output and its amplitude variation 
in space-time (Fleet & Jepson 1993; Fleet 1992; Jepson 
& Fleet 1991): 

}IV log R(x, t) - i(k,  )11 ~ ~ (36) 

where (k, 60) denotes the spatiotemporal frequency to 
which the filter is tuned, ok is the standard deviation 
of the isotropic amplitude spectra they use, and 7- de- 
notes a threshold that can be used to reject unreliable 
component velocity measurements. As r decreases, the 
filter output is more tightly constrained, and therefore 
larger singularity neighborhoods are detected. Like 
Fleet and Jepson we normally set r = 1.25. A second 
constraint on the amplitude of response is also used to 
ensure a reasonable signal-to-noise ratio. 

Finally, given the component (normal) velocity esti- 
mates from the different filter channels, a linear velocity 
model is fit to each local region. Estimates that satisfy 
the stability and SNR constraints are collected from 
5 x5 neighborhoods, to which the best linear velocity 
model, in a LS sense, is determined. To ensure that 
there is sufficient local information for reliable velocity 
estimates, they introduce further constraints on the con- 
ditioning of the linear system and on the residual LS 
error. To illustrate their results, Fleet and Jepson con- 
sider only 2-D velocity measurements for which the 
condition number is less than 10.0, and the residual 
error is less than 0.5. 

Like Fleet and Jepson (1990, 1992), our implemen- 
tation uses only a single scale tuned to a spatiotemporal 
wavelength of 4.25 pixel-frames. A more complete im- 
plementation would normally have 3-5 scales in total. 
The entire temporal support is 21 frames, and we used 
the same threshold values as those in Fleet (1992) and 
Fleet and Jepson (1990). 
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3 Experimental Technique 

We have examined the performance of these techniques 
on real sequences and synthetic sequences for which 
2-D motion fields were known. Before discussing the 
results, it is useful to describe the image sequences 
used, as well as our angular measures of error. 

3.1 Synthetic Image Sequences 

The main advantages of synthetic inputs are that the 
2-D motion fields and scene properties can be con- 
trolled and tested in a methodical fashion. In particular, 
we have access to the true 2-D motion field and can 
therefore quantify performance. Conversely, it must be 
remembered that such inputs are usually clean signals 
(involving no occlusion, specularity, shadowing, trans- 
parency, etc.) and therefore this measure of performance 
should be taken as an optimistic bound on the expected 
errors with real image sequences. Our synthetic image 
sequences include: 

Sinusoidal Inputs. This consists of the superposition 
of two sinusoidal plane-waves: 

sin (k 1 • x + 6o10 + sin (k 2 • x + o~2t ) (37) 

Although we tested many different wavelengths and 
velocities, the results reported below are based mainly 
on spatial wavelengths of 6 pixels, with orientations of 
54 ° and -27 °, and speeds of 1.63 and 1.02 pixels/frame 
respectively. The resulting plaid pattern translates with 

velocity v = (1.585, 0.863) pixels/frame and is called 
Sinusoidl (see figure la). We also report results on 
another plaid pattern with wavelengths of 16 pixels/cycle 
and a velocity of v = (1, 1), called Sinusoid2. This latter 
signal permits very accurate DOG edge detection and 
numerical differentiation. 

Translating Squares. Our other simple test case in- 
volves a translating dark square (with a width of 40 
pixels) over a bright background (see figure lb). We 
concentrate on a sequence called Square2 which has 
uniform velocity v2 = (4/3, 4/3). 8 We occasionally re- 
port results on a simpler case with velocity Vl = (1, 1) 
called Square1 for which some techniques produce 
better results. This type of input helps to illustrate the 
aperture problem and the inherent spatial smoothing 
in the different techniques. While the sinusoidal inputs 
can be viewed as dense in space and sparse in frequency 
space, the square data is concentrated in space along 
its edges, but richer in its frequency spectra. 

3D Camera Motion and Planar Surface. Following 
Fleet and Jepson (1990) we used two sequences that 
simulate translational camera motion with respect to 
a textured planar surface (see figure 2): In the Trans- 
lating Tree sequence, the camera moves normal to its 
line of sight along its X-axis, with velocities all parallel 
with the image x-axis, with speeds between 1.73 and 
2.26 pixels/frame. In the Diverging Tree sequence, the 
camera moves along its line of sight; the focus of expan- 
sion is at the center of the image, and image speeds 
vary from 1.29 pixels/frame on the left side to 1.86 
pixels/frame on the right. 

Fig. L Frames from the (a) sinusoidal and (b) square sequences. 
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Fig. 2. Surfitce texture used for the Translating and Diverging Tree sequences, and the respective 2-D motion fields. 

Yosemite Sequence. The Yosemite sequence is a more 
complex test case (see figure 3). The motion in the 
upper right is mainly divergent, the clouds translate to 
the right with a speed of 2 pixels/frame, while speeds 
in the lower left are about 4-5 pixels/frame. This se- 
quence is challenging because of the range of velocities 
and the occluding edges between the mountains and at 
the horizon. There is severe aliasing in the lower por- 

tion of the images however, causing most methods to 
produce poorer velocity measurements. 

The sinusoidal and translating square sequences 
were created by the authors. The Translating- and 
Diverging-Tree sequences were created by David Fleet. 
The Yosemite sequence, created by Lynn Quam, was 
provided to us by David Heeger. 
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Fig. 3. (a) One frame from the Yosemite sequence. (b) Correct flow field for the Yosemite sequence. 

3.2 Real Image Sequences 

Four real image sequences, shown in figure 4, were 
also used. 

SRI Sequence. In this sequence the camera translates 
parallel to the ground plane, perpendicular to its line of 
sight, in front of clusters of trees (figure 4a). This is a 
particularly challenging sequence because of the rela- 
tively poor resolution, the amount of occlusion, and the 
low contrast. Velocities are as large as 2 pixels/frame. 

NASA Sequence. The NASA sequence (figure 4b) is 
primarily dilational; the camera moves along its line 
of sight toward the Coke can near the center of the 
image. Image velocities are typically less than 1 pixel/ 
frame. 

Rotating Rubik Cube. In this image sequence (figure 
4c) a Rubik's cube is rotating counter-clockwise on a 
turntable. The motion field induced by the rotation of 
the cube includes velocities less than 2 pixels/frame 
(velocities on the turntable range from 1.2 to 1.4 pixels/ 
frame, and those on the cube are between 0.2 and 0.5 
pixels/frame). 

Hamburg Taxi Sequence. In this street scene (figure 
4d) there were four moving objects: (1) the taxi turning 
the corner; (2) a car in the lower left, driving from left 
to right; (3) a van in the lower right driving right to 
left; and (4) a ~ e s t d a n  in the upper left. Image speeds 
of the four moving objects are approximately 1.0, 3.0, 
3.0, and 0.3 pixels/frame respectively. 

The NASA and SRI image sequences were obtained 
from the IEEE Motion Workshop Database at Sarnoff 
Research Center, courtesy of NASA-Ames Research 
Center and SRI International. The Hamburg Taxi se- 
quence was provided courtesy of the University of 
Hamburg, and the Rubik Cube sequence was provided 
by Richard Szeliski at DEC, Cambridge Research Labs. 

3.3 Error Measurement 

Following Fleet and Jepson (1990; Fleet 1992) we use 
an angular measure of error. Velocity may be written as 
displacement per time unit as in v = (u, v) pixels/frame, 
or as a space-time direction vector (u, v, 1) in units of 
(pixel, pixel, frame). Of course, velocity is obtained 
from the direction vector by dividing by the third com- 
ponent. When velocity is viewed (and measured) as ori- 
entation in space-time, it is natural to measure errors 
as angular deviations from the correct space-time orien- 
tation. Therefore, let velocities v = (Vl, v2) r be repre- 
sented as 3-D direction vectors, ~ -  1/(~/u 2 + v 2 + 1) 
(u, v, 1) r. The angular error between the correct 
velocity vc and an estimate ~e is 

~e = arccos (~'c. ~e~ (38) 

This error measure is convenient because it handles 
large and very small speeds without the amplification 
inherent in a relative measure of vector differences. It 
does have some bias however. For example, directional 
errors at small speeds do not give as large an angular 
error as similar directional errors at higher speeds 
(Fleet 1992). Relative errors of 10% correspond to 
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Fig, 4. One frame is shown from each of the four real image sequences. 

angular errors of  roughly 2.5 ° when speeds are near 
1 pixel/frame. For slower and higher speeds, relative 
errors of 10% correspond to smaller angular errors 
(Fleet 1992). This is illustrated in figure 5. 

A complementary measure is also available for 
errors in measurements of  normal (component) veloc- 
ity. There is a linear relationship between nortnal 
velocity v~ = sn  and 2-D velocity vc; that is n • v c 

- s = 0. All component velocities generated by a trans- 
lating texture pattern should ideally lie on the plane nor- 
mal to Vc. Our error measure for component velocities 
is the angle between the measured component velocity 
and the constraint plane; that is, 

Ce = arcsin (~c"  ~n) (39) 

where ~. - 1/'~/-1 + s 2 (11, - s ) .  
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Fig. 5. Speed in degrees vs. pixelslframe. Reprinted with pemussion from Fleet (1992). For fixed angular velocity errors 6E in (38), errors 
in pixels/frame depend on angular speed. With v represented as a unit direction vector in space-time, we can view velocity in spherical coor- 
dinates, in terms of angular speed 0 v and direction 0 x. From top to bottom in the figure, with ~b e = 1 ° (solid), 2 ° (dashed), and 3 o (dotted), 
the four panels correspond to: (a) speed in pixels/frame: tan (0 v. (b) Absolute speed errors (pixels/frame): tan (0v) - tan (0 v + 6E)- (C) Relative 
speed errors: 100.0 [tan (0v) -- tan (0 v + ~bE)]/tan (0v). (d) Maximum error in direction of motion (in degrees): ~gsin (0v). 

There are many ways in which error behavior may 
be reported. For the synthetic sequences we extract sub- 
sets of  estimates using confidence measures and then 
report the densities of  these sets of  estimates along with 
their mean error and standard deviations. These are pre- 
sented in tables so that different techniques can be com- 
pared on the same inputs. For the real image sequences 
we can only show the computed flow fields and discuss 
qualitative properties, leaving the reader to judge. We 
also refer the interested reader to a revised technical 
report  (Barron et al. 1993) that contains many more 
detailed results including histograms of  errors, images 
of error as a function of image position, and propor-  
tions of  estimations with errors less than 10, 2 ° , and 
3 °-- these proportions provide a good indication of  the 
percentages of  estimates that may be useful for com- 
puting egomotion and 3-D structure. 

4 Experimental Results 

Section 4 reports the quantitative performance of the 
different techniques on the synthetic input sequences, 
discusses the use of  confidence measures and shows 
the flow fields produced by the techniques on the nat- 
ural image sequences. 

4.1 Synthetic Image Sequences 

In reporting the performance of  the optical flow meth- 
ods applied to the synthetic sequences, for which 2-D 
motion fields are known, we concentrate on error sta- 
tistics (mean and standard deviation) and the density 
of  measurements for subsets of  the estimates extracted 
using confidence measures as thresholds. When report- 
ing error  statistics we use a ° _ b ° to denote a mean 
of a degrees with standard deviation b. The techniques 
will be discussed in the order  they were described in 
section 2, with differential methods followed by match- 
ing, energy-based, and then phase-based approaches. 

4.2 Sinusoidal Inputs 

Table 1 summarizes the main results of  the techniques 
applied to Sinusoidl, which are generally very good. 
In fact, because of  the relatively dense, homogeneous 
structure of the input, the collections of flow estimates 
produced by most  of  the techniques have not been 
thresholded using confidence measures. Nor  have the 
signals been smoothed with low-pass filters since they 
will have little effect on performance unless subsampled, 
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as discussed below. Many of the results are self-evident 
from the tables, although several deserve comments. 

Beginning with differential methods, observe that 
our modified version of the algorithm of Horn and 
Schunck (1981), with improved numerical differentia- 
tion, performed better than the original algorithm. As 
one might expect, the accuracy of the original method 
approaches the modified method as the spatial wave- 
length in (37) is increased (for Sinusoid2 the error was 
0.97 ° + 2.62 ° for the original method and 0.86 o _+ 2.39 o 
for our modified version). The large standard devia- 
tions are not very significant as they are caused by 
directional errors near the image boundary. It is inter- 
esting to note that we found considerable variation in 
results as a function of the smoothness parameter k; 
when X = 100 results were noticeably worse. 

Results from the gradient-based method of Lucas 
and Kanade are also good, with accuracy similar to 
that produced by the modified version of Horn and 
Schunck's algorithm which shares the same numerical 
differentiation. Interestingly, we did find with this input 
that the gradient-based method described by Simoncelli 
et al. (1991) produced poorer results (with error statistics 
of 5.23 ° + 0.70°). 

The estimates produced by Nagel's technique are 
also good. More accurate results can be obtained when 
Sinusoid2 is used, as better derivative estimation is 
possible (in this case we found errors of 0.04 ° _ 0.23°). 
We also found that the results were sensitive to certain 
parameters: results were significantly worse with larger 
values of ~. 

While the differential techniques performed well on 
sinusoidal inputs, the matching techniques did not. 
Anandan's technique produced consistent velocity esti- 
mates with the direction reasonably accurate but the 
speed usually poor. The main problem is caused by 
aliasing in the construction of the Laplacian pyramid: 
Although complete, the Laplacian pyramid described 
by Burt and Adelson (1983) produces band-pass chan- 

nels (levels) that contain substantial aliasing when con- 
sidered independently of one another. Only when dif- 
ferent levels are combined does the aliasing cancel to 
provide accurate reconstruction. With sinusoidal inputs 
and a coarse-to-fine control strategy on the Laplacian 
pyramid, aliasing causes major errors at coarse levels 
that are then propagated systematically to finer levels. 

Similar problems would occur with Singh's tech- 
nique, if implemented with a Laplacian pyramid. How- 
ever, a different problem occurred with our implemen- 
tation. With nearly periodic inputs (such as those due 
to textured inputs, sinusoidal inputs or band-pass 
filtered signals) there will be multiple local minima in 
the SSD surface (i.e., ghost matches). Furthermore, 
because the SSD surface is initially evaluated at a small 
number of integer displacements, the global minimum 
may fall midway between integer displacements, in 
which case other (ghost) minima may be mistaken for 
global minima if they occur closer to an integer dis- 
placement. For example, as shown in table 1, when the 
search space is limited to displacements of 2 pixels, 
only one minimum exists within the search space. But 
when displacements of 4 pixels are considered, other 
local minima are chosen consistently. The measurement 
errors are all speed errors of about 6 pixels, which is 
the wavelength of the input components. This sampling 
problem occurs less frequently with natural images 
which lack this exact periodicity, but sampling problems 
will continue to occur unless finer sampling and inter- 
polation of the SSD surface are used. 

For Heeger's (1988) technique (as well as that of Fleet 
and Jepson (1991) see below) reasonable results can only 
be expected when the input frequencies match those in 
the pass-band to which the filters are tuned. In Heeger's 
case there is the additional assumption that the input has 
a flat amplitude spectrum, which is clearly violated by 
our sinusoidal inputs. Violation of this assumption is 
most evident when the frequencies of the component 
sinuoids are not close to the filter tunings, which is the 

Table L Summa/3,  o f  Sinusoidl results. See the text for  a d iscuss ion o f  these results and  the apparent  anomalies .  

Technique Average Er ro r  Standard Deviat ion Densi ty  

H o r n  and  Schunck  (original) 4 .19  o 0 .50  o 100 % 

Horn  and  Schunck  (modified) 2 .55  ° 0 .59  ° 100% 

Lucas  and Kanade  (no thresholding)  2 .47  ° 0 .16  ° 100% 

Uras  et al, (no thresholding) 2 ,59  ° 0.71 ° 100% 

Nagel  2 .55  o 0 ,93  ° 100% 

A n a n d a n  3 0 . 8 0  ° 5 .45 ° 100 % 

Singh (n = 2,  w = 2, N = 2) 2 .24  ° 0 .02  ° 100% 

Singh (n = 2,  w = 2,  N = 4) 91 .71  ° 0 .04  ° 100% 

Waxman  et al. (of = 1.5) 6 4 . 2 6  ° 2 6 . 1 4  ° 12.8% 
Fleet  and  Jepson ( r  = 1.25) 0 .03  ° 0 .01 ° 100% 
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case  for Sinusoidl. Although Heeger ' s  me thod  did not  

p roduce  any results for Sinusoidl, it did produce  good 
results for others. For  example,  for sinusoids with ori-  

entations of  0 ° and 90 °, speeds of  1 p ixel / f rame,  and 
spat iotemporal  wavelengths o f  4 pixels/cycle,  we ob-  
tained errors o f  3.24 o + 0.05 o with a density of  24.3 %. 

To obtain good results wi th  the zero-cross ing  algo- 
r i thm of  Waxman et al. one  must  choose  the standard 
deviat ion o f  the act ivation kernel  so that it is small  

enough to prevent  interaction be tween  adjacent  edges 
and yet big enough to track each edge over  time. More-  
over, zero-crossings must  be  localized to subpixel accu- 
racy (not done  by Waxman et al.)  in o rder  to obtain 
good quanti tat ive results w h e n  the under ly ing  mot ion  

is not  an integer mult iple  o f  pixels. For  example, unlike 

Sinusoidl, the input  Sinusoid2 does satisfy these re- 

quirements ,  in which  case the errors  reduce  to 0.04 ° 

+__ 0.03 ° with a densi ty  of  11 .94%,  the low densi ty 

ref lect ing the densi ty of  edge locations.  
Finally, in F lee t  and Jepson 's  case, the spat iotem- 

poral  wavelength o f  the sinusoid closely matches those 
to which their  filters are tuned, and the results are very  

Table 2. Summary of Square2 2-D velocity results. 

good.  With more  general  input  signals, we found that 

when  input signals have local  power  concentra ted near  
the boundary  o f  a fil ter 's ampli tude spectra (far f rom 

its fil ter tuning),  sl ight errors  appear,  as a bias in the 

component  velocity estimates toward the velocity tuning 

of  the filters. 

4.3 Translating Square Data 

The 2-D velocity estimates and the normal  velocity esti- 
mates  of  the nine techniques  for the Square2 sequence 

are summar ized  in tables 2 and 3. O f  course,  we expect  
normal  estimates along the edges of  the square and 2-D 

veloci t ies  only  at the corners.  F low fields p roduced  by 

the techniques  are  also shown in (Barron et al. 1993); 
these help show the distr ibution of  measurements  and 

hence  the support  o f  the measu remen t  process.  

F r o m  table 2 it  is evident  that several techniques ap- 
pear  to produce  very  poor  results. In  several o f  these 
cases, such as the differential  methods  o f  H o r n  and 
Schunck, and Nagel,  the problem is the lack of  discrim- 

Technique Average Error Standard Deviation Density 

Horn and Schunck (original) 47.21 o 
Horn and Schanck (original) II Vl II ~ 1.0 27.61 o 
Horn and Schunek (modified) 32.81 o 
Horn and Schunek (modified) II v/II --- 1.0 26.46 ° 
Lucas and Kanade ()`2 -> 1.0) 0.21 ° 
Lucas and Kanade (L 2 _> 5.0) 0.14 ° 
Uras et al, (det(H) > 1.0) 0.15 ° 
Nagel 34.57 o 
Nagel II V/II~ --- 1.0 26.670 
Anandan (unthresholded) 31.46 ° 
Anandan (cmi a -> 0.25) 10.46 ~ 
Singh (step 1, n = 2, w = 2) 49.03 o 
Singh (step 1, n = 2, w = 2, )'1 < 5.0) 9.85 ° 
Singh (step 1, n = 2, w = 2, )̀ 1 -< 3.0) 2.02 ° 
Singh (step 2, n = 2, w = 2) 45.16 ° 
Singh (step 2, n = 2, w = 2, )̀ 1 -< 0.1) 46.12 ° 
Heeger 6.16 ° 
Waxman et al. of = 1.5 8.78 ° 
Fleet and Jepson (r = 1.25) 0.07 ° 
Fleet and Jepson (r = 2.5) 0.18 ° 

14.60 ° 100% 
9.86 ° 18.9% 

13.67 o 100% 
10.86 ° 42.9% 
0.16 ° 7.9% 
0.10 o 4.6% 
0.10 o 26.1% 

14.38 ° 100% 
11.84 ° 44.0% 
18.31 ° 100% 
5.36 ° 0.6% 

21,38 ° 100% 
21.09 ° 4.2% 

2.36 ° 1.6% 
21.10 ° 100% 
18.64 o 81.9% 
4.02 ° 29.3% 
4.71 ° 1.1% 
0+02 ° 2.2% 
0.13 ° 12.6% 

Tab/e 3. Summary of Square2 normal/component velocity results. 

Technique Average Normal Standard Deviation Density 

Lucas and Kanade (LS) ()`1 -> 1.0) 0.07 ° 
Lucas and Kanade (LS) ()`t -> 5.0) 0.14 ° 
Lucas and Kanade (Raw) ([[VI]l --- 5.0) 0.12 ° 
Heeger 1.02 ° 
Waxman et al. ay = 1.5 4,28 ° 
Fleet and Jepson (r = 1.25) -0.05 ° 
Fleet and Jepson (r = 2.5) 0.05 ° 

0.06 ° 25.5% 
2.76 ° 25.3% 
2.44 ° 32.5% 
4.35 ° 70.7% 
5.42 ° 3.6% 
0.05 o 17.6% (1.1) 
0.23 ° 65.4% (4.2) 



Performance of Optical Flow Techniques 59 

......... i 11 ttlii!IiIII  ........... iIIiIIItt 
~ ~ : : = : : : = : : t t t ~ l l l l l l ~ h 5 5 t  : . . . . . . . . .  

NIIIIIfIN 
t t H t l X 2 : ~ " "  
. , ,  ~ t t t t t t t t t t t t t f  ~lll:x~.. ,  

(a) Horn and Schunck (b) Nagel 

Fig. 6. Flow fields for Horn and Schunck and Nagel for Square2. 

ination by the algorithm between measurements of nor- 
mal velocity versus 2-D velocity. From the flow fields 
for Horn and Schunck, and Nagel (shown in figure 6), 
for Square2 it is clear that these methods produce nor- 
mal measurements along the edges, which blend into 
2-D measurements at the corners. Although this is 
readily apparent, the algorithms do not provide a way 
of segmenting the measurements into 2-D flow, normal 
velocity or unreliable measurements. Furthermore, 
neither the magnitude of the local gradient nor the local 
energy defined by the objective functionals in (5) or 
(11) could be used as confidence measures in this case. 
This stands in contrast to the Lucas and Kanade 
gradient-based method which integrates measurements 
locally with a clear means of segregating normal from 
2-D velocities based on the eigenvalues of the normal 
matrix in (8) (i.e., the confidence measures). 

The second-order differential method of Uras et al. 
produced accurate results, with a confidence measure 
based on the (spatial) Hessian of the smoothed image 
sequence proving useful. The higher density of esti- 
mates for this method is a consequence of using a single 
estimate for each 8 × 8 region, which limits the spatial 
resolution of the flow field. 

The results for the matching methods are also poor. 
In the case of Anandan's method, we find that the 
smoothing stage produces both normal and 2-D esti- 
mates of velocity, like Horn and Schunck's and Nagel's 

methods above (see figure 6). In this case however, we 
do have a potential confidence measure in Cmin as sug- 
gested by Anandan. However, although it is clear that 
results improve dramatically with the use of this thresh- 
old, the accuracy of the resultant 2-D velocity was still 
reasonably poor. It appears that subpixel measurement 
accuracy is poor and that the threshold is not reliable 
in separating normal from 2-D measurements. 

Singh's algorithm produces visually pleasing but 
somewhat inaccurate results. We find that there is a 
common problem with matching methods with the 
aperture problem. While 2-D velocities are found with 
reasonable accuracy, the SSD minima will be trough- 
like when the aperture problem occurs, in which case, 
the minimum found for the sampled SSD surface at in- 
teger displacements is extremely sensitive to small 
variations along the edge, meaning that normal velocity 
measurements were not trustworthy. Of course, a 
threshold on the eigenvalues of the inverse covariance 
matrix at step 1 are very useful at separating normal 
from 2-D velocities. Unfortunately, all velocities, in- 
cluding the normal velocities, are required for step 2 
of Singh's algorithm. Hence, those normal estimates 
that are poor will corrupt step 2, in which case the 
covariance matrix (at step 2) is of little help. 

The square sequences are clean inputs and purely 
translational. However, Squarel moves an integer multi- 
ple of pixels between adjacent frames, while Square2 
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has subpixel motion with vertical and horizontal and 
vertical speeds of 1.33 pixels/frame, and therefore a 2-D 
speed of 1.89 pixels/frame. While most techniques pro- 
duced similar results in both cases, the zero-crossing 
method of Waxman et al. performs more poorly with 
Square2 than Square1 because our implementation lacks 
subpixel resolution. Compared to the large errors in 
tables 2 and 3 for Square2, our results on Square1 were 
0.09 ° + 0.1 ° for 2-D velocity estimates and 0.04 ° + 
0.3 ° for normal velocities. 

For Heeger's technique, we found that estimates 
from level 1 of the Gaussian pyramid were more accu- 
rate than those from level 0. This is expected since the 
correct velocity (1.33, 1.33) coincides with the appropri- 
ate velocity range for level 1. The flow fields of Barron 
et al. (1992a) also show the large spatial support of this 
method, which is caused by the cascaded convolution 
of the Ganssian low-pass smoothing and the band-pass 
Gabor filters. In this case we obtained 2-D velocity 
estimates near the center of the square. 

Lastly we note that the square data provides a clear 
way of examining the normal velocity estimates as dis- 
tinct from the eventual 2-D velocity estimates. These 
results are reported in table 3. Of the techniques we 
considered, those of Lucas and Kanade, Heeger, 
Waxman et al., and Fleet and Jepson produce both 
full and normal (component) velocity estimates ex- 
plicitly. The method of Lucas and Kanade provides two 
sources of normal velocities, namely, one from the 
gradient constraint directly (3) with the gradient mag- 
nitude as an implicit confidence weighting and the sec- 
ond from the LS minimization in (8) when the aper- 
ture problem prevails (i.e., when the eigenvalues of 
(9), hi -> X2, satisfy )̀ 1 - r but X2 < r for the con- 
fidence threshold r). Table 3 reports normal velocities 
from both sources. 

The phase-based technique of Fleet and Jepson often 
produces several normal-velocity estimates at a single 
image location. Table 3 reports density as two quanti- 
ties: the first gives the density of positions where one 
or more component velocites are recovered and the sec- 
ond (in parenthesis) gives the average number of com- 
ponent velocities at a single point. 

Many of the other techniques could be modified to 
produce normal flows as well: for example, with 
Anandan's approach we could use cn~ "> cmin to in- 
dicate a normal velocity. In Singh's approach, we could 
use large and small eigenvalues of the covariance matrix 
in (20) to discriminate between full and normal veloc- 

ity (like our implementation of the Lucas and Kanade 
approach). However, we have not yet made these modi- 
fications as we did not find these confidence measures 
to be reliable. 

4.4 Realistic Synthetic Data 

We now turn to the more realistic synthetic sequences, 
namely the Translating and Diverging Tree sequences 
and the Yosemite sequence, the results of which are pre- 
sented in tables 4-7. Error statistics of normal (compo- 
nent) velocity estimates computed from a subset of the 
techniques on the Diverging Tree sequence are given in 
table 6. 

The general behavior of the differential techniques 
is similar to that observed above. It is especially inter- 
esting to see the improvement of our modified version 
of the Horn and Schunck algorithm versus the original 
method, which we attribute to the image presmoothing 
and the improved numerical differentiation. One can also 
see that for reasonably smooth motion fields, such as 
those in the Translating and Diverging Tree sequences, 
that the smoothness constraint used to integrate the nor- 
mal constraints performs well. The constraint on gra- 
dient magnitude provides one way to identify regions 
within which estimates may be more reliable. Interest- 
ingly, we also found with these sequences that larger 
values of the smoothness parameter (e.g., X = 100 as 
suggested by Horn and Schunck) yielded somewhat 
poorer results. 

However, despite the improved performance of Horn 
and Schunck's method here, the results remain less ac- 
curate than those of Lucas and Kanade's method, which 
shares the same gradient estimates, and differs only in 
the method used to combine normal constraints. In par- 
ticular, our confidence measure (based on the eigen- 
values of the normal equations (9)) appeared to perform 
very well, allowing us to extract subsets of accurate 2-D 
velocities. One can see from tables 4 and 5 that by 
changing the confidence threshold from )'2 -> 1.0 to 
X2 -> 5.0 we obtained better accuracy, but at the cost 
of a significant reduction in the measurement density? 

It is also worthwhile at this point to comment on 
another observation made during the testing of these 
gradient-based methods and some changes that oc- 
curred since we reported our preliminary results 
(Barron et al. 1992). Our initial implementation quan- 
tized the Gaussian smoothed image sequence with 
8-bits/pixel for storage, prior to the subsequent gradient 



Performance of Optical Flow Techniques 61 

Table 4. S u m m a r y  o f  the Translating Tree 2-D veloci ty results. 

Technique Average Er ro r  Standard Deviat ion Densi ty  

H o r n  and  Schunck  (original) 38 .72  ° 

H o r n  and  Schunck  (original) I1VI II ~ 5.0 32 .66  ° 

H o r n  and  Schunck  (modified) 2 .02  ° 

H o r n  and  Schunck  (modified) It VI  II -> 5.0 1.89 ° 

Lucas  and  Kanade  (X2 - 1.0) 0 .66  o 

Lucas  and Kanade  (~2 ~ 5.0) 0 .56  ° 

Uras  et  al. (unthresholded) 0 .62  ° 

Uras  et al. (det ( H )  _> 1.0) 0 .46  ° 

Nagel  2 .44  ° 

Nagel  [[ V1112 ~ 5.0 2 . 2 4 "  

A n a n d a n  4 .54  ° 

Singh (step 1, n = 2,  w = 2) 1.64 ° 

Singh (step 1, n = 2,  w = 2,  X 1 _< 5.0) 0 .72  ° 

S ingh (step 2,  n = 2, w = 2) 1.25 ° 

S ingh (step 2 ,  n = 2,  w = 2,  XI < 0.1) 1.11 ° 

Heege r  (level 0) 8 .10  ° 

Heeger  (level 1) 4 .53  ° 

W a x m a n  et al .  (cry = 2.0) 6 .66  ° 

Fleet  and  Jepson (z = 2 .5)  0 .32  ° 

Fleet  and  Jepson ( r  = 1.25) 0 .23  ° 

Fleet  and  Jepson ( r  = 1.0) 0 .25  ° 

27 .67  o 100% 

2 4 . 5 0  ° 55 .9  % 

2 .27  ° 100% 

2 .40  ° 5 3 . 2 %  

0 .67  ° 39 .8% 

0 .58  ° 13.1% 

0 .52  ° 100% 

0 .35  ° 4 1 . 8 %  

3.06 ° 100% 
3.31 o 53 .2% 

3 .10  ° 100% 

2 .44  ° 100% 

0 .75  ° 41 .4% 

3.29 ° 100% 

0 .89  ° 9 9 . 6 %  

12 .30  ° - 7 7 . 9 %  

2.41 ° 57 .8% 
10.72 o 1.9 % 

0 .38  ° 74 .5% 

0 .19  ° 4 9 . 7 %  
0.21 o 2 6 . 8 %  

Table 5. S u m m a r y  o f  the Diverging Tree 2-D velocity results. 

Technique Average Er ro r  Standard Deviat ion Densi ty  

H o r n  and Schunck  (original) 12.02 ° 

H o r n  and  Sehunck (original)  II V l  II >-- 5.0 8 .93 ° 

H o r n  and  Schunck  (modified) 2 .55  ° 

H o r n  and  Sehunek (modified) II v/II -> 5.0 1.940 

Lucas  and  Kanade  (~'2 -> 1.0) 1.94 ° 

Lucas  and  Kanade  (~'2 >- 5.0) 1.65 ° 

Uras  et at. (unthresholded) 4 .64  ° 

Uras  et al. (det (H)  _> 1.0) 3.83 ° 

Nagel  2 .94  ° 

Nagel  II V t  112 --> 5.0 3.21 ° 

A n a n d a n  (frames 19 and  21) 7 .64  ° 

Singh (step 1, n = 2, w = 2, N = 4) 17.66 ° 

Singh (step 1, n = 2, w = 2,  N = 4, ~'t < 5.0) 7 .09  ° 

S ingh (step 2,  n = 2 ,  w = 2 ,  N = 4) 8 .60  ° 

Singh (step 2,  n = 2,  w = 2,  N = 4,  X1 -< 0.1) 8 .40  ° 

Heeger  4 .49  ° 

Waxman  et al. (of  = 2.0) 11.23 ° 
Fleet  and  Jepson  ( r  = 2 .5)  0 .99  ° 

Fleet  and  Jepson ( r  = 1.25) 0 .80  ° 

Fleet  and  Jepson (z = 1.0) 0 .73  ° 

1 1 . 7 2  o 100% 

7 .79  ° 5 4 . 8 %  

3 .67  ° 100% 

3 .89  ° 32 .9% 
2 .06  o 48 .2  % 

1.48 ° 2 4 . 3 %  
3.48 o 100% 

2 .19  ° 60 .2% 

3.23 ° 100.0% 

3.43 o 53.5  % 

4 .96  ° 100% 

14.25 ° 100 % 

6 .59  ° 3 .3% 

5 .60  ° 100% 

4 .78  ° 99 .0% 

3 .10  ° 74 .2% 

8.42 ° 4 .9% 

0 .78  ° 6 1 . 0 %  

0 .73  ° 4 6 . 5 %  

0 .46  ° 28 .2% 

computation and least-squares minimization, causing 
relatively noisy derivative estimates. Compared to the 
results in tables 4 and 5, which were based on a floating- 
point representation of the filter outputs, we found that 
when this quantization error is introduced the errors 
for Lucas and Kanade's method grew approximately 
40-50%, and those produced by Horn and Schunck's 
method became several times larger. This suggests that 

Horn and Schunck's method of combining normal con- 
straints (the global smoothness constraint) is signifi- 
cantly more sensitive to noise than is the local least- 
squares method used by Lucas and Kanade, since other 
aspects of the techniques were identical. 

The second-order technique of Uras et al. produced 
good results (both accurate and dense) on the Trans- 
lating Tree sequence, but its results on the next two 
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Table 6. Summary of Diverging Tree normal/component velocity results. 

Technique Average Normal Error Standard Deviation Density 

Lucas and Kanade (LS) (X~ _ 1.0) 
Lucas and Kanade (LS) (X 1 _> 5.0) 
Lucas and Kanade (Raw) (ltVlll > 5.0) 
Heeger 
Waxman et al. af = 2.0 
Fleet and Jepson (~ = 1.25) 
Fleet and Jepson (~" = 2.5) 

1.00 ° 0.83 ° 36.0% 
0.86 ° 0.70 ° 49.0% 
0.77 ° 0.85 ° 53.5% 
1.92 ° 3.18 ° 25.8% 
8.26 ° 11.16 ° 8.8% 

-0 .04  ° 0.78 ° 61.0% (2.1) 
-0.11 ° 1.30 ° 77.3% (5.3) 

Table 7. Summary of Yosemite 2-D velocity results. 

Technique Average Error Standard Deviation Density 

Horn and Schunck (original) 31.69 ° 
Horn and Schtmck (original) II VI II - 5.0 25.33 ° 
Horn and Schunck (modified) 9.78 ° 
Horn and Schunck (modified) [[ VI II - 5.0 5.59 ° 
Lucas and Kanade (X 2 _> 1.0) 4.28 ° 
Lucas and Kanade (X 2 >_ 5.0) 3.22 ° 
Uras et al. (unthresholded) 8.94 ° 
Uras et al. (det (H) _> 1.0) 7.55 ° 
Nagel 10.22 ° 
Nagel II v1112 --- 5.0 6.060 
Anandan 13.36 ° 
Singh (step 1, n = 2, w = 2) 15.28 ° 
Singh (step 1, n = 2, w = 2, X I < 6.5) 12.01 ° 
Singh (step 2, n = 2, w = 2) 10.44 ° 
Singh (step 2, n = 2, w = 2, ~k I ~ 0.1)  10.03 ° 
Heeger (combined) 15.93 ° 
Heeger (level 0) 22.82 ° 
Heeger (level 1) 9.87 ° 
Heeger (level 2) 12.93 ° 
Waxman et al. af = 2.0 20.05 ° 
Fleet and Jepson (r = 1.25) 5.28 ° 
Fleet and Jepson (r = 2.5) 4.63 ° 

31.18 ° 100% 
28.51 ° 59.6% 
16.19 ° 100% 
11.52 o 32.9% 
11.41 ° 35.1% 
8.92 ° 8.7% 

15.61 ° 100% 
19.64 ° 14.7% 
16.51 ° 100% 
12.02 ° 32.9% 
15.64 ° 100% 
19.61 o 100% 
21.43 ° 11.3% 
13.94 ° 100% 
13.13 ° 97.7% 
23.16 ° 44.8% 
35.28 ° 64.2% 
14.74 o 15.2% 
15.36 ° 2.4% 
23.23 ° 7.4% 
14.34 ° 30.6% 
13.42 ° 34.1% 

sequences  are  p o o r e r  by compar i son ,  for  w h i c h  we can  

sugges t  two reasons .  Fi rs t ,  as d i s cus sed  in sec t ion  2.1, 

wh i l e  the  f i r s t -o rder  (gradient )  cons t r a in t  equa t i on  is 

val id  for  s m o o t h  de fo rma t ions  of  the  input  ( inc lud ing  

af f ine  de fo rmat ions ) ,  the  s e c o n d - o r d e r  cons t ra in t s  are 

based  o n  the conserva t ion  of  the  intensi ty gradient ,  and  

a re  (s t r ic t ly  speak ing)  the re fo re  inval id  for  ro ta t ion ,  

d i la t ion  and  shear.  Th i s  is one  of  the  m a i n  d i f fe rences  

b e t w e e n  the  Translating Tree sequence  and  the  o the r  

two. A second  fac tor  is the  a m o u n t  of  a l ias ing in the  

Yosemite sequence,  wh ich  makes  accurate  second-order  

d i f f e ren t i a t ion  dif f icul t .  

Finally,  we ob ta ined  good  resul ts  for the regular iza-  

t ion  a p p r o a c h  of  Nagel .  1° T h e  use  of  11VI I]2 as a con-  

f idence  measu re  was not  ent i re ly  successful  here,  us ing  

It V1112 > 1.0 p r o d u c e d  on ly  s l ight ly  m o r e  accura te  

bu t  c o n s i d e r a b l y  less  d e n s e  results .  In teres t ingly ,  w i th  

the Diverging Tree sequence  this  threshold  actually pro-  

duced  p o o r e r  results.  We also note  tha t  for  m u c h  o f  o u r  

image  data  the second-orde r  der ivat ives  of  intensi ty and  

veloci ty  are small ,  in  w h i c h  case  Nagel ' s  m e t h o d  yields 

s imi la r  resul ts  to H o r n  an d  Schunck ' s .  

Wi th  r e spec t  to m a t c h i n g  t echn iques ,  o b s e r v e  tha t  

a l t hough  b o t h  m e t h o d s  p r o d u c e d  r e a s o n a b l y  good  

resul ts  o n  the  Translating Tree input ,  S ingh 's  resul ts  

a re  s o m e w h a t  be t t e r  than  A n a n d a n ' s .  Th i s  is t rue  even  

o f  the  f i rs t  s tage o f  S ingh ' s  a l g o r i t h m  w h i c h  is con-  

c e r n e d  m a i n l y  w i t h  loca t ing  S S D  m i n i m a .  O n e  r e a s o n  

for  th is  is the  l a rger  n e i g h b o r h o o d  s u p p o r t  in  S ingh ' s  

a lgor i thm;  for  example ,  w h e n  we used  3 x 3  reg ions  

(n = 1 and  w = 1) ins tead  of  5 x 5  reg ions  for  S ingh ' s  

m e t h o d  the  e r ro r s  i nc reased  ( f rom those  r epor ted  in  

t ab le  4)  to 2.13 ° +__ 5.15 ° for  s tage 1 an d  1.35 ° + 1.68 ° 

for  s tage 2. 
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Furthermore, we did not find Anandan's confidence 
measures based on Cmi n and Cma x to be reliable. By 
comparison, we found for Singh's method that the in- 
verse eigenvalues of the covariance matrix at stage 1 
do provide a useful confidence measure, but the inverse 
eigenvalues of the covariance matrix at stage 2 were 
ineffective--small changes in a threshold based on the 
largest eigenvalue dramatically changed the density of 
estimates. The lack of good confidence measures makes 
it difficult to evaluate these methods. 

It is also interesting to observe that both matching 
techniques produced poorer results when applied to the 
Diverging Tree sequence than with the Translating Tree 
sequence. Singh's results are about an order of magni- 
tude worse, especially at step 1 of the algorithm. Al- 
though some of the error may be due to aliasing and 
the confusion between normal and 2-D velocities, we 
find that most of the increase in error is due to subpixel 
inaccuracy. The Translating Tree sequence has veloci- 
ties very close to integer displacements, while the 
Diverging Tree sequence has a wide range of velocities. 
We find that velocities corresponding to noninteger dis- 
placements often have errors two to three times larger 
than those corresponding to integer displacements (pro- 
vided the aperture problem can be overcome). In many 
cases, this is due to the sharpness of peaks in the mass 
distribution formed in (18); that is, they are so sharp 
relative to integer sampling of the SSD surface that they 
are sometimes missed, and the resulting sampled dis- 
tribution appears very broad. 

There may be several possible ways to circumvent 
this problem. One might use coarser temporal sampling 
so that subpixel errors are small relative to actual dis- 
placements, but this involves a host of additional prob- 
lems for matching. Alternatively, a coarse-to-fine ap- 
proach with warping may yield some improvement. In 
any case, it would be useful to have a model for the 
expected behavior of such errors which may be incor- 
porated into confidence measures. 

The results reported here for Heeger's method ap- 
plied to the Translating Tree sequence are from level 1 
of the pyramid because the input speeds coincided with 
its velocity range of 1.25-2.5 pixels/frame. Level 0 was 
used for the Diverging Tree sequence since most of its 
speeds were below 1.25 pixel/frame. For the Yosemite 
sequence velocity estimates were computed at all three 
levels of the pyramid and then combined so that, of the 
three, the velocity estimate from the level of the pyra- 
mid whose speed range was consistent with the true 
motion field was chosen. We also combined the pyra- 

mid levels without using the correct motion fields, 
choosing the estimate from the lowest pyramid level 
whose speed range was consistent with the estimate. 
This produced poorer results (with errors of 13.75 o +__ 
23.06 ° ) than those reported in table 7. 

Of all the techniques we applied to the synthetic data, 
the phase-based method of Fleet and Jepson (1990) pro- 
duced the most consistently accurate results. We found 
that the phase stability threshold is a reliable indication 
of performance in most cases. Table 6 also shows that 
the normal constraints derived from phase information 
are often less biased than those from other methods 
such as gradient-based approaches. 

Although, the phase-based method performs ex- 
tremely well on the Translating and Diverging Tree se- 
quences, it is clear form table 7 that it is not significantly 
better than differential methods on the Yosemite se- 
quence. There are several reasons for this: First, be- 
cause only 15 frames were available in this sequence, 
we had to increase the tuning frequency of the filters 
to reduce the width of support (from 21 to 15 frames) 
and increase the frequency tuning of the filters, thereby 
pushing their pass-bands closer to the Nyquist rate. 
Because of their narrow bandwidths, this causes greater 
sensitivity to aliasing and corruption at high frequencies 
as compared with the Gaussians used by differential 
techniques. To compound this problem, as already 
stated, this sequence contains a significant amount of 
aliasing in certain regions of the image. 

Interestingly, for the Yosemite sequence we found 
that as the phase stability threshold r increases, the 2-D 
velocity errors initially increase, but then begin to de- 
crease significantly. We attribute this to the increasing 
number of component velocities available for 2-D veloc- 
ity computations, slightly increasing the robustness of 
the minimization. Furthermore, although not reported 
here, considerable improvement can be achieved with 
a tighter constraint on the condition number in the LS 
system as reported by Fleet (1992). 

In fact, most techniques perform relatively poorly 
on this image sequence. This is due in part to the alias- 
ing and in part to the occlusion boundaries. The major 
occlusion boundary that introduces error is of course 
the horizon. This is evident in the flow fields produced 
by several of the different techniques shown in (Barron 
et al. 1993). If the sky is excluded from the error anal- 
ysis, most techniques show improved performance. For 
example, the differential methods of Lucas and Kanade 
and Uras et al. improved from 4.28 ° _+ 11.41 ° and 
7.75 ° _+ 19.64 °, to 2.80 ° +_ 3.82 ° and 3.37 ° + 3.37 ° 
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respectively, and the phase-based method of Fleet and 
Jepson improved from 4.63 o + 13.42 ° to 2.97 ° _+ 
5.76 °. In all these cases the density of estimates is 
effectively unchanged. 

4.5 Confidence Measures 

One of our major discoveries in comparing techniques 
has been the importance of confidence measures, that 
is, some means of determining the reliability of the 
computed velocities. All techniques produce velocity 
estimates whose accuracy varies dramatically with the 
structure of the underlying signal and the 2-D motion. 
In reporting error statistics above, we used confidence 
measures as thresholds to extract subsets of velocity 
estimates. Those techniques that appear to perform well 
often do so because we are able to isolate the more 
reliable measurements. Confidence measures also prove 
useful to distinguish locations at which 2-D velocity 
versus normal velocity is measured. 

To justify the use of these confidence measures it 
is important to examine error behavior and the density 
of estimates as functions of the confidence measures, 
to ensure their reliability over a wide range of confi- 
dence values. 11 In what follows we summarize our main 
results, concentrating on the techniques that produced 
reasonably good results, namely, those of Fleet and 
Jepson (1990), Lucas and Kanade (1981), Anandan 
(1987, 1989), Uras et al. (1988), and Singh (1990, 1992). 
Further quantitative details on the confidence measures 
can be found in Barron et al. (1993). 

With respect to first-order differential methods, there 
are several points of interest. We first reiterate that the 
weighted minimization used to estimate 2-D velocity 
from the normal constraints involves an implicit weight- 
ing of each normal constraint by the magnitude of its 
spatial gradient. In most cases this was found to corre- 
late well with accuracy. As confidence measures for the 
2-D velocity estimates we have used the trace of the 
normal matrix (9) as suggested by Simoncelli et al. 
(1991) and a measure based solely on the magnitude 
of the smallest eigenvalue of (9), k2. In doing so we 
often observed that the smallest eigenvalue alone is the 
better measure of confidence. There are several possi- 
ble reasons for this: First note that the occurrence of 
the aperture problem is signaled primarily in the 
smallest eigenvalue; the sum of the eigenvalues can be 
arbitrarily large while the system remains singular due 
to the aperture problem. Second, although significant 

errors in gradient measurement are manifested in 
smaller eigenvalues, there are other sources of error 
that are not, such as differences between the 2-D motion 
field and the velocity of level-intensity contours. 

With respect to second-order differential methods, 
Uras et al. suggested a confidence measure based on 
the condition number ~(H) of the (spatial) Hessian of 
I(x, t). We have also examined the use of the determi- 
nant of the Hessian det(H) which also reflects the 
magnitudes of the second derivatives. Although K(H) 
is useful in certain cases, we find that det(H) is more 
consistently reliable, producing better results on the 
three realistic synthetic sequences tested in section 4.4. 
We also observed similar behavior with the four natural 
image sequences. 

Anandan suggested the use of Cm~x and c~i~ as con- 
fidence measures based on the principal SSD curva- 
tures. However, we did not find them to be reliable. 
Error often appeared independent of Cmin, and occa- 
sionally increased when the estimates were thresholded 
with it. We believe the problem with using Cmin as a 
threshold lies in the smoothing steps after processing 
each level of the Laplacian pyramid. Although large 
Cmin and Cma x values should indicate image areas where 
there is significant local structure that permits the aper- 
ture problem to be resolved, the smoothing sometimes 
negates this. As welt, if errors occur at coarse scales, 
then displacement estimates at subsequent scales are 
generally poor, and the SSD structure is bound to be 
of little help. 

Singh's method involved confidence measures based 
on covariance matrices at both stages of computation 
(S c in stage 1 (20), and [S~ -1 + Snl] -1 in stage 2). 
Because larger values of the inverse eigenvalues should 
indicate greater confidence, the smallest inverse eigen- 
value might be taken as a single confidence measure. 
Interestingly we find the eigenvatues of stage 1 to be 
more useful than those of stage 2. In fact, we find little 
if any correlation between the magnitude of inverse 
eigenvalues at stage 2 with the accuracy of the estimates. 
Moreover, we find that the resulting confidence meas- 
ures are very sensitive to the choice of k in (18). It is 
also interesting to reiterate that errors in Singh's match- 
ing method appeared higher for velocities midway be- 
tween integer displacements. Ideally, the confidence 
measure should reflect this. 

For the phase-based approach of Fleet and Jepson 
we used confidence thresholds on both the normal 
velocity estimates, and on the LS system used to 



Performance of Optical Flow Techniques 65 

estimate 2-D image velocity. As suggested by Fleet and 
Jepson, we fred that their stability constraint is impor- 
tant, as well as constraints on the conditioning of the 
LS system. Both correlate well with errors and appear 
to produce consistently good results across all the se- 
quences with fixed thresholds (with the stability con- 
straint r between 1.0 and 2.0 and the condition number 
threshold between 5 and 10). One problem with the 
phase-based method is that several different constraints 
are simultaneously available, and although Fleet and 
Jepson used them as thresholds, it would be better if 
they were combined in the form of a single confidence 
measure, rather than as a set of thresholds. 

4.6 Real Image Data 

Finally, figures 7 through 15 show subsampled versions 
of the flow fields produced by the various techniques 
when applied to the real image sequences shown in 
figure 4. Parameters and confidence thresholds of the 
various methods have been kept the same as those used 
in the synthetic sequences above (except where noted) 
and are reported in the captions. 

Although most of the results are self-evident, we 
draw the reader's attention to several instances of behav- 
ior already mentioned when discussing the synthetic 
data. With natural image sequences it is often difficult 
to see differences among the different techniques, since 
errors of 10% or 20% are not easily discerned at this 
resolution. Also, other errors are not always noticed, 
such as normal velocities mistaken for 2-D velocities. 

Among the main problems outlined in sections 4.2- 
4.5, for those methods that integrate normal constraints 
with global (regularization) smoothness constraints, is 
the lack of a confidence measure that allows one to dis- 
tinguish a normal velocity estimate from 2-D velocity 
estimates. This point was most clear when comparing 
Horn and Schunck's method to the local explicit method 
of Lucas and Kanade. There is also clear evidence for 
this in the flow fields produced by these two methods 
in figures 7 and 8, for example, in the NASA sequence 
just below the pop can in the bottom-middle and in the 
Rubik sequence at the bottom of the turntable). Similar 
errors are evident with other techniques that employ 
global smoothness assumptions, such as those of Nagel 
and Anandan. 

The problems with matching methods, such as 
Singh's method, with subpixel velocities and some 
degree of dilation are evident in NASA sequence. Most 

velocities in this case were less than I pixel/frame, and 
subpixel accuracy is crucial to success on this sequence. 
Other problems that are evident with matching methods 
are the gross errors that arise from aliasing and prob- 
lems choosing an incorrect local SSD minima in the 
first stage of processing. 

The techniques that performed well, namely the dif- 
ferential and phase-based methods of Lucas and 
Kanade, Uras et al., and Fleet and Jepson, also produce 
good results on these sequences. In particular, note that 
although the method of Uras et al. produces a somewhat 
sparser set of estimates than other methods, the density 
is competitive. In the case of Fleet and Jepson, it is 
interesting to note the extremely good results through 
the ground plane toward the front of the SRI tree com- 
pared with the problems caused by the occlusions in 
the trees above. In the case of the Hamburg Taxi se- 
quence, the lower-contrast moving objects appear 
quickly as the contrast threshold on the phase-based 
component measurements is relaxed slightly. 

5 Summary 

This article compares the performance of a number of 
optical flow techniques, emphasizing the accuracy and 
density of measurements. We implemented nine tech- 
niques, including instances of differential methods, 
region-based matching, energy-based and phase-based 
techniques. They are the methods reported by Horn and 
Schunck (1981), Lucas and Kanade (1981, t984), Uras 
et al. (t988), Nagel (1987), Anandan (1987, 1989), Singh 
(1990, 1992), Heeger (1988), Waxman et al. (1988), and 
Fleet and Jepson (1990, 1992). This allows a compari- 
son of the performance of conceptually different tech- 
niques as well as comparisons among different instan- 
tiations of conceptually similar approaches. 

Both real and synthetic image sequences were used 
to test the techniques. In both cases, we chose sequences 
that were not severely corrupted by spatial or temporal 
aliasing. 

Of these different techniques on the sequences we 
tested, we fred that the most reliable were the first- 
order, local differential method of Lucas and Kanade, 
and the local phase-based method of Fleet and Jepson. 
Although not as consistent, the second-order differen- 
tial method of Uras et al. also performed well. Only 
these approaches performed consistently well over all 
of the image sequences tested, with measures of con- 
fidence at the different stages of computation to detect 
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F/g. 7. Flow fields for the modified Horn and Schunck technique (spatiotemporat Gaussian presmoothing and four-point central differences) 
applied to real-image data. The velocity estimates were thresholded using II VIII >- 5.0. 

and/or remove unreliable measurements. The lack of 
reliable confidence measures is a serious limitation of 
several of the other approaches. 

With respect to the class of differential approaches 
tested we can draw several conclusions of general inter- 
est. The first concerns the importance of numerical dif- 
ferentiation and spatiotemporal smoothing. With both 

first- and second-order differential techniques, the 
method of numerical differentiation is very important-- 
differences between first-order pixel differencing and 
higher-order central differences were very noticeable. 
Along the same lines, some degree of spatiotemporal 
presmoothing to remove small amounts of temporal 
aliasing and improve the subsequent derivative estimates 
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Fig. 9. Flow fields for the technique of Nagel applied to real-image data. With the real-image sequences we found that Nagel's method required 
greater amounts of spatial presmoothing+ Here we used a Gaussian filter with standard deviation of 3+0 in space and 1.5 in time. No thresholding 
was performed. 

found the local  methods to be more robust with respect 
to errors in gradient measurement  caused by quantiza- 
tion noise.  A clear example of  the difference between 
the two approaches is apparent in the different errors 
produced by the Lucas and Kanade method and our 
modi f ied  version of  the Horn and Schunck method,  

since they share the same spatiotempoml derl"vative esti- 
mates. One of  the main reasons for this distinction con- 
cerns the existence of  a conf idence  measure to distin- 
guish estimates of  normal velocity  from 2 - D  velocity. 
In the case of  Lucas and Kanade's method,  we  found 
that the s ize of  the smallest  e igenvalue o f  the normal  
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Fig. 11. Flow fields for the technique of Anandan applied to real-image data. The results are unthresholded. 

(e.g., dilation) increases. This is evident when com- 
paring the results from the Translating Tree and Diverg- 
ing Tree sequences. As discussed above, this problem 
is consistent with the underlying assumptions of the 
approach. 

We now turn to the matching techniques, both of 
which produced results that were generally poorer than 

those from the better differential methods. One of the 
main problems we find with the SSD-based matching 
techniques is their ability to estimate subpixel displace- 
ments. With image translation and higher speeds they 
appear to perform well, but when the motion field in- 
volves small velocities with a significant dilational com- 
ponent the estimated displacements are often poor. In 
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Fig. 12. Flow fields produced by the technique of  Singh applied to real-image data. All flow fields are computed with n = 2, w = 2 and 
N = 4. No thresholding was employed. 

these cases it appears that SSD-based estimates of dis- 
placements are more accurate with integer displace- 
ments than subpixel velocities. 

As a result of  the relatively poor displacement esti- 
mates from the SSD minimization, the neighborhood 
smoothness constraints employed by both Singh and 
Anandan are important to the success of these methods. 

At the same time, however, we found that the confi- 
dence measures suggested for both approaches were not 
very effective. The confidence measures suggested by 
Singh appeared to work somewhat better than those of 
Anandan's techniques, in that they were generally corre- 
lated with the velocity errors. A problem in Anandan's 
approach, like that of  Horn and Schunck was the 
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Fig. 13. Flow fields for the technique of Heeger applied to real-image data. The results shown for Heeger's method were based on all three 
levels of the Gaussian pyramid, choosing the estimates with speeds that are consistent from their respective levels of the pyramid (as discussed 
in section 2.1). When consistent estimates are produced from more than one level, we choose the velocity estimate from the lowest level. 

inability to distinguish normal from 2-D estimates. In 
Singh's technique, they were more effective for step 1 
of  the computation than for the final velocity estimates 
of  step 2, where they were largely ineffective. While 
matching techniques did not produce the most accurate 
velocity estimates among the techniques we examined, 

it should be restated that, as compared to the relatively 
large temporal duration of  support used by the most 
successful techniques, these matching approaches used 
either 2 or 3 frames only. 

The final techniques considered include energy- 
based techniques and phase-based approaches. Although 
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Fig. 15. Flow fields for the Fleet and Jepson technique applied to real-image data, All flow fields were produced with a threshold of r = 1.25. 

Other parameters were identical to those used by Fleet. 

optimization problem, combined with the assumptions 
underlying the approach (e.g., translating white noise) 
will make this approach difficult to employ. 

The phase-based approach of Fleet and Jepson (1990 
and 1992) produced the most accurate results overall. 
However, there are several issues worth noting for our 
implementation of this technique. First, we find that 

this technique is sensitive to temporal aliasing in the 
image sequences because of the frequency tuning of the 
filters. A second issue concerns the potential number 
of confidence measures. Fleet and Jepson proposed 
several constraints on phase stability and signal con- 
trast (SNR) to weed out poor normal-velocity estimates. 
It would be usefi~ to have these combined into a single 
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confidence measure that would facilitate a more general 
weighted LS solution to the 2-D velocities. A third 
problem with our current implementation of the phase- 
based approach is its high computational load. Like 
Heeger's method and other frequency-based methods, 
it involves a large number of filters, which at present 
is the main computational expense. However, we expect 
that with the appropriate hardware in the near future 
the filtering should cease to be a severe limitation, and 
all these techniques could be implemented at frame 
rates. It is also important to note that all our filter out- 
puts were stored in floating point and were not sub- 
sampled (except in cases involving the Laplacian pyra- 
mid). More efficient encodings of the filter output 
should be possible with subsampling and quantization 
of the filter outputs as in Fleet and Jepson (1990) with 
only slight reductions in accuracy. 

Finally, it is important to restate and qualify the con- 
ditions under which these tests were performed. First, 
we assumed that temporal aliasing was not a severe 
problem and that intensity (or filtered versions) were 
differentiable. As discussed earlier, if temporal aliasing 
is severe, then other approaches must be considered, 
such as coarse-to-fine control strategies. Second, we 
have considered relatively simple image sequences, 
without large amounts of occlusion, specularities; mul- 
tiple motions, etc., and our quantitative measures of 
performance should be taken as lower bounds on the 
expected accuracy under more general conditions. 
Third, most of the implementations considered here in- 
volved only one scale of filtering, and would produce 
better results with multiscale implementations. This is 
true of most techniques, including those of Lucas and 
Kanade (1981, 1984) and the phase-based approach of 
Fleet and Jepson (1990 and 1992). 
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Notes 

1. Smaller values of 6 were tested but they produced numerical in- 
stabilities unless greater blurring was used. 

2. The real image sequences required more smoothing with a 
standard deviation of 3.0 in space instead of 1.5 to obtain good 
results. The synthetic test data produced better results with less 
smoothing. 

3. In the original article (Uras et al. 1988) the authors used stan- 
dard deviations of 5 in space and 1 frame in time. 

4. We tested our implementation of Anandan's algorithm on the same 
Mandrill set of images he used (Anandan 1987, p. 132). This 
involves a translation of the second image by v = (7, 5). Our 
results were almost identical to those reported by him. 

5. Filtered with impulse response 8(x) - G(x) where/~(x) is a Dirca 
delta function and G(x) is an isotropic Gaussian with standard 
deviation 1.0. 

6. When rain (SSDo) = 0 we choose the smallest nonzero value 
of SSD 0 to compute k. 

7. In the event there are two or more SSD minima (with a small 
threshold), we choose the SSD minimum that corresponds to 
the smallest displacement. 

8. Square 2 was created by blurring and then down-sampling a larger 
version of the images that translated at an integer velocity of 4 
pixels/frame. 

9. The Translating and Diverging Tree sequences have also been 
used by Simoncelli (1993) with his gradient-based technique and 
by Haglund (1992) with his energy-based technique. Both get 
results comparable to those reported here with the Lucas and 
Kanade method. 

10. This contrasts with the results reported in a technical report 
(Barton et al. 1992a) where a different method of computing in- 
tensity and velocity derivatives was employed. 

11. Note that we are not proposing that these estimates be used as 
thresholds to extract subsets of measurements in general. Rather, 
we imagine that the majority of the velocity estimates will often 
be retained along with their respective confidence values which 
could then be used as weights in subsequent computation. 
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