Unit 3

Basic Syntax

Alberto Casagrande
Email: acasagrande@units.it

a.a. 2019/2020



The C Programming Language

The C programming language is an imperative language.

Programs are sequences of instructions.



Trust Your Master

At the beginning, all the programs will have this structure

Hinclude <stdio.h>

int main(int argc, char xargv|[])

{

return O;

By the end of the course, you'll have all the details.




Instructions

Are basic “commands” for the computer.

@ They are syntactically closed by the symbol “;" (semi-column)

@ More than one instruction can lay on the same line



Comments

Even if you are an expert, unraveling the meaning of a sequence of
instructions may be difficult.



Comments

Even if you are an expert, unraveling the meaning of a sequence of
instructions may be difficult.

It is really important to comment code



Comments

In ANSI C everything is preceded by “/*" and followed by “*/" is
a comment.

It can be longer that one line.

If you come from either C++ or Java, pay attention: sigle line
comment (i.e., //) is not standard.



Commento con " /*" e "*/"

int y; /% This is a comment
and as you can see
it can include more that
one line x/




Variables

Are “containers” for values.

Each of them is equipped of a name and a type.

The name is used to identify the variable when we want to either
“read” or change its content.

The type specifies:
@ the set of values that can be store into the variable

@ the functions that can be applied on them



Declaring a Variable

Any variable must be declared before its use.

variable type> <variable name>;

From that point on, <variable name> will denote the variable
having the specified type.



Variable Names

Variables can have as names any word in

[a-zA-Z |[a-zA-Z 0-9]*

excluding reserved words (e.g.,"int", “return”)

C is case sensitive, e.g., “ciao” # “Ciao”



Basic Data Type

Type Values (at least) Domain
char [-27,2" — 1] and Integer values
ASCII Characters and Characters
short [-27,27 — 1] Integer values
int [—215,215 — 1] Integer values
long int [=231523L 1] Integer values
long long int [—263,263 — 1] Integer values
float represented by 32 bits Real values
double represented by 64 bits Real values
long double | represented by 128bits Real values




Basic Data Type

unsigned can be used to signal the interest on non-negative
values only.

E.g, unsigned int variables can assume any value in [0, 210 — 1].



Declaring a Variable

/* Integer types x/

short s,S; /% at least 16 bits (—2715,2"15-1) «/
int i,l; /+ at least 16 bits (—27"15,2"15—-1) x/

long int li; /+ at least 32 bits (—

2°31,2°31—1) */

long long int Ili; /+ at least 64 bits (—2763,2763

/* Floating point types x/
float f; /% 32 bits x/

double d,D; /% 64 bits x/

long double Id; /+ 128 bits x/

/* Character and integer type x/
char c¢; /+ ASCIl or integer values

in (277, 2°7-1




Assignments

To store a value in a variable:

variable name> = <expr of the same type>;




Assignment Examples

int i; char c; short s: float f;
s=4; i=s;
/* characters are specified between

apostrophes ', while strings
between quotation marks " x/

i=2«(i4+1); /+ algebric expressions are
supported (no power) x/

The last instruction may have weird effects. Why?




Implicit Type Casting

When we assign a value to a variable of different type there is an
Implitic type casting.

If the the variable's type is more " general”’, the value is preserved.

char — short — int — long int — long long int —
float — double — long double



Implicit Type Casting

When we assign a value to a variable of different type there is an
Implitic type casting.

If the the variable's type is more " general”’, the value is preserved.

char — short — int — long int — long long int —
float — double — long double

Otherwise, the value may be approximated.



Explicit Type Casting

Any value can be approximated and forced to a given type by type
casting it.

(<new type>) <expression>

Eg.,

i=(int)4.1;

c=(char)((int)c+1);

i= ((int)(4.1/2))/2;



Two Kinds of Division

C implements two different division functions:
@ integer division

o floating point division
Their selection depend on the types of operators

int i=3, |I; float d=3, D;

=i /2; /* both i and 2 are integers

=> integer division x/
D=d/2; /x d is a fp variable
=> floating point division




Boolean Expressions

The supported algebric relations are:
e equality (==)
@ majority relations (> and <) and their derivatives (>= and <=)
!

o diversity relation (!=)

The supported Boolean operators are:
@ logic conjuction (&&)
@ non-exclusive disjunction (/)

@ logic negation (!)



Boolean Expressions (Cont'd)

Their evaluations are natural numbers:
@ 0 represents the Boolean value False

@ any other value is interpreted as True

char b;

b=(1(i>=3) && (d—2==-1) && b) |[(s!=3);

From 1999, C has a Boolean type which is not really used.



Blocks of Instructions

Are either a single instruction or a sequence of instruction between
braces H{H H}H

Any variable exists only inside the block in which it is declared.

/* This is a block x/
int h=1;

h=h+1; /% Here, h does exist x

Here, it does not x/




Printing on the Standard Output

Use the “instruction” printf

int i=2; long int j=3;
printf("To print numbers: %d %d %d”, i, i, j);

float f=2.2, double d=2.2;
printf("To print floats: %f %f", f, d);

char c="Y";

printf("To print characters: %c", c);




Non-Alphabetic Characters

There exist non-alphabetic characters like end line or new line.

How to represent them?



Non-Alphabetic Characters

There exist non-alphabetic characters like end line or new line.

How to represent them? by using escape sequences

@ \n newline

\b backspace

\t horizontal tabulation

\\ backslash character

\" double quotation character

\a alert

\O string terminator



Non-Alphabetic Characters (Examples)

printf(" This does not end with a \"new line\"");

printf(" This does\nbut this not");
printf(” This procudes an alert sound\a”);
printf(" This is missing the last letter\b");

printf (" This line e\Onds before its real end");




Loop Statements

Blocks of instructions can be repeated many times by using the
loop statements:

@ while-do

e for



The While-do Statement

Repeats a block while a Boolean condition holds.

int i=0;

while (!(i==4)) {

printf (" Here i=%d\n",i);

i++; // this is equivalent to i=i+l

}




The For Statement

Has the syntax:

for (<initialization code>;
<loop condition >;
<updating code>) <block>

for (int j=0; j<i; j++) {

printf (" Here j=%d\n",j);

}



The Condition Statement If-Then

Executes a block if and only if the Boolean condition holds.

if (i==2) {
}

printlf(”"i is equal to 2");




The Condition Statement If-Then

Decides the execution of one among two blocks.

is equal to 2");

printf("i different from 2");




Coming soon. . .

@ modular programming
o C functions

@ libraries



