
Unit 3
Basic Syntax

Alberto Casagrande
Email: acasagrande@units.it

a.a. 2019/2020

The C Programming Language

The C programming language is an imperative language.

Programs are sequences of instructions.

Trust Your Master

At the beginning, all the programs will have this structure

#i n c l u d e <s t d i o . h>

i n t main (i n t argc , c h a r ∗ a r g v [])
{

. . .

r e t u r n 0 ;
}

By the end of the course, you’ll have all the details.

Instructions

Are basic “commands” for the computer.

They are syntactically closed by the symbol “;” (semi-column)

More than one instruction can lay on the same line

Comments

Even if you are an expert, unraveling the meaning of a sequence of
instructions may be difficult.

It is really important to comment code

Comments

Even if you are an expert, unraveling the meaning of a sequence of
instructions may be difficult.

It is really important to comment code

Comments

In ANSI C everything is preceded by “/*” and followed by “*/” is
a comment.

It can be longer that one line.

If you come from either C++ or Java, pay attention: sigle line
comment (i.e., //) is not standard.

Commento con ”/*” e ”*/”

. . .
i n t y ; /∗ This i s a comment

and as you can s e e
i t can i n c l u d e more t h a t
one l i n e ∗/

. . .

Variables

Are “containers” for values.

Each of them is equipped of a name and a type.

The name is used to identify the variable when we want to either
“read” or change its content.

The type specifies:

the set of values that can be store into the variable

the functions that can be applied on them

Declaring a Variable

Any variable must be declared before its use.

. . .
<v a r i a b l e type> <v a r i a b l e name>;
. . .

From that point on, <variable name> will denote the variable
having the specified type.

Variable Names

Variables can have as names any word in

[a-zA-Z][a-zA-Z 0-9]*

excluding reserved words (e.g.,“int”, “return”)

C is case sensitive, e.g., “ciao”6= “Ciao”

Basic Data Type

Type Values (at least) Domain
char [−27, 27 − 1] and Integer values

ASCII Characters and Characters
short [−27, 27 − 1] Integer values

int [−215, 215 − 1] Integer values
long int [−231, 231 − 1] Integer values

long long int [−263, 263 − 1] Integer values
float represented by 32 bits Real values

double represented by 64 bits Real values
long double represented by 128bits Real values

Basic Data Type

unsigned can be used to signal the interest on non-negative
values only.

E.g, unsigned int variables can assume any value in [0, 216 − 1].

Declaring a Variable

/∗ I n t e g e r t y p e s ∗/
s h o r t s , S ; /∗ at l e a s t 16 b i t s (−2ˆ15 ,2ˆ15−1) ∗/
i n t i , I ; /∗ at l e a s t 16 b i t s (−2ˆ15 ,2ˆ15−1) ∗/
l o n g i n t l i ; /∗ at l e a s t 32 b i t s (−2ˆ31 ,2ˆ31−1) ∗/
l o n g l o n g i n t l l i ; /∗ at l e a s t 64 b i t s (−2ˆ63 ,2ˆ63−1) ∗/

/∗ F l o a t i n g p o i n t t y p e s ∗/
f l o a t f ; /∗ 32 b i t s ∗/
d o u b l e d ,D; /∗ 64 b i t s ∗/
l o n g d o u b l e l d ; /∗ 128 b i t s ∗/

/∗ C h a r a c t e r and i n t e g e r t y p e ∗/
c h a r c ; /∗ ASCII o r i n t e g e r v a l u e s i n (−2ˆ7 , 2ˆ7−1) ∗/

Assignments

To store a value in a variable:

. . .
<v a r i a b l e name> = <e x p r o f th e same type >;
. . .

Assignment Examples

i n t i ; c h a r c ; s h o r t s ; f l o a t f ;

s =4; i=s ;

c=’a ’ ; /∗ c h a r a c t e r s a r e s p e c i f i e d between
a p o s t r o p h e s ’ , w h i l e s t r i n g s
between q u o t a t i o n marks ” ∗/

i =2∗(i +1); /∗ a l g e b r i c e x p r e s s i o n s a r e
s u p p o r t e d (no power) ∗/

f =4.1 ;
i =4.1 ;

The last instruction may have weird effects. Why?

Implicit Type Casting

When we assign a value to a variable of different type there is an
Implitic type casting.

If the the variable’s type is more ”general”, the value is preserved.

char → short → int → long int → long long int →
float → double → long double

Otherwise, the value may be approximated.

Implicit Type Casting

When we assign a value to a variable of different type there is an
Implitic type casting.

If the the variable’s type is more ”general”, the value is preserved.

char → short → int → long int → long long int →
float → double → long double

Otherwise, the value may be approximated.

Explicit Type Casting

Any value can be approximated and forced to a given type by type
casting it.

(<new type >) <e x p r e s s i o n >

E.g.,

i =(i n t) 4 . 1 ;

c=(c h a r) ((i n t) c +1);

i= ((i n t) (4 . 1 / 2)) / 2 ;

Two Kinds of Division

C implements two different division functions:

integer division

floating point division

Their selection depend on the types of operators

i n t i =3, I ; f l o a t d=3, D;

I=i / 2 ; /∗ both i and 2 a r e i n t e g e r s
=> i n t e g e r d i v i s i o n ∗/

D=d / 2 ; /∗ d i s a f p v a r i a b l e
=> f l o a t i n g p o i n t d i v i s i o n ∗/

Boolean Expressions

The supported algebric relations are:

equality (==)

majority relations (> and <) and their derivatives (>= and <=)

diversity relation (!=)

The supported Boolean operators are:

logic conjuction (&&)

non-exclusive disjunction (||)

logic negation (!)

Boolean Expressions (Cont’d)

Their evaluations are natural numbers:

0 represents the Boolean value False

any other value is interpreted as True

c h a r b ;

b =(!(i >=3) && (d−2==−1) && b) | | (s ! = 3) ;

From 1999, C has a Boolean type which is not really used.

Blocks of Instructions

Are either a single instruction or a sequence of instruction between
braces “{” “}”

Any variable exists only inside the block in which it is declared.

. . .
{ /∗ This i s a b l o c k ∗/

i n t h=1;

h=h+1; /∗ Here , h does e x i s t ∗
}

/∗ Here , i t does not ∗/
. . .

Printing on the Standard Output

Use the “instruction” printf

. . .
i n t i =2; l o n g i n t j =3;
p r i n t f (”To p r i n t numbers : %d %d %d ” , i , i , j) ;

f l o a t f =2.2 , d o u b l e d =2.2 ;
p r i n t f (”To p r i n t f l o a t s : %f %f ” , f , d) ;

c h a r c=’Y ’ ;
p r i n t f (”To p r i n t c h a r a c t e r s : %c ” , c) ;

Non-Alphabetic Characters

There exist non-alphabetic characters like end line or new line.

How to represent them?

by using escape sequences

\n newline

\b backspace

\t horizontal tabulation

\\ backslash character

\" double quotation character

\a alert

\0 string terminator

Non-Alphabetic Characters

There exist non-alphabetic characters like end line or new line.

How to represent them? by using escape sequences

\n newline

\b backspace

\t horizontal tabulation

\\ backslash character

\" double quotation character

\a alert

\0 string terminator

Non-Alphabetic Characters (Examples)

. . .
p r i n t f (” Thi s does not end w i t h a \”new l i n e \” ”) ;

p r i n t f (” Thi s does \nbut t h i s not ”) ;

p r i n t f (” Thi s p r o c u d e s an a l e r t sound\a ”) ;

p r i n t f (” Thi s i s m i s s i n g t he l a s t l e t t e r \b ”) ;

p r i n t f (” Thi s l i n e e\0 nds b e f o r e i t s r e a l end ”) ;
. . .

Loop Statements

Blocks of instructions can be repeated many times by using the
loop statements:

while-do

for

The While-do Statement

Repeats a block while a Boolean condition holds.

i n t i =0;
w h i l e (! (i ==4)) {

p r i n t f (” Here i=%d\n ” , i) ;

i ++; // t h i s i s e q u i v a l e n t to i=i +1
}

The For Statement

Has the syntax:

f o r (< i n i t i a l i z a t i o n code >;
<l o o p c o n d i t i o n >;
<u p d a t i n g code>) <b lock>

E.g.,

f o r (i n t j =0; j< i ; j ++) {
p r i n t f (” Here j=%d\n ” , j) ;

}

The Condition Statement If-Then

Executes a block if and only if the Boolean condition holds.

i f (i ==2) {
p r i n t l f (” i i s e q u a l to 2 ”) ;

}

The Condition Statement If-Then

Decides the execution of one among two blocks.

i f (i ==2) {
p r i n t f (” i i s e q u a l to 2 ”) ;

} e l s e {
p r i n t f (” i d i f f e r e n t from 2 ”) ;

}

Coming soon. . .

modular programming

C functions

libraries

