
Unit 4
Functions and Libraries

Alberto Casagrande
Email: acasagrande@units.it

a.a. 2019/2020

Computing the Factorial

. . .
/∗ F a c t o r i a l o f 10 ∗/
i n t f a c t =1;
f o r (i n t i =1; i <=10; i=i +1)

f a c t=i ∗ f a c t ;

p r i n t f (”The f a c t o r i a l o f 10 i s %d\n” , f a c t) ;

/∗ F a c t o r i a l o f 7 ∗/
f a c t =1;
f o r (i n t i =1; i <=7; i=i +1)

f a c t=i ∗ f a c t ;

p r i n t f (”The f a c t o r i a l o f 7 i s %d\n” , f a c t) ;
. . .

Issues in Previous Code

Complexity in the code (How to use it for a different number?)

Explosion in the number of code lines

Hard to bug fixing

Using Modules

To solve the issues

1 split the original problem into sub-problems

2 implement software modules to solve them

3 combine all the results

Such modules should be:

Usable little and clear code to use them

Re-usable write once, use many times

Isolated the results of their execution depend exclusively on
their code

Using Modules

To solve the issues

1 split the original problem into sub-problems

2 implement software modules to solve them

3 combine all the results

Such modules should be:

Usable little and clear code to use them

Re-usable write once, use many times

Isolated the results of their execution depend exclusively on
their code

Using Modules

To solve the issues

1 split the original problem into sub-problems

2 implement software modules to solve them

3 combine all the results

Such modules should be:

Usable little and clear code to use them

Re-usable write once, use many times

Isolated the results of their execution depend exclusively on
their code

Using Modules

To solve the issues

1 split the original problem into sub-problems

2 implement software modules to solve them

3 combine all the results

Such modules should be:

Usable little and clear code to use them

Re-usable write once, use many times

Isolated the results of their execution depend exclusively on
their code

Functions

Are blocks of instructions equipped with:

a name

some input parameters (potentially 0)

an output

They are meant to implement mathematical functions.

Syntax

. . .

/∗ f u n c t i o n s i g n a t u r e ∗/
<output type> < f u n c t i o n name>(

<pa ra me te r type> <f o r m a l parameter >,
. . .)

/∗ f u n c t i o n d e f i n i t i o n ∗/
{

. . .
return <return v a l u e >; /∗ can be an

e x p r e s s i o n ∗/
. . .

}

An Example

. . .

unsigned i n t f a c t (unsigned i n t n)
{

unsigned i n t r e s u l t =1;

f o r (i n t i =1; i<=n ; i=i +1)
r e s u l t=r e s u l t ∗ i ;

return r e s u l t ;
}

. . .

The Void Type

When a function perform a task (e.g., printing) and does not
return a value, the output type is void and the return instruction
can be avoided.

void p r i n t e v e n o r o d d (i n t n)
{

i f (2∗ (n/2)==n) {
p r i n t f (” even \n”) ;

return ;
}

p r i n t l n (”odd\n”) ;
}

Thus, . . .

i n t main (i n t argc , char ∗ a r g v [])
{

. . .
}

is the definition of a function named main.

This is the main function of your program.

What are the parameters and the output values?

Thus, . . . (Cont’d)

POSIX programs must return an error code: 0 means success.

The first parameter of the main function is the number of
parameters +1 in the execution command.

E.g., during the execution of

a l @ f o o :˜ > ./ a . out a 12 3

argc has value 4.

Function Calls

Functions can be called by other functions by using the syntax:

< f u n c t i o n name>(<a c t u a l parameter >, . . .)

The result of a call is a value having the function output type.

It can be used inside an expression.

Function Calls

Functions can be called by other functions by using the syntax:

< f u n c t i o n name>(<a c t u a l parameter >, . . .)

The result of a call is a value having the function output type.

It can be used inside an expression.

Examples of Calls

i n t main (i n t argc , char ∗ a r g v [])
{

unsigned i n t k=3;

whi le (k<500000) {
p r i n t f (”The f a c t o r i a l o f %d” ,

k) ;
k=f a c t (k) ;
p r i n t f (” i s ” + k) ;

}
}

Back to the Original Example

. . .
/∗ F a c t o r i a l o f 10 ∗/
i n t f a c t =1;
f o r (i n t i =1; i <=10; i=i +1)

f a c t=i ∗ f a c t ;

p r i n t f (”The f a c t o r i a l o f 10 i s %d\n” , f a c t) ;

/∗ F a c t o r i a l o f 7 ∗/
f a c t =1;
f o r (i n t i =1; i <=7; i=i +1)

f a c t=i ∗ f a c t ;

p r i n t f (”The f a c t o r i a l o f 7 i s %d\n” , f a c t) ;
. . .

Back to the Original Example (Cont’d)

unsigned i n t f a c t (unsigned i n t x)
{

unsigned i n t r e s u l t =1;

f o r (i n t i =1; i<=x ; i ++)
r e s u l t=i ∗ r e s u l t ;

return r e s u l t ;
}

Back to the Original Example (Cont’d 2)

i n t main (i n t argc , char ∗ a r g v [])
{

p r i n t f (”The f a c t o r i a l o f 10” , f a c t (1 0)) ;
p r i n t f (”The f a c t o r i a l o f 7” , f a c t (7)) ;

return 0 ;
}

Signatures vs Definitions

Function calls can occur only after signatures

Signatures can be specified without defining functions (end them
with “;”).

i n t t e s t () ;

i n t main (i n t argc , char ∗ a r g v []) {
return t e s t () ;

}

i n t t e s t () {
return 0 ;

}

What About Re-usability?

Can we avoid to re-write the same code for any new program?

Libraries are sets of functions that can be linked to programs

You can both implements your own libraries and use already
developed ones.

What About Re-usability?

Can we avoid to re-write the same code for any new program?

Libraries are sets of functions that can be linked to programs

You can both implements your own libraries and use already
developed ones.

Static vs Dynamic Libraries

There are two kinds of libraries

Static library: their binary code is embeded into the program code
(in GNU/Linux lib<name>.a)

Dynamic library: their binary code is loaded at runtime from a file
which is shared (in GNU/Linux lib<name>.so)

Linkers

Are software to link different object files produced by a compiler.

GCC invokes the GNU linker, ld, by default.

How to Build a Dynamic Library with GCC

1 write the functions in a set of files e.g., first lib.c

2 collect the signatures in one header file e.g., first lib.h

3 build the dynamic library by using the options:

-fPIC let code be position independent
-shared produce an object that can be linked

a l @ f o o : ˜ /GP> gcc −fPIC −s h a r e d f i r s t l i b . c
−o l i b f l i b . so

Including Header Files and Other Amenities

To call a library function we first need to declare its signature.

So, either we re-write its signature in any new program or. . .

we need a way to include its header file in the program.

This can be done by the pre-processor.

Including Header Files and Other Amenities

To call a library function we first need to declare its signature.

So, either we re-write its signature in any new program or. . .

we need a way to include its header file in the program.

This can be done by the pre-processor.

Including Header Files and Other Amenities

Including Header Files and Other Amenities

The pre-processor can:

include files

define and undefine macros

evaluate macros

Every pre-processor directive begins with #.

Pre-processor Directive Examples

#inc lude <s t d i o . h>

#def ine MIN(X, Y) ((X) < (Y) ? (X) : (Y))

#i f d e f MIN

#undef min

#end i f

How to Link a Dynamic Library with GCC

1 include the library header file

2 build your program by using the options:

-L<lib path> if the library is not in the standard libraries
path

-Wl,-rpath=<lib path> if you have planned not to move
the library to a standard library path

-l<name> link the library lib<name>.so

gcc −L . −Wl,− r p a t h =. program . c − l f l i b

Coming soon. . .

arrays

pointers

pointer arithmetic

strings

