Pre-Course - Computer Programming
 DSSC - 2019/2020

Unit 4

Ex. 1
Write a function that takes an integer number n and a natural number m and returns n^{m}.

Ex. 2
Write a function that takes two natural numbers n and m and returns $\lfloor\sqrt[m]{n}\rfloor$.
Ex. 3
The Fibonacci sequence is sequence of natural numbers F_{0}, F_{1}, \ldots such that $F_{0}=1, F_{1}=1$ and $F_{m+2}=F_{m+1}+F_{m}$ for all $m \in \mathbb{N}$. Write a function that takes a natural number n and returns F_{n}.

Ex. 4
The roots of a function $f: \operatorname{Dom} \mapsto \operatorname{Cod}$ are all the elements $x \in \operatorname{Dom}$ such that $f(x)=0$.

The bisection method is an algorithm that takes as input

1. an interval $[a, b]$ over the reals
2. a function $f: \mathbb{R} \mapsto \mathbb{R}$, continous in $[a, b]$, and such that $f(a) * f(b)<0$
3. a number $\delta \in \mathbb{R}$ greater than 0
and returns a δ-approximated root of f (i.e., if the algorithm returns y, then $|f(y)|<\delta)$.

The algorithm performs the following steps. First of all, it computes the mean point m in the interval $[a, b]$. If $|f(m)|<\delta$, then the algorithm returns m. Otherwise, it focus either on the interval $[a, m]$, if $f(a)$ and $f(m)$ have different signs, or on $[m, b]$, in the other way round. The algorithm keeps repeating all the process on the selected interval.

Write a function that takes a floating point number δ and computes a δ approximated root of $f(x)=2 x^{3}-4 x+1$ in the interval $[0,1]$.

Ex. 5
Write a function to compute the square root of any double by using the bisection method.

